公開

公開

エネルギーイノベーションプログラム 「エネルギーITS推進事業」

プロジェクト詳細説明 (公開)

「国際的に信頼される効果評価方法の確立」

国立大学法人 東京大学生産技術研究所 株式会社 アイ・トランスポート・ラボ 一般財団法人 日本自動車研究所

2013年8月30日

説明項目

個別研究開発項目の目標と達成状況

- 1. 目標の達成度と成果の意義 P.3~P.26
 2. 知財と標準化 P.27~P.30
 3. 成果の普及 P.31~P.36
- 4. 実用化・事業化に向けての見通し及び取り組み P.37~P.43

説明項目

個別研究開発項目の目標と達成状況

1. 目標の達成度と成果の意義

- 2. 知財と標準化
- 3. 成果の普及
- 4. 実用化・事業化に向けての見通し及び取り組み

Ⅲ.研究開発成果について (1)目標の達成度と成果の意義

研究開発目標と根拠

最終目標「国際的に信頼されるCO2削減効果評価方法の確立」に対し、 以下の2つの目標を挙げた。

研究開発目標	根拠
1) CO2排出量推計技術の検証手法を策定して、 ツール群(ハイブリッドシミュレーションモデル、プ ローブによるCO2モニタリング技術、CO2排出量 推計モデル)から得られるCO2排出量の妥当性 及び精度を検証し、信頼性のあるCO2排出量推 計技術およびデータウェアハウスを完成させる。	ITS施策を評価するには、広域〜地区 レベルに対応できる交通流とCO2排 出量を計算するツールが必要であり、 それらの計算結果には信頼性が要求 されるため。
2) ITS施策の効果評価手法として満足すべき要件(CO2排出量の推計精度、車両挙動データの 出力項目、車両カテゴリの定義等)やツールの検 証手法等を、日本、欧州及び米国の関係機関と 組織した国際ワークショップにおいて合意した上 で、国際標準化への提案等に資する技術報告書 としてとりまとめ、公表する。	国際的にCO2排出量を評価、比較す るには、使用するツールが国際的に合 意された要件や検証手法を満たしてい る必要があるため。

