2.3 研究開発項目③「高精度in silico スクリーニング等のシミュレーション技術」

集 中 研 究:社団法人バイオ産業情報化コンソーシアム〔バイオメディシナル情報研究セン ター(BIRC)、大阪大学分室、情報数理研究所分室、塩野義製薬分室、アステ ラス製薬分室、三井化学アグロ分室〕

共同研究先:独立行政法人産業技術総合研究所バイオメディシナル情報研究センター、国 立大学法人大阪大学蛋白研究所

【中期目標】

高精度のインシリコスクリーニングを実現するため、以下の技術を開発する。さらに、①, ②の技術開発との連携により、産業上有用な化合物を5個以上取得する。

- 1)タンパク質の動的性質を正しく評価し、タンパク質受容体への基質結合能を高い精度で計算で きる新しい計算科学手法の開発し、インシリコスクリーニングの効率を従来法に比べ 5 倍程に あげる。
- 2) タンパク質と化合物とのドッキング計算手法の精度を高め、ターゲット選択性能を従来法に比べ5倍程度上げる
- 3)タンパク質間相互作用を阻害・制御する低分子化合物の選択・設計の技術開発を行う。

【達成度】

高精度のインシリコスクリーニング技術を開発し、国際的な業界標準であるソフトウェアに対する 優位性を確認した。その手法により、μオピオイド受容体アゴニスト(48ヶ)や農薬のシードとなる化 合物(23ヶ)など70ヶを超えるヒット化合物を得た。このうち構造上、前者では少なくとも 2ヶ、後者で は16ヶについて新規性が高く産業上有用と考えられ、また、横浜市大との共同研究によるインフル エンザウイルスRNAポリメラーゼPA-PB1複合体阻害剤として3ヶの化合物の発見など、将来有用 となるもの、有用になりうる化合物を、総計20個以上を得ることができた。

→ 目標を達成できた。

1)タンパク質のドッキング効率を上げる新たな手法や、分子動力学計算に基づく結合自由エネル ギー計算の新規な方法を開発した。また、μオピオイド受容体に対する *in-silico*スクリーニング法 によって 200 万化合物から選択された 399 化合物に対して、ヒット化合物 48 ヶ(12%)が見出され、 また膜タンパク質に対する新規阻害剤が 187 ヶの評価化合物中 23 ヶ(12.3%)見出された。これら のヒット率は、通常の 0.1%~1%のオーダーのヒット率に比較すると、少なくとも 10 倍以上のスクリ ーニング効率となっている。

→ 目標を達成できた。

2) データベースエンリッチメント・カーブにおいて上位1%における選択的なヒット率は、ssDSM法で は通常のドッキング手法の5.1倍(45.8/8.9%)、標的タンパク質の動的モデルによるMTS法ではGOL Dに比べ20倍(66/3.3)、機械学習法とMTS & DSIを組み合わせた方法ではS社のドッキングソフト に比べて18.0倍(22.1/1.2)を得た。GOLDも後者のソフトも国際的に広く利用されている標準的なド ッキング・ソフトウェアである。一方、不整脈等の原因となるhERGチャネル阻害活性予測を行う新 規手法の開発においても、市販プログラムに搭載されている従来法の7.9倍の選択性を得た。

→ 目標を達成できた。

3)類似化合物探索手法としてMD-MVO法を開発したところ、代表的なソフトウェアROCSより有意 に高いヒット率を示し、ペプチド・リガンドからの低分子探索が可能なことを示した。

→ 目標を達成できた。

(1) in silicoドッキング計算の高精度化

【研究内容】

創薬プロセスにおけるin-silico ドッキング計算において、タンパク質の動的性質を正しく評価する ため、動的性質を抽出する手法を開発するとともに、ドッキングスコアの精度を高め、タンパク質 および低分子リガンドの動的構造、及び各種相互作用を考慮した複合体の構造予測法及び結合 エネルギー算出法の開発を行う。

【研究成果】

(i) ドッキングスクリーニング法の改良: MTS 法の改良
(j) ドッキングスクリーニング法の改良: MTS 法の改良
(j) ドッキングスクリーニング手法を開発し
てきた。これらスクリーニング手法は、蛋白質—化合物相互作用行列に基づく手法であり、標的
蛋白質の3D 構造をもとにした Multiple target screening method (MTS 法), 標的の構造を用いず
に、活性化合物の情報のみを用いる Docking score index method (DSI 法)である。ドッキングスコ
アの精度そのものを改善する手法も提案してきた。1つは、蛋白質—化合物相互作用行列に基づく手法である Direct score modification method (DSM 法), もうひとつは、活性化合物の情報を

標的蛋白質の3D 構造が既知であり、かつ活性化合物の情報もあれば、Machine-learning score modification method と MTS 法を組み合わせることで、安定して高いヒット率を出すことができる (MSM-MTS 法)。しかし、活性化合物の情報がない場合、Direct score modification method と MTS 法を組み合わせることになるが (DSM-MTS 法)、標的蛋白質の種類によってヒット率にばら つきがあり、またヒット率は、MSM-MTS 法に比べてかなり低いのが問題だった。

【sequence-based DSM 法の開発】

本年度では、DSM-MTS 法の欠点を修正し、標的蛋白質の3D 構造が既知である場合、従来より 高いヒット率を、標的蛋白質の種類に関わらずに安定して高いヒット率を出すことを目指す。スコ アの修正を下記の式で行う。つまり蛋白質 a、化合物 i のドッキングスコア s^{mod_i}は、蛋白質 b,化合 物 i のドッキングスコア sⁱの線形結合で近似する。M^bは、パラメーターである。

 $s^{\mathrm{mod}_{a}^{i}} = \sum_{b} s_{b}^{i} M_{a}^{b} \quad \mathrm{fl}(1)$

DSM 法では、蛋白質—化合物相互作用行列に基づいて蛋白質 a-b の相関係数 R_a^bを計算し、 これを M_a^bとして用いる。

$$s^{DSM_{a}^{i}} = \frac{\sum_{b} s_{b}^{i} R_{a}^{b}}{\sum_{b} R_{a}^{b}} \quad \text{zt}(2)$$

我々は今年度、新たに sequence-based score modification を考案し、M_a^bを蛋白質 a-b のアミ ノ酸配列相同性でみるもることにした。

$$R_a^b = S_a^b \frac{1}{1 + e^{-c(x-0.5)}} \quad \text{zt}(3)$$

に置く。 S_a^b は、fasta version 3.4 での相同性(%)、c はパラメーターで、x は、(a-b の重複する配 列の長さ)/(標的蛋白質 a の全長)である。Fasta34は、部分配列の相同性を計算するようになっ ている。そのため、数残基(5残基以下)で100%相同性といった部分配列を検出してしまう。 相同性がやや低くても、全長で50-60%の相同性があれば同じ構造の蛋白質である。した がって、fasta34 使用時には、蛋白質の相同性を考えるとき、相同性と重複配列の長さの両方 を考える必要がある。そこで、配列相同性だけでなく、アミノ酸配列の相同性が見られる領域の 長さも考慮するように式を構成した(分母の 1+ $e^{-c(x-0.5)}$ の部分)。

図は、この手法の計算手順を模式図としたものである。

上式において、S^bをたんぱく質 a,b の similarity で置き換えたものを sequence-similarity DSM (ssDSM), identity で置き換えたものを sequence-identity DSM (siDSM)と呼ぶことにした。 ssDSM/siDSM を既存のオリジナルの MTS,DSM-MTS, MSM-MTS と比較してみた。標的蛋白 質として、COX-2, サーモライシン、MIS, グルタチオンーS-転移酵素、HIV プロテアーゼ1の5 種を選び、これらの活性化合物を文献より収集、さらに、約1万化合物をランダムライブラリー より不活性化合物として収集した。180 蛋白質×約1万化合物の相互作用行列を Sievgene を用 いて作成し、ssDSM/siDSM、オリジナルの MTS,DSM-MTS, MSM-MTS を適用して、データベー スエンリッチメント曲線を計算したのが下図である。MSM-MTS 法は、既知活性化合物が発見さ れる確率を最大化するようにパラメータを調整する手法なので、事実上の上限を与えている。 ssDSM/siDSM は、オリジナルの MTS、DSM-MTS 法の結果を大きく上回り、MSM-MTS 法に近 い結果を与えた。上位1%の化合物を採択した場合のヒット率は45%に達し、ヒット率を向上さ せる初期の目的は果たされている。

