

TSC Foresight 資源循環 (プラスチック、アルミニウム) 概要

2019年度NEDO『TSC Foresight』セミナー(第2回)

2019年11月1日 技術戦略研究センター(TSC) 環境・化学ユニット 土肥英幸

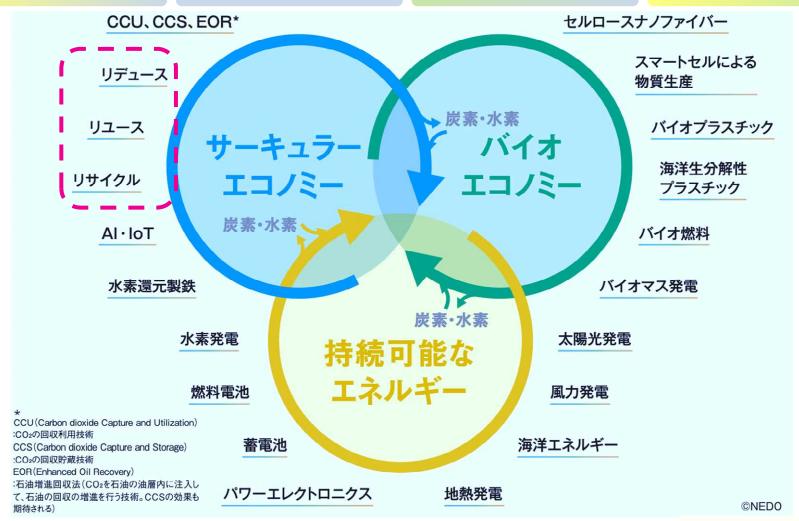
- ●背景および資源循環分野
- ●プラスチック
 - ・現状
 - ・海外動向・比較
 - ・技術体系
- ●アルミニウム
 - •現状
 - ・海外動向・比較
 - 技術体系
- ●まとめ