事業原簿

Ⅲ.3-3

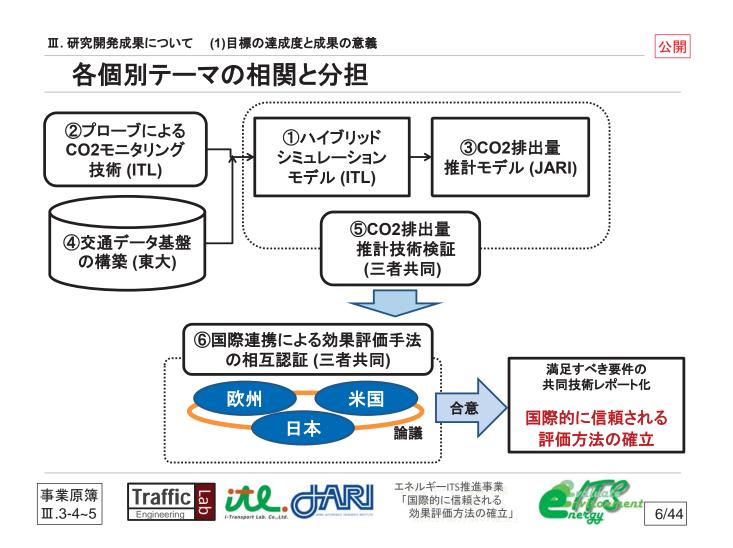
エネルギーITS推進事業

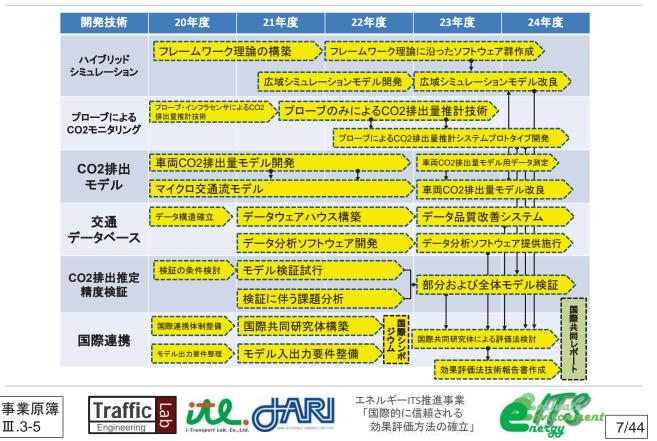
「国際的に信頼される 効果評価方法の確立」

3/44

目標達成へのアプローチ

2つの研究開発目標に対し、6サブテーマに分けて研究を進めた。


研究開発目標	研究開発項目	根拠
(1) CO2排出量推計技術 及び データウェアハウスの 完成	①ハイフ゛リット゛ シミュレーションモテ゛ル	様々な適用規模のITS施策を総合的に評価 できるモデルが必要
	②プローブによる CO2モニタリング手法	都市域のCO2排出量削減効果をリアルタイ ムで確認する技術が必要
	③CO2排出量 推計モデル	広域を対象に、少ないデータ量で走行挙動 変化を考慮できるモデルが必要
	④交通データ基盤の構築	推計の入力データや検証用データとして活 用できる、公開された交通流データが必要
(2) 評価手法の要件・	⑤CO2排出量 推計技術の検証	推計結果の信頼性を高めるため、検証技術 の構築が必要
許価子法の安任 検証方法の国際合意と 技術報告書発行	⑥国際連携による効果評価手法の相互認証	評価結果の相互議論を可能とするため、推 計手法や検証手法の共通認識が必要



エネルギーITS推進事業 「国際的に信頼される 効果評価方法の確立」

実施スケジュール

Ⅲ.研究開発成果について (1)目標の達成度と成果の意義

研究開発項目の目標と達成状況-1

最終目標	研究開発項目	目標		達成度·成果	今後の方針
	①ハイブリット シミュレーションモデル	・シミュレーションソフトウェア モジ [・] ュール群の完成	0	ソフトウェア完成、 <u>事例評価実施</u>	
CO2排出量 推計技術	②プローブによる CO2モニタリング手法	・CO2排出量モニタリンク システムのプロトタイプ完成	0	プ마タイプ完成、 <u>運用開始</u>	世界各都市への 適用
及び デ ^{ータウェア} ③CO2排 推計モデリ	③CO2排出量 推計モデル	・ITS導入時のCO2排出量 推計ソフトウェアの完成	0	ソフトウェア完成、 <u>事例評価実施</u>	
ハウスの完成	④交通データ基盤の構築	・国際データウェアハウス(ITDb)の 構築完了 ・データ評価システムの構築完了	0	ITDb完成、 運用開始 (7カ国60ューサ [・] ー)	データの拡充と ユーザ数増加
評価手法 の要件・ 検証方法の	⑤CO2排出量 推計技術の検証	 ・効果評価手法要件整理及び ツール検証手法構築完了 ・CO2排出量の妥当性及び 精度の検証完了 	0	手法要件·検証 手法構築完了、 検証完了	技術報告書の
技術報告書 教果評価手法の 外行 地互認証 日欧米国際合		・効果評価手法要件及び ツール検証手法等の 日欧米国際合意 ・技術報告書として公表	Ø	連携体制構築、 国際合意、 技術報告書発行, 国内外への適用	周知活動

◎: 目標を上回る達成 O: 目標どおりの達成



エネルギーITS推進事業 「国際的に信頼される 効果評価方法の確立」

公開

「国際的に信頼される 効果評価方法の確立」

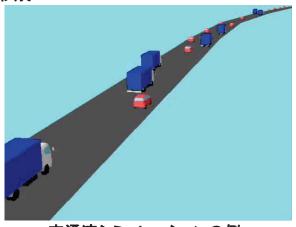
④交通データ基盤の構築

目標 世界中に散在する交通関係のデータを活用するため、データウェアハウスを構築する。 ポイント ITDb(International Traffic Database): データ本体に共通のメタ情報を付与して、 書式の異なる多様な交通関連データを一元管理。外部サーバーのデータも参照可能。 メタ情報:「情報を表すための情報」この情報には何が含まれるか、という目録。 (データの取得日、取得場所、所有者などの情報) 一般公開データのリスト 国名 データ数 データタイプ 8か国、32件のデータをITDbで一般公開中。 オーストラリア 2 外部リンク(旅行時間) 登録ユーザー約60 バングラデシュ 1 ビデオ 欧州のCOST TU0702やNEARCTIS等の ドイツ 1 外部リンク プロジェクトグループが登録され、およそ イギリス 1 外部リンク 120件のデータがユーザー間で共有。 日本 3 感知器、ビデオ、交通調査 モデル検証用のベンチマークデータセットを、 オランダ 1 感知器 ITDbを通じて欧米連携パートナーと共有。 米国 22 感知器、外部リンク ベトナ ITDbウェブページアドレス: 合計 http://www.trafficdata.info/