ただし、ssDSM/siDSMは、通常のMTS法でヒット率が高かった標的に対し、より高いヒット率を 示す反面、通常のMTS法でヒット率が低かった標的に対しては、より低いヒット率を与えてしま う。平均すれば、ヒット率を完全しているが、標的による結果のばらつきが大きくなるのが欠点 であることが分かったので、適用に際しては注意が必要である。

(ii) 膜蛋白質の分子動力学計算による動的性質の抽出

〔阪大分室〕

創薬プロセスにおけるin-silico ドッキング計算において、タンパク質の動的性質を正しく評価し動 的性質を抽出するため、分子動力学計算結果における蛋白質分子の各原子のトラジェクトリーか ら、主成分解析(PCA: Principal Components Analysis)を行って動的構造を解析する手法を開発・ 確立した。また、主鎖原子間をバネでつなぐモデルである弾性ネットワーク・モデル(ENM: Elastic Network Model)についても、その解析法を開発し、上記PCA解析と同様に利用できる仕組みとし た。

まず、膜蛋白質であるモノアミン酸化酵素-A(MAO-A)の膜分子と水分子をあわらに取り扱った 計81,647原子からなる系(水分子:17125, POPC

(1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) リン脂質分子: 163, Na+: 76, Cl-: 78)に対し、myPresto/cosgeneを用いてNPTアンサンブル(Nosé-Anderson法)による1気圧、310Kでの分子動力学計算を、1 step = 2 fs として、20 nsの長さで3回初期速度を変えて行った(周期境界条件: 72 Åx 94 Å x 124 Å)。同様に、膜貫通へリックスを削除し、膜分子のない水溶液系(計)

63,605原子, 周期境界条件: 72 Å × 92 Å × 96 Å)も同時に3回の分子動力学計算を行い、トータ ル6ヶのトラジェクトリーを比較・解析した。

図1:膜蛋白質 MAO-A に対するシミュレー ション計算の系。MAO-A (緑のリボン)と、 膜分子 (POPC:水色)、溶媒の水(赤)、Na⁺イ オン (黄色)、Cl⁻イオン (水色の球)。

図2:(a)膜貫通ヘリックスがある場合のトラジェクトリ における初期構造からのズレ。(b)水溶液系のシステムに おけるトラジェクトリ。

この時、特に、MAO-Aの内部のドメイン構造の動的性質を明らかにするため、ゆらぎの相関を

$$Corr_{ij} = \frac{\left\langle (\vec{r}_i - \langle \vec{r}_i \rangle) \cdot (\vec{r}_j - \langle \vec{r}_j \rangle) \right\rangle}{\sqrt{\left\langle (\vec{r}_i - \langle \vec{r}_i \rangle)^2 \right\rangle \left\langle (\vec{r}_j - \langle \vec{r}_j \rangle)^2 \right\rangle}}$$

 $(\vec{r}_i: i$ 番目の残基の C_{α} 原子の座標)

と定義して、全ての60 ns ずつのトラジェクトリを計算し、膜貫通へリックスが膜にアンカーしている状態のもの(左上)と、膜貫通へリックスを含まず水溶液中のもの(右下)とを比較した。

図3: i 番目の残基と j 番目の残基お C_{α} 原 子間のゆらぎの相関 $Corr_{ijo}$ 左上は膜貫通 ヘリックスを含む系であり、右下は水溶液 系。残基部分の色は、右の概略図における ドメインに対応する。オレンジ色はリガン ド結合部位。

明らかに、点線で囲む負の相関(青色で示される領域)が、膜貫通へリックスを持つ場合には明瞭であるのに対し、水溶液中のトラジェクトリーには見られないのがわかる。これらは、図3で示す SドメインとMドメイン間の負の相関であり、リガンド結合部位の開閉が、膜貫通へリックスがある 場合には拡大されることがわかる。

さらに、どのような運動かを詳細にみるため、主成分解析とENM解析とを比較した(図4)。

(a) PC1, membrane-bound system

(b) PC1, membrane-unbound system

図4:膜貫通ヘリックスがある場合(a)と削除した場合(b)の2つの場合の 主成分解析の第1成分(PC1)の比較。(a)では運動の方向とドメインが同 期していることがわかる。(c) ENMによる基準振動解析で得られた13番 目のモード(それ以下の低振動モードは、膜貫通ヘリックスの運動に関わ るもの)は、PC1に良く一致していた。

mode 13 (c) ENM mode-13

ENM解析で得られる基準振動で、主成分解析で得られる主な運動が再現されていることがわかり、 分子動力学計算と主成分解析によって得られる振動モードは、この蛋白質分子がもともと持って いる運動であることがわかる。すなわち、リガンド結合に関係すると思われるドメインの開閉運動 は、もともとのMAO-A分子が持っている振動モードであったが、膜貫通へリックスが膜にアンカー リングすることによって、テコのように働き、このドメイン間の開閉運動がさらに強調されたものと 考えられる。これから、図5のようなリガンドの入出に伴う道筋(トンネル)が推測される。特に右側 のピンク色のトンネルについては、リガンド選択性をつかさどるアミノ酸がそのトンネル中に位置す ることから、この推測の正当性が示唆されている。

以上、MAO-Aの静止状態の構造からはリガンド結合の道筋が不明であったのが、このようなシミ

ュレーション計算によって、ダイナアミックなリガンド結合の仕組みを明らかにすることができた。 (Apostolov et al. (2009) *Biochemistry*, 48, 5864-5873)

(iii) 新しいリガンド結合エネルギー計算手法(Smooth Reaction Path Generation 法)の開発

[BIRC 集中研]

医薬分子の標的への結合活性は、結合自由エネルギーで測ることができる。医薬品の最高活性は、結合自由エネルギーで最大15 kcal/mol 程度であるとされている。通常、医薬品の平均活性は IC₅₀ = 30 nM であり、70%の化合物が IC₅₀ が 50 nM より強い活性をしめす。IC₅₀ が nano-, pico-M である場合、結合自由エネルギーは 12.6 - 16.8 kcal/mol となる。

結合自由エネルギー(Δ G)の計算は、計算化学の究極の目的の一つだが、計算は難しい。蛋 白質—化合物ドッキングソフトによる見積もりでは、様々なソフトが開発されてきたものの、実測 Δ Gと計算値の相関は、相関係数 0.6~0.7、平均誤差 2.5 kcal/molとなる。この誤差は、ヒット化 合物(シードレベル)の Δ Gに相当するエネルギーで、その結果、計算によるヒット化合物探索の 精度は低い。MMPBSA、MMGBSA、LIE(Linear Interaction Energy)、COMBINE 法などいろいろな 半経験的 Δ G推算方法が開発されてきたが、精度がドッキングソフトに比べて飛躍的に高いわ けでもなく、既知活性化合物の Δ Gがないと推算ができなかったりする欠点があった。<u> Δ Gの推</u> <u>算誤差を 1 kcal/mol 程度にすることができれば、活性の推算は、従来の 10 倍程度に改善され</u> <u>たといえるので、この値を最終目標とする。なお、実験での pH、塩濃度によって活性値は 10 倍</u> 程度変化するので、誤差 1kcal/mol 以上の精度は、期待できない。

分子動力学シミュレーションでΔGが計算できれば、既知のΔGを必要とせず、理想的であるが、 その計算は、極めて計算量が多く、困難である。我々は、2003年に filling potential(FP)法を開発 した。この手法では、蛋白質—化合物複合体から、人為的なポテンシャルを用いて、化合物を解 離させ、その経路に沿った自由エネルギー面を計算することで、少ない計算時間でΔGを求め る方法である。このFP法を用いた全原子シミュレーションによって、酵素—阻害剤のΔGの高精 度の計算に成功した。しかし、FP 法は、化合物が水中ではなかなか解離しない、ヒストグラム法 という計算方法を使うため、慎重な計算が必要で、計算5回~10回に1回しか成功しないという 扱いの難しい方法だった。そこで、我々は、より簡便に、高い確率でΔGが計算できる方法を開 発することにした。