持続可能な循環型社会に向けた総合戦略

TSC Environment & Chemistry

技術進展・社会環境の変化

エネハベセンサー、AI、ブロッ クチェーン SDGsへの貢献、ESG投資拡大に よる環境制約の増大

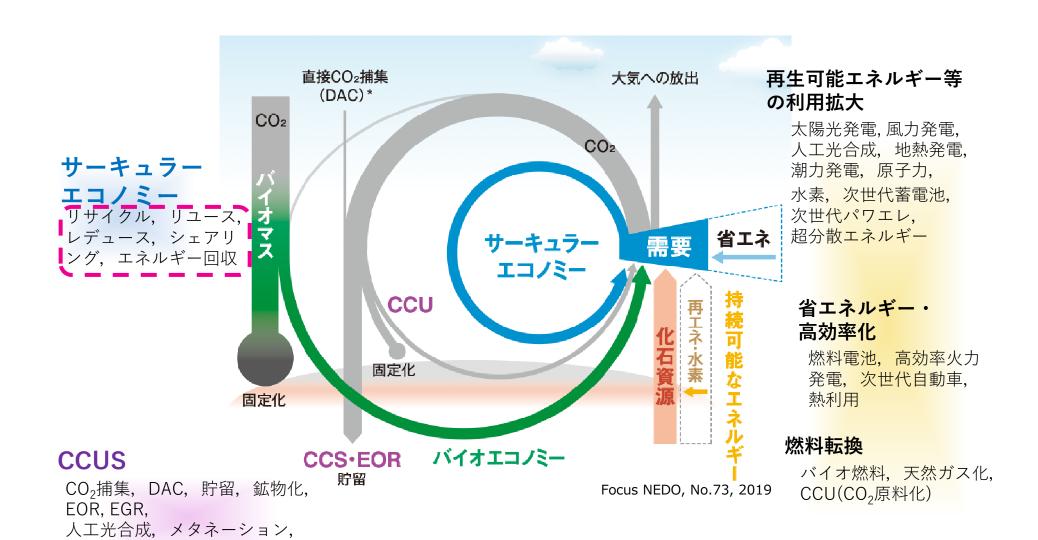

再エネ余剰電力発生

内燃機関車販売禁止の波,電動化

シェアリングエコノミー

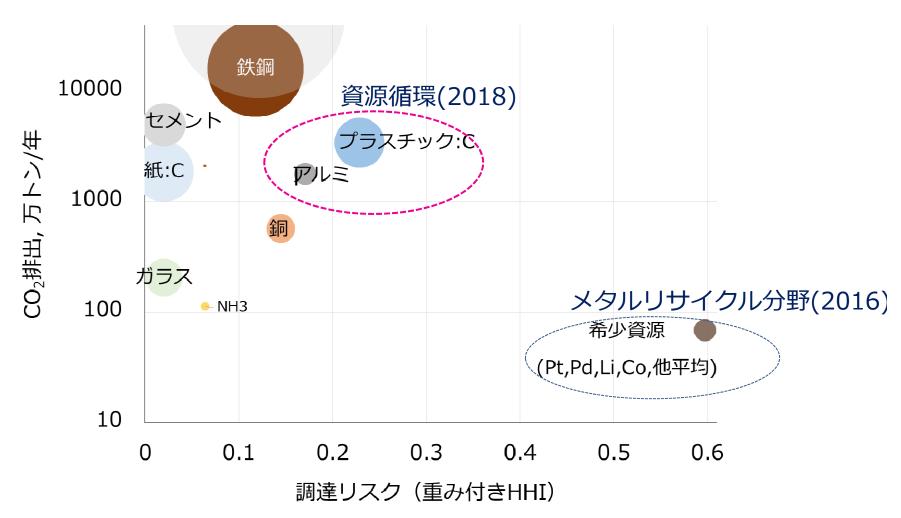
海洋プラスチック問題

CCSの社会受容性が課題



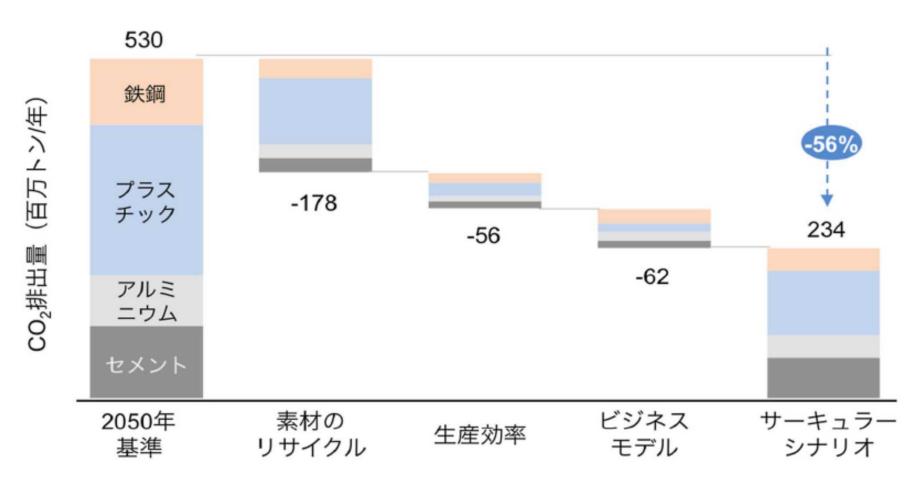
炭素循環から俯瞰した総合戦略

CO2のセメント内貯留


TSC Environment & Green Chemistry Unit

CO₂削減,調達リスク,経済規模から素材を俯瞰(日本)

TSC Environment &Chemistry

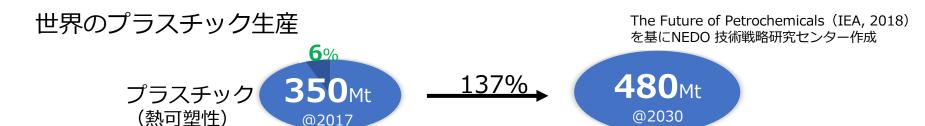

- ●鉱物資源マテリアルフロー 2017(JOGMEC 2018), 金属鉱物資源の安定供給に関する一考察(JOGMEC 2015), CFPプログラムwebサイト, 鉱物資源をめぐる現状と課題(METI 2014), The Circular Economy a Powerful Force for Climate Mitigation Transformative innovation for prosperous and low-carbon industry(SITRA 2018)よりTSCで作成
- ●CO2排出量は排出原単位×生産量を元にリサイクル率を考慮、プラスチックは焼却含む.市場規模は単価×生産量
- ●HHI算出で権益分, 開発輸入, リサイクルを考慮.
- ●バイオマス(林業)の売上, CO2排出量は産業連関表から抽出

サーキュラーエコノミーのインパクト

TSC Environment & Chemistry

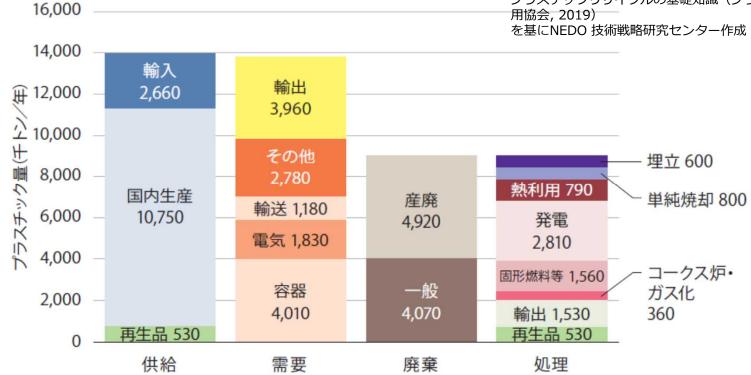
● 資源循環による**産業分野のCO₂削減への期待**,生産量への影響

SITRA, "The Circular Economy, A Powerful Force for Climate Mitigation", 2018., IEA, "The Future of Petrochemicals, Towards more sustainable plastics and fertilisers," 2018を基にNEDO 技術戦略研究センター作成