ベトナム	1	ビデオ
合計	32	
エネルギーITS推進 「国際的に信頼さ 効果評価方法の	れる	6

13/44

公開

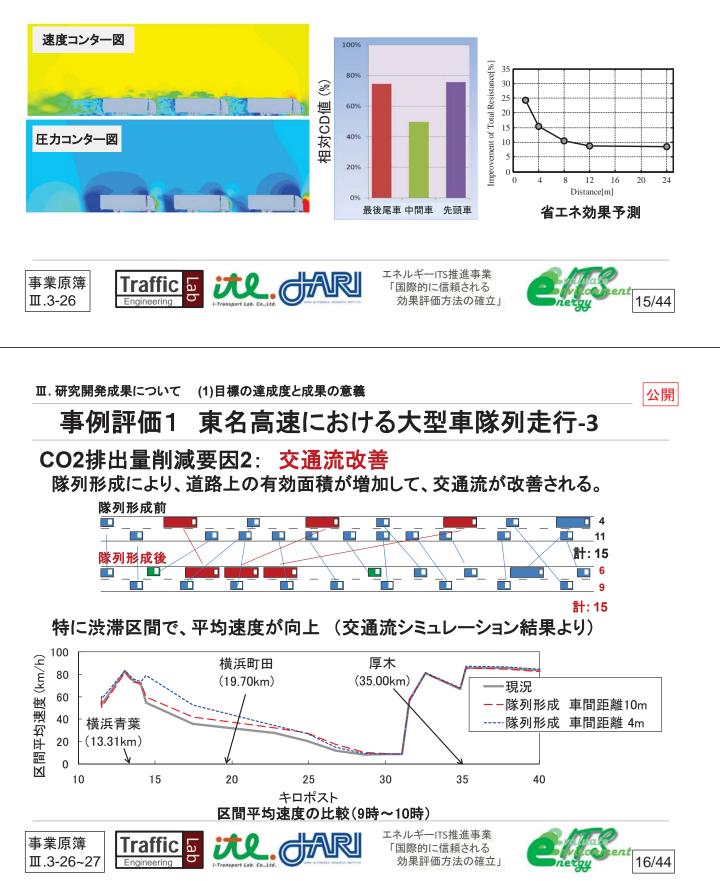

Ⅲ. 研究開発成果について (1)目標の達成度と成果の意義

事例評価1 東名高速における大型車隊列走行-1

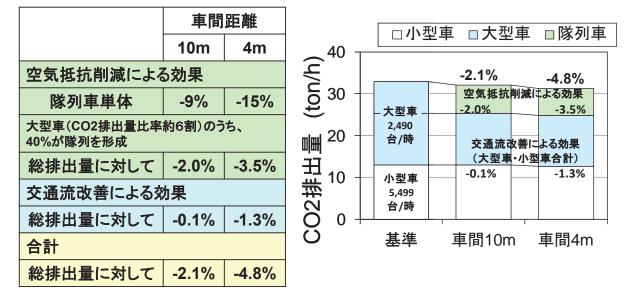
「自動運転・隊列走行の研究開発」テーマと連携して評価を実施 推計条件:

ᄪᄪᅎᅚ		
対象路線:	東名高速下り線(横浜青葉~	・沼津)
対象時間:	平日朝ピーク時(2008年11月]12日(水))
	8:00~10:00、評価は8:30	~10:00)
隊列形成率:	大型車の40%が3台隊列を刑	彡成
車間距離:	ケース1 10m	
	ケース2 4m	
その他:	隊列形成の過程、および	
	インターチェンジ周辺の	
	交通流の乱れは考慮しない	
· 推出。 把 ·		
その他:	インターチェンジ周辺の	

交通流シミュレーションの例


エネルギーITS推進事業 「国際的に信頼される 効果評価方法の確立」

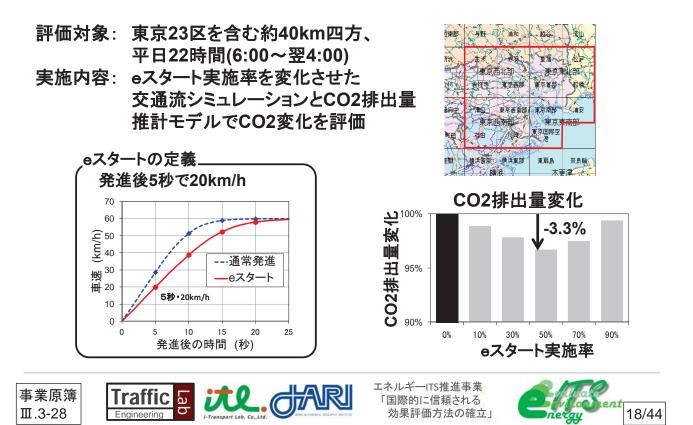
事例評価1 東名高速における大型車隊列走行-2


CO2排出量削減要因1: 単体燃費改善 隊列を形成する大型車は、空気抵抗が減少するため、CO2排出量が低減する。

> 車間距離10m: 3台平均で約9%燃費低減 (数値流体計算結果より) 車間距離4m: 3台平均で約15%燃費低減 (同)

事例評価1 東名高速における大型車隊列走行-4

CO2排出量削減推計結果:



大型車3台隊列形成による空気抵抗低減と、交通流改善の2要因を考慮して、 車間距離10mで-2.1%、車間距離4mで-4.8%というCO2排出量削減が推計された。

Ⅲ. 研究開発成果について (1)目標の達成度と成果の意義

事例評価2 東京23区におけるeスタート

研究開発項目の目標と達成状況-2

最終目標	研究開発項目	目標		達成度·成果	今後の方針
	①ハイフ・リット シミュレーションモデル	・シミュレーションソフトウェア モジ・ュール群の完成	0	ソフトウェア完成、 <u>事例評価実施</u>	
及び ③CO2排出量 ·ITS導入時のCO2排出 データウェア 推計モデル 推計ソフトウェアの完成		・CO2排出量モニタリンク システムのプロトタイプ完成	0	プ마タイプ完成、 <u>運用開始</u>	世界各都市への 適用
		・ITS導入時のCO2排出量 推計ソフトウェアの完成	0	ソフトウェア完成、 <u>事例評価実施</u>	
ハウスの完成	④交通データ基盤の構築	・国際データウェアハウス(ITDb)の 構築完了 ・データ評価システムの構築完了	0	ITDb完成、 運用開始 (7カ国60ユーサ [•] ー)	データの拡充と ユーザ数増加
評価手法 の要件・ 検証方法の	⑤CO2排出量 推計技術の検証	 ・効果評価手法要件整理及び ・ツール検証手法構築完了 ・CO2排出量の妥当性及び 精度の検証完了 	0	手法要件·検証 手法構築完了、 検証完了	技術報告書の
国際合意と 技術報告書 発行	⑥国際連携による 効果評価手法の 相互認証	・効果評価手法要件及び ツール検証手法等の 日欧米国際合意 ・技術報告書として公表	Ø	連携体制構築、 国際合意、 技術報告書発行, 国内外への適用	周知活動
©: 目標を上回る達成 O: 目標どおりの達成					

事業原簿 Ⅲ.3-35

エネルギーITS推進事業 「国際的に信頼される 効果評価方法の確立」

公開

Ⅲ.研究開発成果について (1)目標の達成度と成果の意義

⑤CO2排出量推計技術の検証

目標

効果評価手法の要件、モデルの検証手順、および、検証項目を定める。

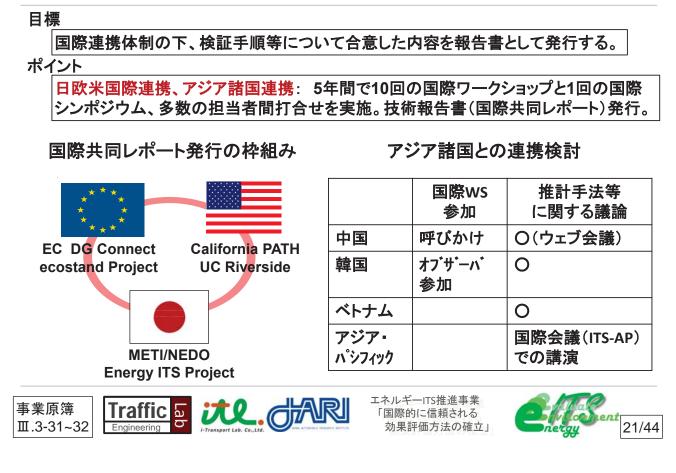
ポイント

<mark>検証手続きの共通化</mark>:検証の手続きを国際的に共通化。 基本検証→実用検証→結果公開という検証手順。

・様々なモデルが既に存在しており、目的に応じた適切なモデルが使用される。
 ・モデルはそれぞれが異なる特性を有する。

・共通の検証手順として、

基本検証(Verification 理想的な条件を備えた仮想データを用いた、モデルの基本動作確認) 実用検証(Validation リアルワールドで得られたデータを用いた、モデルの実用性検証)


結果公開(Disclosure 基本検証および実用検証結果の公開) という手順を踏み、モデルの信頼性を確保する。

(検証項目は「国際連携」のスライドに示す)

⑥国際連携による効果評価手法の相互認証

Ⅲ. 研究開発成果について (1)目標の達成度と成果の意義

国際共同レポート記載内容=国際合意内容-1

国際共同レポートの発行

日欧米の国際連携体制下での合意事項を、 「ITS施策によるCO2排出量削減効果評価ガイドライン」 Guidelines for assessing the effects of ITS on CO2 emissions に取りまとめ、発行した。

国内外の関係者に配布したほか、NEDOウェブページよりダウンロード可能。 (http://www.nedo.go.jp/content/100521807.pdf)

レポートの構成

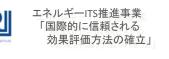
序章. レポートの目的

- → 評価対象ITS施策を定義 Ι. ITS施策分類とその効果評価手法 CO2排出量評価のモデリング → リファレンスモデルで整理 II.
- モデルの検証手続き III.
- モデル適用手法と使用データ要件 IV.
- V. 適用事例