開発した計算手法: Smooth Reaction Path Generation(SRPG)法

蛋白質と化合物の複合体構造を最初に準備し、蛋白質から化合物を、真空中で簡単に解離さ せ、その解離の経路をルジャンドル多項式を用いて、滑らかな経路で近似する。この滑らかな経 路に沿って、化合物が様々な位置に存在する状態を作り、タンパク質、水、イオンと合わせて系 を作り、各系で MD を行い、リガンドの対象原子に働く平均力を計算する。滑らかな経路に沿っ て、力を積分することで自由エネルギー面を計算し、結合状態と解離状態の存在確率を求めて、 その比率からΔGを計算する。各状態をパラレルに計算することができることで計算時間を大き く短縮させることができるという利点がある。 SRPG法によるΔG計算では、

$$\Delta G = -k_B T \ln \frac{P_B}{P_U} \qquad \qquad \text{eq. 1}$$

結合状態の規格化されていない確率 P_B と非結合状態の規格化されていない確率 P_U を用いて Δ Gを計算する。このとき、

$$P_B = \int_{R_B} \exp(-\beta G(r)) dr \qquad \text{eq. 2}$$

$$P_U = \int_{R_U} \exp(-\beta G(r)) dr \qquad \text{eq. 3}$$

ここで $G(\mathbf{r})$, ·, R_B , and R_U は、座標 r, での自由エネルギー(PMF), $1/k_BT$, リガンドの結合状態の領域、リガンドの非結合状態の領域である。

もし、結合状態の確率 P_B が、PMFの最安定座標の周辺(r_0),に限定され、G(r) がパラボラポテンシャルで式4のように近似されるなら、

$$G(\vec{r}) = G(\vec{r_0}) + (\frac{k_x}{2}\Delta x^2 + \frac{k_y}{2}\Delta y^2 + \frac{k_z}{2}\Delta z^2)$$
 eq. 4

ここで

$$\vec{r} = \vec{r_0} + \vec{\Delta r}$$
, $\vec{\Delta r} = (\Delta x, \Delta y, \Delta z)$ eq. 5

結合状態の確率 P_Bは、式6で与えられる。

$$P_{B} = \int_{V_{B}} \exp(-\beta (G(r_{0}) + \frac{k_{x}}{2}x^{2} + \frac{k_{y}}{2}y^{2} + \frac{k_{z}}{2}z^{2}))dxdydz \quad \text{eq. 6}$$

PMF の原点を解離状態に置く(G(∞) = 0). もし G(r) の値が、0 kcal/mol に近いなら,

$$P_{U} = \int_{0}^{R} 4\pi r^{2} \exp(-\beta G(r_{\infty})) dr = \frac{4\pi}{3} R^{3} \exp(-\beta G(r_{\infty})) = V_{0} \exp(-\beta G(r_{\infty})) \quad \text{eq. 7}$$

化合物の密度が 1M density だと、1 個の化合物分子の占める体積 V_0 は 1661 Å³.となる。 以上、まとめると、 Δ Gは式8で与えられる。

$$\Delta G = G(r_0) - G(r_{\infty}) - k_B T \ln \frac{\int_{-\infty}^{\infty} \exp(-\beta \frac{k_x}{2} x^2) dx \int_{-\infty}^{\infty} \exp(-\beta \frac{k_y}{2} y^2) dy \int_{-\infty}^{\infty} \exp(-\beta \frac{k_z}{2} z^2) dz}{V_0}$$
 eq. 8

式8の第3項の分子は、ガウス積分なので、解析的に解くことができる。

$$\Delta G = G(r_0) - G(r_\infty) - k_B T \ln \frac{\frac{\sqrt{\pi}}{\sqrt{\beta k_x/2}} \frac{\sqrt{\pi}}{\sqrt{\beta k_y/2}} \frac{\sqrt{\pi}}{\sqrt{\beta k_z/2}}}{1661} \quad \text{eq.9}$$

解離の経路 p(t)は、ルジャンドル多項式として、

$$\begin{cases} p_x(t) = \sum_{i=0}^{L} c_x^i P_i(t) \\ p_y(t) = \sum_{i=0}^{L} c_y^i P_i(t) \\ p_z(t) = \sum_{i=0}^{L} c_z^i P_i(t) \end{cases} \quad \text{eq. 10}$$

FP法で解離させた経路p⁰に対して、Sを最小化するように、係数cをモンテカルロ計算で最適化 するように決定した。

$$S = \sum_{m}^{M} \sum_{n}^{N} D(\vec{p}(n/N), \vec{p^{0}}(m))^{2} \text{ eq. 11}$$

蛋白質—化合物の△Gの計算:ストレプトアビジンとビオチンの系について計算を行った。

図にストレプトアビジンからビオチンが解離していく経路を示す。上図左のように、真空中で解離 させ、右のように、後から溶媒水を加えて、経路にそって、150個の系を作成した。

FP 法によって、生成した解離していくリガンドの座標を点で表し、それに対してルジャンドル多項 式で生成した滑らかな経路を実線で示す。

この経路に沿った自由エネルギー面は上左図のように得られた。リガンドの結合状態周辺の自由 エネルギー面は、上右図のようであり、2次曲線で近似でき、理論が適用できることが示された。

	SRPG 法	実験値
Δ G(kcal/mol)	-16.5	-18.27

こうして<u>SRPG法では、誤差1.8kcal/mol(9.8%)という高い精度で、ΔGを計算することができた。一</u> 例に過ぎないが、ドッキングソフトでのΔG平均誤差を1kcal/mol近く上回り、活性値で10倍の精度 に達している、ともいえる。

アクアポーリン4(AQP4)への応用

藤吉チームで研究している AQP4 阻害剤探索に対して、SRPG法を適用した。試した化合物候補は、藤吉チームと同じ以下、4化合物である。

Sievgene でこれら4化合物を AQP4 ヘドッキングした。ドッキングポーズは、以下のようである。

水中でのMD

SRPG 法を適用した。2 nsec の水中でのMDを実施した。膜は作成せず、通常の球状蛋白質と同

じようにCAP水に入れて計算した。各化合物を(2)でドッキングした位置から、10Å引き離した位 置まで解離させることにする。0.3Å刻みに解離経路上に化合物を配置し、化合物に加わる力を 計算することで、自由エネルギー面を計算する。

計算された自由エネルギー面

(iv) McMD(マルチカノニカル分子動力学法)計算法による蛋白質-阻害剤の結合自由エネルギー 計算

結合自由エネルギーを高い精度で算出するため、溶媒をあらわな水分子モデルで扱った系にお ける、長時間のマルチカノニカル計算によるドッキング・シミュレーション手法を開発した。この手 法により、リゾチーム蛋白質とその阻害分子(NAG(N-acetyl-D-glucosamin) trimer)との結合につ いての、ab-initio的なシミュレーションを行った。643のTIP3P水分子をCAP境界として部分的に付 加し、マルチカノニカル分子動力学(McMD)計算法によって、700Kから300Kまでをカバーするアン サンブルを得た(図6)。この時、蛋白質側は距離拘束条件を付加することによって、高い温度でも 大きな構造変化がおきないように工夫した(図7)。

最終的に72 ns (7.2 x 10⁷ steps)のMcMDランを行い、その後、300K、500K, 700Kのカノニカル・アン サンブルを再構築し、阻害剤(NAG)₃の中心位置の分布をプロットした(図8)。面白いことに、図8 の(a)700Kや(b)500Kでは、阻害剤の位置は蛋白質から離れているのに対し、(c)低温(300K)にな ると蛋白質に近い所の存在確率が大きくなっている。

自由エネルギー面での結合状態と解離状態の自由エネルギー差から約 5kcal/mol を差し引いた値 がΔGに相当する。AZA は、結合しやすいと推測される。AZA と MZA は、分子構造ではメチル基1つ の違いしかないが、自由エネルギー面には大きな違いが現れた。Sultiame, VPA は、結合状態が不 安定で、結合しえない可能性が高い。この傾向は、実験と一致することが示された。

Kamiya et al. Figure 1

図6:McMD アンサンブルと再構築したカノニカル・アンサン ブルのエネルギー分布。

図7:対象としたリゾチームとその阻害剤 ((NAG)₃)および CAP の水分子。阻害剤は、 初期の位置を赤で示し、紫は結晶構造。

図8: (a) 700K, (b) 500K, (c) 300K として再構築した系のカノニカル・アンサンブル中の、リゾチーム(緑のリボン で示される主鎖構造) に対する阻害剤の重心の位置の分布。紫の棒モデルは、この阻害剤のリゾチームとの複合体 のX線結晶構造中の構造を参照構造として示している。