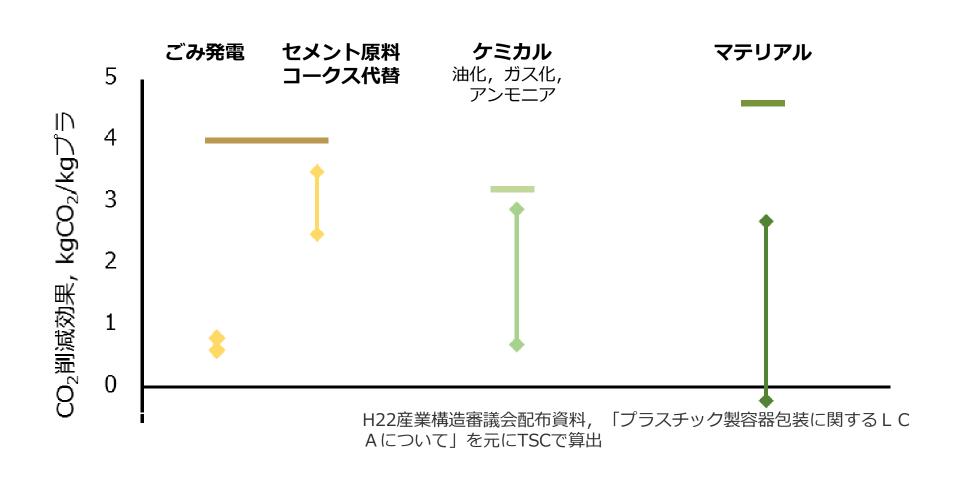


- ●背景および資源循環分野
- ●プラスチック
 - ・現状
 - ・海外動向・比較
 - 技術体系
- アルミニウム
 - 現状
 - ・海外動向・比較
 - 技術体系
- ●まとめ

プラスチック市場と日本の現状



TSC Environment & Chemistry


リサイクルデータブック(産業環境管理協会, 2018) プラスチックリサイクルの基礎知識(プラスチック循環利用協会, 2019)

プラスチックリサイクルによるCO₂削減効果

TSC Environment & Chemistry

特許・論文の動向

TSC Environment & Chemistry

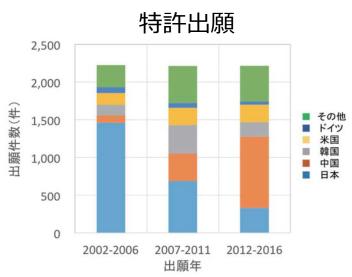


図6 プラスチックリサイクル技術に関する出願件数の推移(5年毎)

出所: Derwent World Patents Index™の検索結果を基に NEDO 技術戦略研究センター作成 (2019)

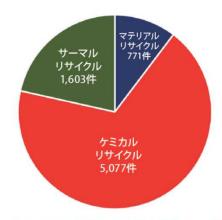


図7 プラスチックリサイクル技術別の出願件数 (2002年~2016年累積数)

出所:Derwent World Patents Index™の検索結果を基にNEDO技術戦略研究センター作成 (2019)

論文掲載

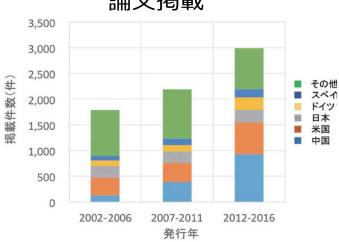


図8 プラスチックリサイクル技術に関する掲載件数の推移(5年毎)

出所: Web of Science™の検索結果を基にNEDO技術戦略研究センター作成 (2019)

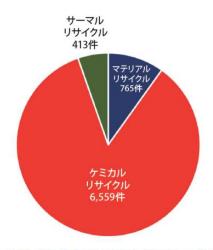


図9 プラスチックリサイクル技術別の掲載件数 (2002年~2016年累積数)

出所:Web of Science™の検索結果を基にNEDO技術戦略研究センター作成 (2019)