- → 検証手順・項目を整理
- → 適用手順等を定義

公開

国際共同レポート記載内容=国際合意内容-2


I. ITS施策分類とその効果評価手法

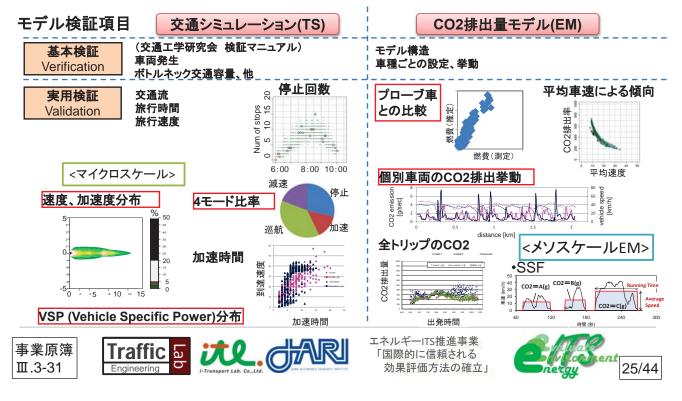
→ 議論を明確にするため、評価対象とするITS施策を分類

	分類	事例
1	運転挙動の改善	エコドライブ 車間距離制御システム
2	交差点および自動車 専用道路の交通流改善	信号制御 高速道路ボトルネック改善施策
3	ネットワーク規模の 交通マネージメント	ナビゲーション・経路案内 ランプメータリング 最適出発時刻案内 安全運転・緊急時支援システム
4	TDM(交通需要マネジメント)、 モーダルシフト	マルチモーダル支援 ロードプライシング カーシェアリング
5	貨物車両運行管理	商業用貨物車運行管理システム

Ⅲ.研究開発成果について (1)目標の達成度と成果の意義 公開 国際共同レポート記載内容=国際合意内容-3 II. CO2排出量評価のモデリング → リファレンスモデルでCO2削減メカニズムを提示して、機能要件を整理 リファレンスモデル: 参考となるべき姿(モデル)を具体的に示したもの。 考慮すべき交通現象やITS施策の効果が、 御殿 どのようなメカニズムでCO2削減を ドライバー \$)^{\$\$} ·Y 達成するかについて整理して示す。 このメカニズムを再現するように NA 情報通信 周辺の モデルを開発・検証する。 制 車両 技術 制御 御 老朝 車両

CO2排出量

リファレンスモデルの例 (分類1)


エネルギーITS推進事業 「国際的に信頼される 効果評価方法の確立」

国際共同レポート記載内容=国際合意内容-4

Ⅲ. モデルの検証手続き

→ 検証手順(基本検証・実用検証・結果公開)、検証項目について整理

Ⅲ. 研究開発成果について (1)目標の達成度と成果の意義

目標達成状況と成果の意義

最終目標:「国際的に信頼されるCO2削減効果評価方法の確立」

(1)CO2排出量推計技術及びデータウェアハウスの完成 達成度: 〇

意義:構築した効果評価ツールは、ITS施策による自動車交通からの CO2排出量削減を定量的に評価することを可能にした。 これによりITS施策の効果的かつ効率的な導入が更に促進される。 またデータウェアハウスは、評価の効率化を実現するものである。

(2)評価手法の要件・検証方法の国際合意と技術報告書発行 達成度: 〇

意義: CO2削減は国際的な課題であることから、その評価手法は 国際合意されたものであることが必須である。 またその合意内容を、日米欧の責任者が署名した技術報告書として 発行し今後の評価手法活用にあたっての道標とした。

公開

説明項目

個別研究開発項目の目標と達成状況

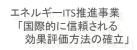
- 1. 目標の達成度と成果の意義
- 2. 知財と標準化
- 3. 成果の普及
- 4. 実用化・事業化に向けての見通し及び取り組み

Ⅲ. 研究開発成果について (2)知的財産権等の取得及び標準化の取り組み

公開

知財等

特許出願 2件


- ・交通状況解析装置、交通状況解析プログラム及び交通状況解析方法 (特願 2009-198363)
- ・交通流予測装置、交通流予測方法及び交通流予測プログラム (特願 2012-081996)

受賞 1件

「標高データを活用した簡便な道路縦断勾配推定手法の開発」
 (第29回日本道路会議 優秀論文賞)

	2008年度	2009年度	2010年度	2011年度	2012年度	合計
論文(査読あり)	0	0	12	6	4	22
研究発表·講演	5	7	13	25	29	79

本プロジェクトで構築したツール群(ソフトウェア)