図9:自由エネルギ^{C1}地形(左上と右下)と、 リゾチームと阻害剤(NAG)₃との複合体構造(右 上)(緑:X線結晶構造,青と赤とは典型的な クラスター1,2,3中の構造)

このカノニカル・アンサンブルから、阻害剤の座標に対する主成分解析を行って、自由エネルギー 地形を描いた(図9)。複数の結合様式の中で、天然に観測される結合状態が安定となることが理 解された。(Kamiya et al. (2008) *PROTEINS*, **70**, 41-53)

(2)構造生理学アプローチによるタンパク質間相互作用解析

【研究内容】

タンパク質間相互作用及び超分子複合体の構造情報まで含めた詳細な解析「構造インタラクトーム」に踏み込み、タンパク質間相互作用の阻害等の創薬において有用な機能を有するものの活 性の維持等の観点から医薬品化が困難な生理活性ペプチドから、医薬品となりやすい非ペプチド 性の低分子化合物等へ展開するため、ペプチドと同様あるいはそれ以上の強い結合性を有する 非ペプチド性化合物(低分子化合物等)を探索・設計する新しい手法の開発に着手する。

【研究成果】

(i) タンパク質複合体構造予測法の開発

〔BIRC集中研、阪大分室〕

タンパク質複合体構造予測法の開発を行い、複合体構造予測のブラインドコンテストである CAPRI(Critical Assessment of Predicted Interactions)に参加してその性能を評価した。

構造プロテオミクスの発展に伴い、多くのタンパク質の立体構造が公開されるようになったが、それらからタンパク質の複合体構造を予測することは、タンパク質の機能を理解し制御するために重要であるが、尚困難な課題の一つである。

タンパク質複合体構造の予測においては、1)タンパク質間相互作用部位の予測、2)候補構造の 発生と評価、が重要なポイントである。我々は進化系統樹を利用した機能部位予測法である ET(Evolutionary Trace)法とタンパク質形状の相補性を利用した独自の構造探索エンジン・構造評 価関数を組み合わせた手法を開発した。

この手法をCAPRIの問題に適用したところ、いくつかの例で、高精度の複合体構造をサンプルする ことができた。

下図は予測結果の一例である、ARF-1とARF-BDの複合体の予測(T25)では、44番目の候補として、結晶構造とのRMSD=2.59 Åの構造が得られた。また、TolBとPalの複合体の予測(T26)では14番目の候補として、結晶構造とのRMSD=2.55 Åの構造を得ることができた。

今後は相互作用部位予測法と評価関数の改良により、さらに高精度の予測を目指す。

図)予測結果の例 結晶構造のサブユニットを赤及び青、予測構造を 紫及び薄青で示す。

(ii)アミノ酸選択的交差飽和法の実験データを用いたタンパク質複合体構造の構築

<u>タンパク質ータンパク質間の相互作用は、シグナルの伝達など生体内で重要な役割を果たす。近</u> 年、タンパク質複合体の形成を妨げることで効果を発揮する医薬品の研究開発にも重点が置かれ るようになってきている。</u>

このような医薬品の開発において、タンパク質の複合体の立体構造を知ることは、薬剤を結合させ る部位を決定するために重要であるが、X線結晶構造解析等の手法を用いて実験的に構造を決定 することは、単体の状態の立体構造を決定するよりもさらに困難であることが知られている。 そこで今回、嶋田グループが開発した、NMRによる実験手法である、アミノ酸選択的交差飽和法 (ASCS 法)の実験データと、分子動力学計算とを組み合わせることにより、それぞれのタンパク質 の単体の構造が既知の場合に、それらが形成するタンパク質複合体の立体構造を高精度に構築 する方法を開発した。

方法

ASCS法は、一方のタンパク質の特定のアミノ酸種を標識して(交差飽和ドナー)、他方のタンパク質 での交差飽和(η)を観測する実験手法で(下図)、強い交差飽和が観測された残基の近傍に、標 識したアミノ酸種が存在するという情報が得られる。

複数種のアミノ酸を標識したデータを組み合わせることで、ドナー側の残基とアクセプター側の残基

の位置関係についてある程度特定はできるが、原子レベルでの立体構造を構築することはできない。

そこで、この実験データに分子動力学計算を組み合わせて複合体構造を構築することを試みた。実 験データを再現するほどエネルギーが低下する、次の疑似エネルギー項を加えた分子動力学計算 を行う。

$$E_{sat} = \frac{1}{2} W_{sat} \sum_{\substack{all exp. acceptor\\residues}} \sum_{\substack{acceptor\\residues}} (\eta_{calc} - \eta_{exp.})^2$$

ここで W_{sat} :重み、 η_{calc} :計算値、 η_{exc} :実験値である。

結果

(a) Ubiquitin(Ub)とYUHの複合体構造構築における本手法の検証

計算には嶋田グループで実施した5種類のアミノ酸を標識した実験データを用いた。

当該タンパク質複合体の立体構造は、PDB コード:1cmx として結晶構造が知られているものであり、 Ub と YUH を分離した状態から、本方法を用いて結晶構造と同様の構造を得ることを試みた。

初期構造

交差飽和が観測された残基と交差飽和源の残基が近接するという条件から、初期構造(2つのタンパク質の相対位置)を作成した。可能性の高い 42構造を初期構造として各初期構造につき 2例ずつ(初期速度の乱数が異なる)分子動力学計算を実行した。

計算条件

分子動力学の計算条件を下表のとおりとし、真空中で構造を維持するために Ub と YUH の双方に、 原子間の距離拘束を適用した。

time step	1.0 fsec
shake	H only
time	150 psec
温度コントロール	500K->100K (150psec で一定の割合で冷却)
誘電率	4.0R
カットオフ長	20Å(テーブル更新 10step)

42 x 2 個の計算のうち最終構造の RMSD(結晶構造と YUH 側で重ね合わせた際の Ub 側の主鎖の RMSD。以下同じ)が 5 Å 以下の構造となったものは 9 個であった。

42x2 個の分子動力学計算中に、サンプルした構造の RMSD と Esat をプロットすると、下図のようになり、Esat が小さい構造(実験データをよく説明する構造)を選択すると RMSD が小さい構造を選択 できることがわかった。

Esat の最小構造(青:YUH1、 赤:Ub)(Esat=7.88kcal/mol、 RMSD=3.05Å), 参照構造(シアン:YUH1、オレ ンジ:Ub)

また本構造をサンプルした際の Esat と RMSD の時間変化は以下の通りであった。

Esat の時間変化

RMSD の時間変化

Esat 最小構造での η の計算値と実験値を比較すると下図(LEU 標識データ)のようになり、 η_{exp} と η_{calc} (Esat 最小構造)が十分一致していることがわかる。

さらに、本構造を CAP 水中で Esat 項を外して再度 simulated annealing を行うと、RMSD は、0.67 Aまで改善される。これは、真空中で Esat 項を用いて計算したことにより生じた構造のゆがみが解 消されたためと考えられる。

(b)DDR2(Disocoidin domain receptor2)-コラーゲンペプチドの複合体モデルの構築

それぞれの単体構造として、DDR2 については嶋田チームが NMR で決定した(pdb code:2z4f)20 構造を使用し、コラーゲンペプチドについてはテンプレートとして、PDB データベースに登録されてい るコラーゲンの X 線結晶構造(pdb code:1k6f)に基づくホモロジー・モデルを用いた。

DDR2 の 20 構造に対して、我々が開発したドッキングソフト(上記「①タンパク質複合体構造予測 法の開発」参照)を用いてコラーゲンペプチドをドッキングさせ、各 300 の複合体構造を作成した。嶋 田チームがこの系に対して得た ASCS 実験の観測値を用い、この 20x300 構造から ASCS 実験結果 と定性的に合致する 119 構造を選び、疑似エネルギー項 Esat を加えた分子動力学計算を行った。

119 個の計算でサンプルされた構造のうち、Esat が小さく磁化変化 η が ASCS 実験値とよく一致 する構造の 1 つが下図の構造であった。

本構造の磁化変化 η の計算値は下図のようになり、主要なピークのほとんどについては実験値とよい整合性を示した。実験値と一致しない点については、側鎖の精密なモデリングの必要性や、複数の複合体ポーズの存在などが考えられる。