①ハイブリッドシミュレーション					
MicroAVENUE	MicroAVENUE 微視的に車両を追従走行させるマイクロ交通流シミュレータ。				
並列化SOUND	既存の広域シミュレータ(SONUD)をベースに、並列計算で大規模ネットワークの計算ができる ようにしたもの。日本全国シミュレーションに活用。				
ハイブリッド交通流シミュレータ MicroAVENUE、街路網交通流シミュレータAVENUE(既存)及び広域道路網交通流: タSOUND(既存)を統合し、異なるモデルが同期して連携するシミュレータ。					
動的OD交通量推計システム	観測交通量データや統計データを基に、シミュレーションに必要な時間帯別のOD(起終点)交通 量を推定するシステム。				
SSF 生成システム	シミュレーションから出力される車両挙動データから、②のメソスケールEMに入力するための SSF形式データを生成するシステム。				
②CO2排出量推計モデル					
メソスケールCO2排出量推計モデル 国内主要車種カテゴリに対して、SSF形式データよりCO2排出量を推計するシステム。					
マイクロスケールCO2排出量推計モデル	国内主要車種カテゴリに対して、詳細走行データよりCO2排出量を推計するシステム。				
③プローブによるCO2モニタリング					
トラフィックスコープ	リアルタイムで取得されるプローブデータから、1kmメッシュ毎の交通流動性と状態特異性を可 視化するシステム。				
ナウキャストシミュレーション	プローブデータを利用するトラフィックスコープと連動して、現在の交通状態をリアルタイムでシ ミュレーションにより再現するシステム。				
④国際交通データベース					
ITDb (International Traffic Database)	al Traffic Database) シミュレーションの入力や検証用データセットを国際的に共有するシステム				
MyITDb	各種の交通関連データセットを限定されたグループで共有するシステム				
事業原簿 Ⅲ.3-36					

Ⅲ. 研究開発成果について (2)知的財産権等の取得及び標準化の取り組み

標準化への取り組み

標準化についての目標と成果

- フォーラム標準を目指して国際連携活動を実施した。
- ・欧米の有力な専門家と連携し、国際合意に基づき作成・発行された国際共同 レポートは、この分野に大きな影響力を持つフォーラム標準になった。
- ・今後も国際的な成果発信を継続する。
- ・ISO標準化に向けた活動が開始された場合は、協力は惜しまない。

連携パートナー

欧州 ecostand	米国
TNO(オランダ)	California PATH (U.C.Berkeley)
PTV(ドイツ)	CE-CERT (U.C.Riverside)
Transport & Mobility LEUVEN(ベルギー)	
MIZAR(イタリア)	
PEEK Traffic(オランダ)	
TRL(イギリス)	
IFSTTAR(フランス)	

公開

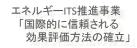
説明項目

個別研究開発項目の目標と達成状況

- 1. 目標の達成度と成果の意義
- 2. 知財と標準化
- 3. 成果の普及
- 4. 実用化・事業化に向けての見通し及び取り組み

皿.研究開発成果について (3)成果の普及

成果物と成果の普及


成果物:

- ・国際合意された手法に基づくITS施策効果評価ツール
- ・国際合意された、効果評価手法の検証手順
- ・国際交通データベース(ITDb)
- ・ツール検証用ベンチマークデータセットの整備と公開
- ・上記ツールの実市街地への適用ノウハウ
- → ITS施策の効率的運用に資する成果物が得られた。

成果の普及のための活動:

	FY2008	FY2009	FY2010	FY2011	FY2012	国際ワークショップ:
国際シンポジウム			2010).10、東京 		 ①2009.02 東京 ②2009.09 ストックホルム
国際ワークショップ(計10回)						 ③2010.03 アムステルダム ④2010.10 釜山
ITS世界会議Special Session		0	0	0	0	⑤2011.07 ウイーン ⑥2011.10 オーラント
国際オープンワークショップ					•	 ⑦2012.01 ワシントンDC ⑧2012.06 フ・ラッセル
社会還元加速プロジェクト連携						92012.10 ウイーン 102013.01 ワシントンDC

31/44

成果の普及例 社会還元加速プロジェクト連携

社会還元加速プロジェクト

「情報通信技術を用いた安全で効率的な道路交通システムの実現」

・ITS実証実験モデル都市にて、ITS技術・施策の導入実験を実施

<u>・CO2削減に関する定量評価手法を持たない</u>

エネルギーITS事業

「国際的に信頼される効果評価方法の確立」

・ITS施策によるCO2削減効果を評価できるツールを構築

社会還元加速プロジェクトからエネルギーITSへの依頼内容: 『エネルギーITSの成果を活用して、ITSモデル都市である 柏市、豊田市におけるエコドライブ支援、エコルート案内等の ITSアプリケーション導入に対する定量的な評価を依頼する』

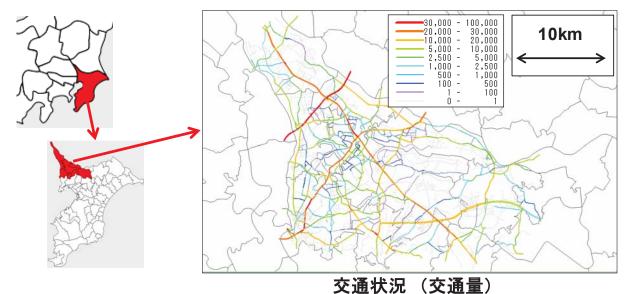
ツール完成度向上、活用事例の発信も目的として評価を実施した。

エネルギーITS推進事業

「国際的に信頼される

効果評価方法の確立」

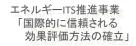
Ingineering U. Transport Lab. Co., Ltd.


Ⅲ.研究開発成果について (3)成果の普及

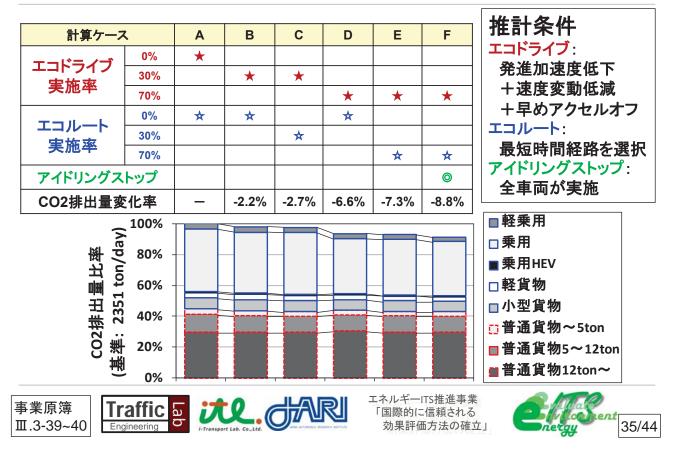
公開

33/44

評価対象領域(柏市地区)概要と評価方法


柏市と隣接7市エリアの幅員5.5m以上の道路(道路延長 2,399km)を対象とした。

対象エリアの24時間分のCO2排出総量の変化率で評価を行った。



評価対象施策とCO2削減効果評価結果

皿.研究開発成果について (3)成果の普及

公開

公開

成果普及例まとめと今後のツール活用に向けて

自治体規模を対象とした、各種ITS施策のCO2削減について 定量的な効果評価が可能なツールを開発・適用した。

社会還元加速プロジェクトに報告した際のコメント:

- ・柏市・豊田市以外にも適用し、結果を市民に見てもらうことが大切(経産省)。
- ・定量的な結果は参考になる。CO2削減目標のため、エコドライブ以外の施策も 必要があることが判り、市民に対策と低減の結果を出せるようになる(柏市)。
- ・市民に知ってもらうことが、個人で行動してもらうことにつながる(豊田市)。
- ・市民への展開、情報発信が重要。各省庁と一緒に進めていきたい(内閣府)。

市民への展開・行動変容のために、定量評価ができるツールが必要であり、 本プロジェクトの成果が有用である事を示した。 今後も、異なる都市・施策への適用や、ITS世界会議などを通した情報発信を 進めていく。

説明項目

個別研究開発項目の目標と達成状況

- 1. 目標の達成度と成果の意義
- 2. 知財と標準化
- 3. 成果の普及
- 4. 実用化・事業化に向けての見通し及び取り組み

Ⅳ. 実用化・事業化に向けての見通し及び取り組みについて (1)成果の実用化・事業化の見通し

公開

ant 37/44

公開

実用化・事業化の方向性

ITS施策評価システムの適用

国内展開

- ・国内諸都市におけるITS施策評価システムの適用
- 例)社会還元加速プロジェクト連携(柏・豊田のITS施策評価) NEDO・IT融合による新社会システムの開発・実証プロジェクト (都市交通・エネルギー統合マネジメント)