結論

以上の結果から、今回開発した ASCS の実験データを活用した分子動力学計算は、それぞれの 単体の立体構造が既知の場合に、それらが形成するタンパク質複合体構造を高精度に構築する手 法として、極めて有用であることが示唆された。これは、界面という2次元の情報を与える ASCS 実 験データから、複合体という3次元の情報を得ることができることを示している。

本手法は、NMRの実験データを利用する方法であるため、複合体の結晶が得られない場合や、 相互作用が弱い場合にも適用可能な手法である。また、ASCS 実験では、同位体ラベルした残基の 界面情報しか得られないが、本手法では、複合体という3次元の情報を得ることで、ラベルされてい <u>ない残基も含めた蛋白質界面の情報を得ることができる。これにより、蛋白質複合体化を阻害する</u> 物質を設計する部位を探索することができる。

今回の研究は、嶋田チームの発表前の NMR 実験値を利用することができ、手法の検証に加えて 新たな構造解析にも適用し、その有効性を示すことができた。チームを越えた協力研究としての成 果を挙げることができたと考えている。

(iii)ペプチドと同様の結合性を有する非ペプチド性化合物を探索・設計する新しい手法の開発

(a) 新規で高精度な類似化合物探索ソフトウェアの開発

〔BIRC集中研〕

(a-1) molecular dynamics maximum volume overlap (MD-MVO)法—の開発と実施

類似化合物探索ソフトmolecular dynamics maximum volume overlap (MD-MVO)法を、開発し薬物 スクリーニングを開始した。

MD-MVO法とは、既知活性化合物に対して、データベースから選んだ化合物を、原子電荷も考慮 しながら2化合物の体積重なりが最大になるようにMD計算によって、分子の配座探索と同時に分 子重ね合わせをする手法である。この分子重ね合わせでは、周辺の環境である標的蛋白質を考 慮した計算を行うこともできる。また、既知活性化合物を、標的蛋白質に結合していると期待され るもっともらしい構造に固定して、データベースから選んだ化合物のみを自由に運動させて2分子 の重ね合わせを行うこともできる。

2分子の初期座標

MD-MVO法による重ね合わせの結果

μオピオイド受容体のペプチド性リガンドであるエンドモルフィンを既知活性化合物として選択した。 μオピオイド受容体について、既知の低分子リガンド(モルヒネ類など)を11種類文献より収集し た。そして、エンドモルフィンを既知活性化合物として、1万化合物を含む化合物データベースに既 知の低分子リガンド11種類を混ぜ、これらの既知の低分子リガンドを発見できるかテストしてみた。 その結果が、下のデータベースエンリッチメントカーブである。我々が以前に開発した、ドッキング ソフトを用いたligand-based drug screening法であるDocking score index (DSI)法と、今回の MD-MVO法の結果を比較した。

緑▲がMD-MVO法の結果、白〇がDSI法の結果である。ペプチドを活性化合物とするスクリーニ ングは困難であり、DSI法の結果がランダムスクリーニングに近くなっていることからも、その困難 さが伺える。明らかに、MD-MVO法はペプチドを活性化合物とする場合も、優れたスクリーニング 結果を示している。また、世界でもっとも広く使われている類似化合物探索ソフトROCSや ChemFinderとの比較テストを複数の標的で行ったが、いずれもMD-MVO法がヒット率において、よ り優れていることが示された。

		MD-MV	0 法	ROCS				
		AUC	ヒット率	AUC	ヒット率			
COX2	1cx2	85.8	28.6	52.8	23.1			
	1pxx	98.5	50.0	64.5	30.8			
	3pgh	85.3	33.3	64.8	30.8			
	4cox	74.0	33.3	68.5	15.4			
HIV	1aid	59.8	5.0	29.2	4.5			
	1bv7	93.3	40.0	75.8	36.4			
	1hte	70.3	5.0	59.3	13.6			
	1mes	88.2	35.0	77.0	36.4			
	Average	81.9	28.8	61.5	23.9			
	上位	MD-MVO	ChemFinder					
COX2	9%	38.20%	9.80%	Ď				
HIV	22%	51.40%	47.50%	Ď				

MD-MVO法とROCSによるデータベースエンリッチメントカーブの下の面積(AUC)と、上位1%化合物を採択したときのヒット率を表に示す。AUCが80%以上が緑色、ヒット率で30倍以上を空色で示

したが、MD-MVO法がROCSに対し優位であることが分かる。また、ChemFinderとの比較では、 COX2阻害剤について上位9%、HIVプロテアーゼ1阻害剤に対し上位22%の化合物を採取したと きのヒット率を表にしたが、やはりMD-MVO法はChemFinderに対しても優位性を示した。

MD-MVO法は、既知活性化合物とクエリー化合物の重ね合わせにおいて、周辺の環境である標 的蛋白質を考慮した計算を行うこともできることは、従来の構造重ね合わせ手法と全く異なる優れ た点である。シクロオキシゲナーゼ2(COX-2)に、MD-MVO法を適用して、その効果を見てみた。 まず、PDB ID:4coxのリガンドである活性化合物compound aと、非活性化合物であるcompound b を用意した。COX-2蛋白質としてPDB ID:1cx2の構造と、既知活性化合物として1cx2のリガンドを 選んだ。この結果を表にまとめた。

1cx2に対してcompound a/bを我々の蛋白質—化合物ドッキングソフトsievgeneでドッキングし、スコア上位の構造5つを選んだ。これらのスコア上位5構造に対して、1cx2の構造を考慮した MD-MVO法を適用した。Compound aのMD-MVO法のスコア(MVOscore)は、compound bのスコア 0.46より大きく、活性化合物aが、非活性化合物bより、予測活性が高いという合理的な結果になった。

また、化合物aのドッキング構造を正解の構造である4coxの構造に重ね合わせてみると、ドッキン グ予測構造(蛋白質—リガンド複合体構造)が、極めて正しく予測されることがわかった。Sievgene によるドッキングでは、compound aの予測複合体構造の座標の誤差は、2~6Åと大きかったが、 MD-MVO法での最終座標では、正解の4cox結晶構造に0.2~1.5Åとほぼ一致した。このように、 標的蛋白質構造を環境として考慮することは、ドッキングソフトによる予測複合体構造の精度向上 に貢献することが示された。

	compour	nd a	compound b				
ドッキン グスコア での順位	ドッキ ングス コア	RMSD (ドッキング 計算) Å	RMSD (MD-MVO) MVOscore グス:		ドッキン グスコア	MVOscore	
1	-3.57	2.25	1.06	0.47	-3.53	0.45	
2	-3.50	2.40	0.26	0.45	-3.48	0.45	
3	-3.43	1.97	0.99	0.45	-3.46	0.46	
4	-3.38	2.59	1.13	0.44	-3.40	0.45	
5	-3.34	6.78	1.56	0.40	-3.38	0.37	

MD-MVO法は、MD計算の一種であるため、計算時間が長い。蛋白質を考慮しない状態でも1 CPUで、1日に約300化合物しかスクリーニングすることができない。従って、蛋白質を考慮しない 状態で運用するしかない。現在保有する300コアを使用すると、2週間で100万化合物をスクリーニ ングすることができるため、μオピオイドに対して、エンドモルフィンを既知化合物としたスクリーニ ング計算を行い、塩野義製薬でアッセイを行っている。 (a-2) 分子グラフを用いた高速な類似化合物探索法

〔BIRC集中研〕

MD-MVO法では、1CPUにて1日当たり300化合物しかスクリーニングできない。このままでは、応 用範囲が極めて限られてしまうため、1時間当たり1000万分子以上をスクリーニングできる高速な スクリーニング手法を開発した。

合成する代わりに類似化合物を取得する:分子グラフを用いた類似化合物探索

分子グラフのグラフ不変量(行、列の入れ替えに対して不変な量)を用いる。 結合行列、距離行列の行列固有値を分子記述子とする。

この手法では、分子をグラフとして捕らえ、その結合行列と距離行列を作成し、この行列固有値を グラフ不変量とする。この固有値を幅を持たせたヒストグラムに変換し、2分子の比較の場合、2 つのヒストグラムの重なりによって、分子の類似性を評価する。