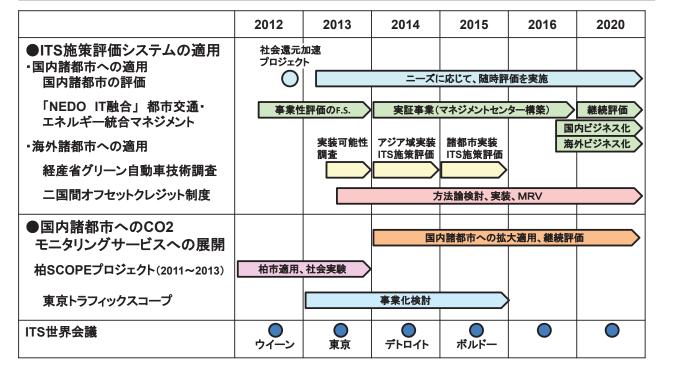
世界展開

・世界各都市におけるITS施策評価システムの適用

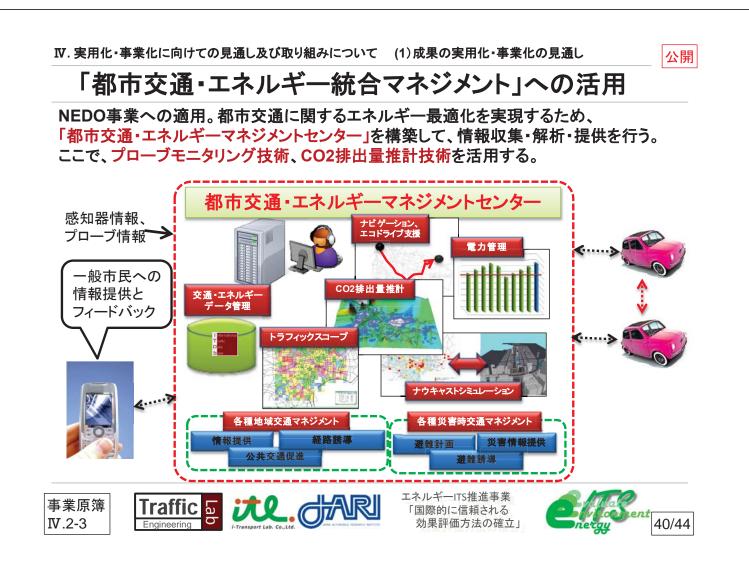
例)経産省グリーン自動車技術調査研究事業への展開 二国間オフセット・クレジット制度への展開 欧州プロジェクトへの適用

国内諸都市へのCO2モニタリングサービスへの展開 例)総務省・柏SCOPEプロジェクト(柏ITS)

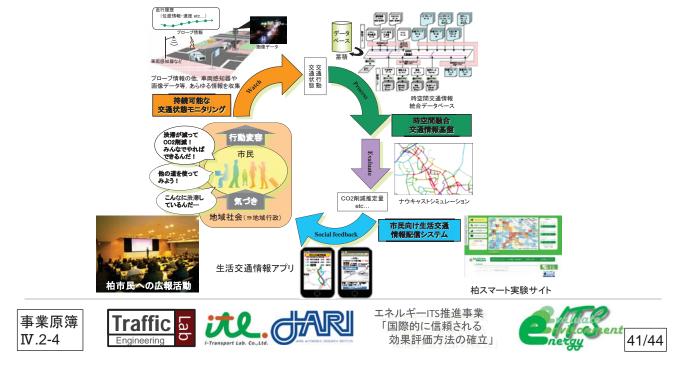
マスメディアによる生活交通情報提供(東京トラフィックスコープ)

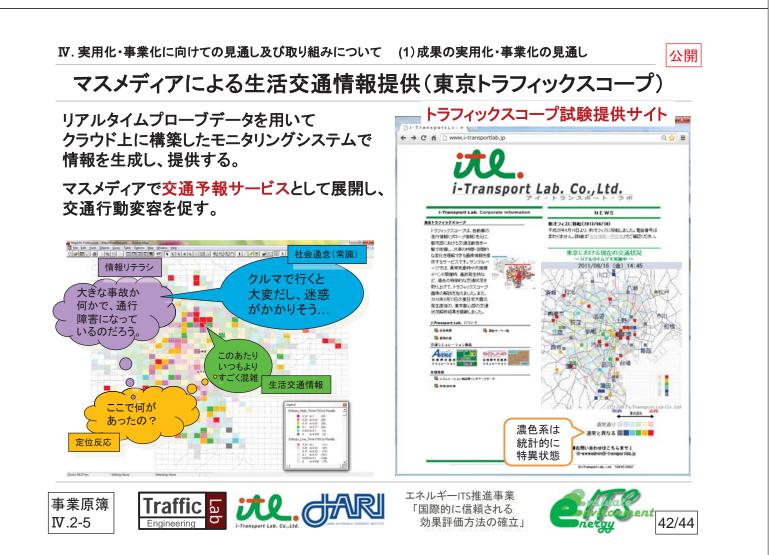

エネルギーITS推進事業

「国際的に信頼される


効果評価方法の確立」

実用化・事業化の見通し

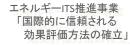

公開


39/44

総務省SCOPEプロジェクト(柏SCOPE・H23~H25)

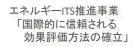
公開

モニタリング技術を利用して自動車交通からのCO2排出量をリアルタイムで推計。 地域行政と連携して、各種交通施策の継続的な評価を行う。 生活交通情報として、柏地域の市民にフィードバックし、交通行動変容を促す社会実験を 2013年のITS世界会議開催期間に併せて実施。(テクニカルビジットの招致)


効果評価手法の国際展開

・経産省グリーン自動車技術調査研究事業
 効果評価手法の世界各都市への実装に向けた活動
 → ITS施策の普及を加速させる一手法とする

- ・二国間オフセット・クレジット制度への展開
 本プロジェクトで構築した効果評価手法を用いた方法論の提案
- ・欧州EcoMoveにおける政策評価や、欧州AMITRANでの モデル検証手続きの参考とされている。



ご清聴ありがとうございました。