合成する代わりに類似化合物を取得する:分子グラフを用いた類似化合物探索

選ばれた分子

この手法を実際に適用したのが、上の図である。グラフ類似性探索は、1時間1300万分子を探索 するという簡便さのわりには良好なデータベースエンリッチメントを示し、実際、上位に選ばれた分 子は、既知活性化合物と構造が似ていることが確かめられた。

(b) 蛋白質の動的構造を反映した薬物スクリーニングー GPCR を標的としたドッキングシミュレー ションー 〔BIRC 集中研〕 Gタンパク質共役受容体(GPCR)は重要な創薬標的であるが、その立体構造はほとんど解明さ れていない。そのため、GPCRを標的としてin-silicoスクリーニングを行うにはホモロジーモデリ ングにより標的タンパク質の立体構造を拘置する必要がある。また、induced-fitやタンパク質の 動的挙動を考慮するには分子動力学(MD)計算が有効かもしれない。モデリング構造の信頼性 やMDによる構造サンプリングの有用性を検証するために、まず、リガンド分子の構造活性相関 が最もよく研究されているGPCRの一つであるヒトμオピオイド受容体(MOR)のドッキングシミュ レーションを行った。

MOR	SMITAITIMALYSIVCVVGLFGNFLVMYVIVRYTK	MKTATNIYIFNLALAD ALATSTLPFQSVNYLMG-	-
ADRB2	DEVIV/VGMGTVMSLTVLATVEGNVLVTTAT AKFER	LOT <u>VTNYFITSLACADLVNGLAVVPFGAAHTLM</u>	ĸ
	TMH1	TMH2	
MOR	TWPFGTILCKIVISIDYYNMFTSIFTLCTMSVDRY	IAVCHP-VKALDFRTPRNAKIINVCNWILSSAI	SLPVMEMATT/
ADRB2	MWIF GREWCEEWISIDVLCVTASIETLCVI AVDRY	FAITSP-FKY0SLLTKNKARVIILMVWIVSGLTS	FLPIONHWY.
	TMH 3	TMH4	
MOR	NLLKICVFIFAFIMPVLIITVCYGLMILRLKSVRM	ILSGSKEKI	DR
ADRB2	0AYATASSTVSFYVPLVIMVFVYSRVF0EAKR0L0	KIDKSEGRFHVQNLSQVEQDGRTGHGLRRSSKF(L
	TMH5		
MOR	NLRRITRMVLVVVAVFIVCWTPIHIYVIIKALVTI	PETTF QTVSWHFCI ALGYTN SCLNP VLYAFLDE	FKRCFREF-CIP
ADRB2	KEHKALKTLGLINGTFTLCWLPFFIVNIVHVI0DN	LIRKEVYILLNWIGYVNSGENPLIYCR-SPI	FRIAFOELLCLR
	TIM6	TMH7	H8
	ルオピオイド受容体(MOR)と・。アドレナ	リン受容体(ADRB2)の配列アライメン	· ト

ヒト由来GPCRのb₂アドレナリン受容体(PDB entry: 2rh1)をテンプレートとして、3種類のモデリ ングソフト(MOE, Modeller, Prime)を用いて、MORモデルを21構造作成した。 作成したホモロジーベースモデルそれぞれに対して周囲に水分子と電荷中和のためのイオンを 配置し、エネルギー最小化と平衡化計算の後、周期境界条件で1n秒のNVT計算を実行し合計

【図:MD計算により生成されたMORの構造】

ドッキングシミュレーション評価用化合物ライブラリは、Coelacanth社化合物ライブラリから抽出した18190化合物(デコイセットA)と3次元化合物ライブラリLigandBoxから抽出した11489化合物(デ コイセットB)の2種類を準備した。また、MORの既知リガンド(アゴニスト)としてモルヒネやフェンタ ニルを含む11化合物を用意した。

μオピオイド受容体の既知アゴニスト

462の標的MOR構造それぞれに対して、2つのデコイセット及び既知化合物のドッキング計算を Sievgene/myPrestoで実行し、Multiple Target Screening(MTS)法による統計的スクリーニングを適 用した。Area Under the Curve(AUC)として算出したヒット率の値を以下に示す。AUCとは、ヒット率 (スクリーニングの精度)を定量的に表す指標で、0%~100%の範囲の値をとり、ランダムスクリー ニングでは50%、理想的な高精度のスクリーニングならば100%に近い値を取り、逆に50%を下回 る数字は、ランダムスクリーニングより悪い(すなわち計算しないほうがよい)結果を表す。

	MODELLER											MOE									
	1	2	3	4	5	6	7	8	9	1C	1	2	3	4	5	6	7	8	9	10	
) initia	33.6	50.9	51.3	51.3	71.8	45.2	47.4	46.8	43.7	28.8	48.7	31.0	32.6	45.2	49.7	34.4	52.6	34.8	53.5	36.6	58.5
minimized	28.5	41.5	55.8	54.2	75.9	57.6	56.8	46.9	74.2	60.5	66.2	79.5	73.5	30.5	32.7	60.1	61.7	64.6	68.7	68.3	69.1
) 50 pa	68.3	60.5	47.4	52.9	70.6	51.6	67.5	71.8	69.5	44.7	66.3	33.6	65.8	36.9	18.6	50.4	62.2	74.9	75.0	35.7	69.4
) 100 pas	53.9	47.2	45.2	49.3	71.5	64.0	50.0	55.7	78.1	61.6	61.5	47.0	66.9	65.5	43.3	48.6	69.6	57.6	84.0	38.4	56.8
) 150 ps	50.9	47.8	45.0	73.8	63.4	43.5	60.0	69.7	86.5	67.4	70.5	59.4	70.6	70.8	28.6	44.3	86.5	60.1	72.6	42.4	57.8
200 ps	41.7	43.1	54.5	77.6	-53.4	72.2	47.0	29.1	76.5	38.2	54.5	47.2	63.9	76.9	58.8	43.5	84.7	80.7	87.0	55.1	43.1
250 ps	37.2	39.1	54.0	76.0	57.6	42.5	60.1	43.7	70.9	49.3	64.9	48.8	63.8	51.7	33.9	38.9	80.3	58.0	59.5	64.5	52.8
)	39.7	46.9	54.4	81.0	-59.3	67.8	43.9	51.5	82.1	32.5	54.1	39.0	42.4	45.4	47.9	55.2	65.6	72.4	86.7	58.6	73.8
) 350 pas	53.1	59.9	52.5	70.2	63.8	51.8	45.2	57.5	70.0	41.4	75.4	42.1	77.0	55.2	64.9	62.4	83.0	60.0	61.5	53.8	69.2
) 400 ps	50.8	56.7	69.2	67.9	67.3	33.5	57.5	57.0	59.2	63.0	48.6	32.4	62.5	43.6	48.7	57.3	77.2	69.9	78.2	48.0	76.6
) 450 ps	50.5	50.4	52.4	63.4	56.8	55.6	52.8	32.9	80.9	55.8	56.6	38.2	51.2	47.4	75.0	46.7	40.1	67.4	77.1	30.8	56.6
) 500 ps	37.4	49.3	56.5	79.2	53.5	48.3	45.3	59.5	70.3	48.5	60.3	37.8	59.5	55.8	61.4	43.0	73.9	90.3	75.6	64.0	51.4
550 ps	-50.0	67.7	46.3	67.1	62.0	53.6	43.2	47.5	65.5	57.9	53.1	51.8	51.1	46.6	62.3	46.9	74.3	82.6	74.3	64.0	57.1
600 ps	51.1	44.0	54.0	73.7	48.9	73.2	31.3	31.5	52.5	71.5	66.3	45.5	52.0	31.3	65.8	59.6	49.9	70.0	81.6	48.5	64.9
) 650 pe	44.7	42.4	34.9	66.8	41.4	65.7	34.7	56.5	66.5	66.0	62.8	44.5	53.2	38.8	23.6	65.7	92.5	67.3	70.7	53.3	66.9
) 700 pe	49.3	62.8	30.6	88.6	70.4	56.5	47.9	48.9	70.4	59.8	48.9	48.4	53.9	55.2	59.6	46.4	85.6	67.4	40.9	63.3	69.2
) 750 pa	40.2	46.2	61.4	76.8	58.5	39.3	37.6	71.6	39.6	59.3	62.7	38.6	60.1	45.0	62.6	58.6	81.9	49.1	89.0	58.6	54.4
800 ps	45.5	41.3	54.5	73.0	56.9	57.7	54.2	67.3	64.6	62.5	57.9	48.2	42.1	58.2	44.3	48.5	88.9	83.5	70.1	34.4	55.0
850 pa	59.0	54.5	28.5	/0.5	58.3	59.7	52.6	54.1	61.8	/2.1	/6.2	39.9	63.5	59.1	64.7	44.9	68.4	59.5	83.3	44.4	76.0
900 ps	66.9	31.5	60.3	/8.8	41.5	50.3	55.4	57.6	59.2	37.2	44.3	50.5	63.4	57.5	41.2	49.3	63.5	/3.3	56.1	54.1	80.0
1 9950 pe	31.5	45.0	32.0	/0.9	51.5	68.5	47.4	58.9	/2.8	46.3	44.8	55.0	48.1	41.2	53.0	62.6	85.1	64.5	60.6	55.9	54.7
1000 pa	41.5	39.0	61.4	82.6	51.4	66.6	65.5	36.4	56.7	35.5	40.3	52.2	61.1	53.0	42.5	54.1	57.5	66.6	47.6	63.9	53.1

デコイセットAの462の標的構造に対するAUCの値。

	MODELLER											MOE									
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	6	8	10	
initial	67.4	61.5	74.9	71.2	82.4	65.8	64.5	58.5	54.3	56.9	65.6	38.9	33.8	66.0	44.5	44.7	67.1	48.7	40.5	60.6	59.4
minimized	58.2	64.3	45.5	67.3	85.7	69.1	77.8	62.2	71.8	77.7	65.5	56.2	56.1	42.5	33.7	50.2	64.2	69.9	77.4	63.6	59.9
50 pe	79.6	75.3	29.5	41.2	63.8	32.8	78.4	65.9	72.4	68.3	76.5	44.7	36.4	44.3	31.0	47.9	46.5	67.7	58.7	53.6	49.4
1 0 0 ps	65.6	68.0	54.5	46.0	76.4	42.6	56.8	68.3	72.0	82.5	76.4	66.7	46.9	78.2	60.9	56.4	34.9	63.8	77.2	41.0	38.1
150 ps	68.4	52.1	23.5	64.8	69.7	40.5	53.9	74.5	80.9	86.0	70.6	61.6	54.6	76.2	45.4	44.2	66.3	53.6	70.3	42.8	30.7
200 ps	70.8	71.2	52.0	81.4	63.0	50.5	46.3	45.2	80.9	67.9	63.7	59.0	56.0	79.7	46.5	60.2	64.4	66.9	78.5	67.8	17.0
250 pc	74.8	58.5	57.1	61.7	57.0	49.2	57.7	58.5	72.4	71.1	76.5	62.0	67.3	44.9	26.9	56.7	60.8	40.7	53.6	66.9	26.6
300 pe	62.6	55.2	59.5	65.1	63.6	53.5	34.1	47.9	77.3	48.5	59.1	61.5	40.6	41.2	71.5	60.5	49.6	57.5	71.4	59.5	42.5
350 pe	74.7	65.3	66.5	69.1	59.5	45.5	34.8	73.5	65.8	64.3	76.4	57.3	65.5	46.0	66.6	76.6	72.0	41.5	49.3	49.0	37.9
40 0 pg	79.6	68.5	72.6	67.2	-59.6	33.4	48.5	71.8	52.8	84.4	55.8	54.7	60.5	40.4	31.1	74.0	48.6	63.5	75.0	45.0	53.5
450 ps	64.1	70.0	51.7	52.7	55.9	36.6	54.7	58.5	87.0	69.9	58.4	44.5	58.2	46.8	69.5	58.5	24.3	69.0	66.5	29.0	42.9
500 pg	68.2	63.2	61.2	79.9	61.6	34.3	35.8	68.3	77.9	69.3	61.5	60.5	37.8	43.9	58.6	40.2	59.8	85.0	58.8	62.0	27.2
550 ps	70.8	68.5	60.9	63.1	68.1	45.0	27.3	66.2	74.5	69.6	66.0	38.2	47.8	51.2	51.4	52.0	52.2	79.6	72.3	70.8	2 8.5
800 p e	64.5	58.0	57.9	55.0	49.4	69.6	32.6	59.0	42.5	78.5	75.6	58.3	51.2	53.5	57.8	72.6	33.6	68.5	80.4	56.4	37.4
650 ps	58.2	56.6	43.5	60.5	-51.0	63.7	21.5	62.2	69.3	67.1	80.4	49.2	63.7	42.9	45.1	78.6	78.1	72.2	47.7	63.8	48.8
700 ps	61.7	65.1	39.7	75.4	79.4	51.1	50.7	62.3	76.7	76.2	70.8	57.6	63.7	65.8	57.6	53.9	78.4	65.4	28.1	64.5	44.5
750 ра	59.5	51.9	51.5	71.2	59.5	19.6	26.2	70.5	41.2	57.0	72.6	62.8	58.4	52.3	52.7	81.7	59.5	55.1	85.5	64.7	23.3
800 ps	63.5	49.5	35.3	61.5	63.0	42.5	44.8	78.2	67.1	73.4	66.4	61.6	21.7	60.8	44.2	68.2	72.5	65.7	74.5	34.3	25.9
850 ps	77.4	53.8	18.4	5 9 .8	62.3	35.8	49.9	73.8	70.4	80.0	75.0	56.3	47.5	71.5	39.3	58.5	45.4	70.6	84.6	48.1	40.4
900 ps	85.3	45.2	32.2	49.5	68.9	29.3	56.1	66.4	71.0	45.3	50.9	57.2	48.4	61.3	22.5	70.3	45.2	71.3	62.4	48.4	44.5
950 pe	34.4	48.1	24.4	41.5	48.4	61.8	39.5	64.5	70.5	67.9	63.6	54.0	45.9	56.5	28.8	71.9	71.5	62.5	61.2	63.8	28.2
1000 pe	55.5	55.1	28.8	50.8	59.4	66 .8	57.1	56.1	57.2	49.1	66.7	61.2	46.7	65.3	35.0	69.7	52.4	65.3	35.7	62.7	26.7

デコイセットBの462の標的構造に対するAUCの値。

MD計算における構造サンプリングした時間によってAUC値はさまざまで、ランダムスクリーニング よりも悪い結果を与えるもの(図の青色部分)もあるものの、80以上の高い値を示す標的構造(赤 色部分)も数多く見つかった。膜を顕に考慮していないにもかかわらず、1n秒程度のMD計算で高 いヒット率を示す標的構造をサンプリングすることができた。

同様のスクリーニング計算を、b₂アドレナリン受容体(ADRB2)、A_{2A}アデノシン受容体、ロイコトリエ ン受容体(CysLT1)およびb₃アドレナリン受容体の4種類のGPCRにも適用した。ADRB2とA_{2A}の結 晶構造は既知であるが、Modellerにより側鎖配座の異なる初期構造をいくつか用意してMDによる 構造サンプリングを実行した。いずれのGPCRの場合も、AUC値が80~90を超える標的構造が多 く見つかっている。また、アゴニストとアンタゴニストの両方のスクリーニング計算を実行してみると、 それぞれに選択性のある標的構造も見出すことができることもわかった。

ADRB2 サンプリング構造を標的として、アゴニストとアンタコニストのスク リーニング計算を実行したときの AUC 値の相関。 以上の結果から、GPCRに対して、標的タンパク質構造のホモロジー・モデリングとMDシミュレー ション計算、およびMTS法による統計的スクリーニングによって、既知リガンドがある場合には、 ヒット率が高いモデルをあらかじめ選択できることが示唆される。 すなわち、シミュレーション計算 に用いる出発構造は、たとえX線結晶構造でないホモロジー・モデルによるものでも、ヒット率とし ては高いものが得られることがわかった。ここで選択された構造を基に、実証研究を試みること にした。

<u>さらに、agonist/antagonistの結合の違いについても、差別化した探索の可能性も示唆された</u>。す なわち、GPCRはagonist結合型とantagonist結合型の間の構造変化を行うが、それら構造変化の うちリガンド結合サイトについては、シミュレーション計算によってサンプリングされる構造が類似 の構造をある程度再現できているとも考えられる。複数のagonist/antagonistが既知であれば、こ の手法によって、未知の化合物が結合するモデルのタイプに依存して、その化合物がagonist型 かantagonist型からの推定ができよう。さらに、リガンド結合サイトについて、agonists/ antagonist 結合型の特徴に基づく分類がなされれば、McMD法やSRPG法との組み合わせによる高効率の 構造サンプリング手法と合わせて、より効果的なドッキング計算も期待される。

(c)生理活性ペプチドから非ペプチド性化合物(低分子化合物等)を探索・設計する手法の開発 [塩野義製薬分室]

【事前調査】

PDBより、蛋白質と複合体を形成しているペプチドと、同じドッキングポケットに結合している他の低 分子のデータを約20対収集した。このデータを用い生理活性ペプチドから非ペプチド化合物が探 索できるか、ドッキング計算を基にした類似化合物探索手法(DSI法)で探索する実験をしてみた が、ヒット率はランダムスクリーニングと大差なかった。理由としては、ペプチドは自由度が大きく docking計算に向かないのでDSI法が使いにくいと考えられる。そこで新しい類似化合物探索手法 を開発することで、生理活性ペプチドから非ペプチド低分子化合物が探索できるかどうか検討を進 めた。

【研究内容】

生理活性ペプチドから非ペプチド性化合物(低分子化合物等)を探索・設計する手法の開発の一環として、内在性の μ -オピオイドの一種であるEndomorphine-1 (Tyr-Pro-Trp-PheNH2:以下、 EM-1と略す)から非ペプチド性の新規 μ 受容体リガンドを探索するための検討を行った。具体的な研究方針を以下に示す。

EM-1の非ペプチド化を行う上では、その結合配座およびファーマコフォーが有効な情報になると 考えられる。そこで、これらの情報を得るための解析に必要となるEM-1の立体配座集団および µ 受容体モデルを得るべく、EM-1の立体配座解析(後述の取り組み1)および µ 受容体のホモロジ ーモデリング(取り組み2)を行った。 次に,取り組み2で得られたモデルの検証を行うため,取り組み3において、小規模バーチャルス クリーニング(VS)による検証を行った。また、実証実験として市販化合物を対象としたVSについ ても検討を行い、新規μ受容体リガンドの探索を試みた。

また、μ 受容体については既知のアゴニストリガンドが複数報告されており、これらのファーマコフ オー情報についてもEM-1の結合配座およびファーマコフォーを推定する上で有効と考え、取り組 み4において、オピオイドリガンドのドッキングスタディについて検討を行った。ただし、既知リガン ドがなく生理活性ペプチドの情報しかない場合も想定されるため、このようなケースに対応する方 法についても今後検討する必要があると考えている。以下に全体の研究の流れを示す。

【研究成果】

以下にこれまでの取り組みおよび得られた成果を挙げる。

1. <u>EM-1の立体配座解析</u>

ターゲットである µ 受容体への結合配座の推定やファーマコフォー抽出の解析に活用することを目的に、立体配座の網羅的な探索を行った。

この検討には、myPrestoのcosgeneによる溶液中でのForce-biased Multicanonical Molecular Dynamics(F.B.McMD)シミュレーションにより解析を行った。解析の結果, 2318個の立体配座 集団が得られた。これら得られた配座集団については、今後のEM-1のドッキングスタディの取 り組みにおいて活用したいと考えている。

2. <u>μ 受容体のホモロジーモデリング</u>

上記1の取り組みと合わせたEM-1の結合配座の推定や、バーチャルスクリーニングによる新 規μ受容体リガンドの探索に活用することを目的に、μ受容体の立体構造を予測することとし た。

human β2 adrenergic G-protein-coupled receptor(β2AR)を鋳型構造として、MOE(CCG社)

とPrime (SCHRODINGER社)を用いて計11個の µ 受容体モデルを構築した。また、これらはモ デル構造であることから、構造の精密化およびタンパク質の動的挙動を考慮するため、 cosgeneを用いたエネルギー極小化およびMDシミュレーションによる構造サンプリングを行っ た。解析の結果,最終的に132個の µ 受容体のサンプリング構造を得た。

- MTS法スクリーニングによるμ受容体構造の検証および新規μ受容体リガンドの探索 はじめに、上記2の取り組みにより得られたμ受容体のサンプリング構造集団を用いて、MTS 法(Multiple target screening法)による小規模スクリーニングの検証を行った。検証セットとして は、モルヒネやフェンタニル等の既知のオピオイドリガンド11個とデコイリガンド11,479個を用い た。この検証の結果、最も高いヒット率で既知リガンドを抽出できる構造を選抜し、この構造を 用いて市販化合物に対するMTS法およびDSI法(Docking Score Index法)スクリーニングを行っ た(この計算についてはJBICで実施)。スクリーニング結果および化合物の在庫状況の確認の 後、最終的に399個の候補化合物が選抜された。そしてこれらについて、μ受容体に対する結 合親和性試験を実施したところ、複数個の活性化合物が確認された。
- 4. <u>オピオイドリガンドのドッキングスタディ</u>

EM-1の結合配座の推定やファーマコフォー抽出の解析に活用することを目的に、既知の オピオイドリガンドのドッキングスタディを行った。この際、既知リガンドとしては、モルヒネやフ ェンタニル等10個のリガンドを用いた。また μ 受容体モデルとしては、Mosberg等により報告さ れている活性型の μ 受容体モデルを用いた。cosgeneを用いたMDシミュレーションにより200 個の構造をサンプリングした後、Sievgene, GOLD(CCDC社), S社のドッキングソフトを用い てアンサンブルドッキングを行い、多数のドッキングポーズを得た。そして、得られたドッキン グポーズをエネルギー極小化により精密化した後、MM-GBSA手法により簡易的な結合自由 エネルギー(Δ Gbind)を算出した(エネルギー極小化, MM-GBSA計算については、AMBER 8 を使用)。最後に、各リガンド毎で Δ Gbindが良好なドッキングモデルを比較し、推定の共通フ アーマコフォー情報を得た。

以下、各項目の詳細な検討内容について記載する。

1. EM-1の立体配座解析

EM-1分子が単独で取り得る立体配座の算出を試みた。EM-1は4残基と比較的短いペプチドであること、および2番目のアミノ酸として自由度の少ないProを含んでいるため、その立体配座の数は 通常の生理活性ペプチドよりも限定されるものと期待される。

立体配座解析の手法としては、先の生体高分子プロジェクトの成果物であるmyPrestoのcosgene による溶液中でのF.B.McMDシミュレーションによる解析を行った。通常, 配座解析手法としては分 子動力学法や二面角の系統的探索法があるが、ペプチド分子のように回転可能結合が多い分子 では、全配座空間を網羅的に探索することは難しく、一般的な分子動力学法による配座解析では 局所空間に留まってしまう恐れがある。また、二面角の系統的探索法では、多くの計算時間を要 し、また実際には優位に取り得ない配座をサンプリングしてしまう恐れもある。そこで、F.B.McMD シミュレーションを用いることで、網羅的かつ効率的な配座探索を試みた。 F.B.McMDシミュレーションの検討の結果、下図で示すような高いエネルギーから低いエネルギー を持つ配座までのマルチカノニカル分布を示す配座集団が得られた。そして、これらの集団につ いて、myPrestoのreweightFBツールを用いて解析を行ったところ、下記で示すような各温度に対 応するカノニカル分布を示す配座集団を得ることができた(50K毎に表示)。そして、これらの結果 の内、300Kに該当する配座集団を抽出したところ、2318個のEM-1の立体配座が得られた。

図2. F.B.McMDシミュレーション結果

2. <u>μ 受容体のホモロジーモデリング</u>

μ受容体は、7回膜貫通型のGPCRであり、その立体構造は明らかにされていない。本検討では、 ホモロジーモデリング手法により、その立体構造の予測を試みた。

実際のホモロジーモデリングの作業としては、はじめに、clustalwを用いて、アミノ酸配列の multiple alignmentを行った。用いたアミノ酸配列としては、GPCRの中でRhodopsin-likeファミリーの 内、peptideサブファミリーに属するOpioidやAngiotensin、Somatostain受容体等の38配列、そして 結晶構造が明らかにされているRhodopsin受容体(Bovine)および β 2ARの2配列の計40配列であ る。以下に, multiple alignmentの結果の中から、 μ 受容体と β 2AR(結晶構造PDB ID:2rh1.pdbの アミノ酸配列)のアミノ酸アライメントを抜粋したものを示す。