技術体系と課題

TSC Environment & Chemistry

プラスチックリサイクルと要素技術

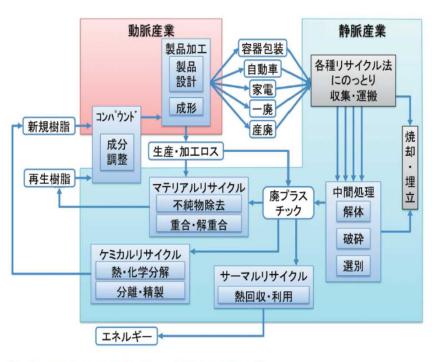


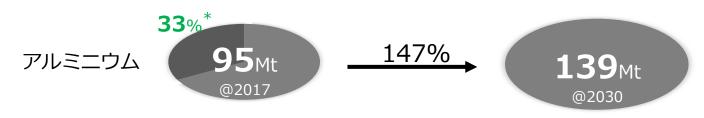
図10 プラスチックリサイクルシステムと要素技術

出所: NEDO技術戦略研究センター作成 (2019)

プラスチックリサイクル技術の課題

工程	要素技術	具体的な課題
中間処理	解体	省エネ、無人化、連続システム 化
	破砕	省エネ、同種部材破砕
	選別	高速処理、プラスチック種ごと の選別
マテリアル リサイクル	不純物除去	除去精度、無害化、添加剤等の 再利用
	重合・解重合	触媒開発、再生加工、成型加工、 構造設計
ケミカル リサイクル	熱・化学分解	触媒開発、省エネプロセス、歩 留まり向上
	分離・精製	不純物除去、省エネプロセス
サーマル リサイクル	熱回収	安定燃焼、蒸気温度の高温化、 伝熱促進材、耐腐食性材料開発 NOx・煤塵対策、熱利用
その他	技術以外の課題	効率的な回収、回収量の確保、 処理施設の再構築、関連制度、 リサイクルに対する国民の理解

●回収されるプラスチックの品質向上, 品質に合った最適な処理を総合的に 組み合わせた対策が重要


- ●背景および資源循環分野
- ●プラスチック
 - 現状
 - ・海外動向・比較
 - 技術体系
- ●アルミニウム
 - •現状
 - ・海外動向・比較
 - 技術体系
- ●まとめ

日本のアルミニウムリサイクルの現状

TSC Environment &Chemistry

世界のアルミニウム生産

日本のアルミニウムリサイクルの現状(2016)

図13 日本におけるアルミニウムのマテリアルフロー (2016)

出所:公開資料*16を基にNEDO技術戦略研究センター作成 (2018)

ベンチマーキング

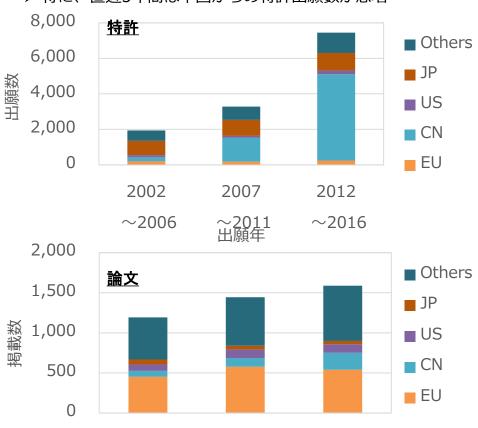
TSC Environment & Chemistry

各国の新地金生産と二次材使用(2017)

	総需要 万トン	新地金生産 万トン	
北米	1092	197 18%	
欧州	1221	400 33%	
日本	411	0 0%	
中国	4633	3991 86%	

アルミニウムリサイクル関連の 研究開発プロジェクト(2008年以降)

	技術分野	プロジェ クト数	予算総額 億円
米国	物理選別	3	6.9
	アルミ精錬	2	9.1
欧州	物理選別	3	15.0
	不純物除去	1	0.6
	加工技術	1	3.0
	アルミ精錬	1	9.0
	車体設計	1	0.7
日本*1	物理選別	1	2.0


特許*3・論文*4の状況

2002

 \sim 2006

▶ 中国(特許)とEU(論文)での研究開発が活発化

2007

 \sim 2011

出版年

2012

 \sim 2016

*1 日本は2000年前後に大型PJが存在. *2 リサイクル率の定義は様々あるため一致しないことに注意 CORDIS,InnovateUK, ARPA-E, NEDOのHP, World AlminiumのWeb情報を基にNEDO技術戦略研究センター作成

^{*3}特許検索: Derwent Innovation、*4論文検索: Web of Science(いずれもクラリベイト・アナリティクス社)の結果を基に、NEDO技術戦略研究センター作成

技術体系と課題

TSC Environment & Chemistry

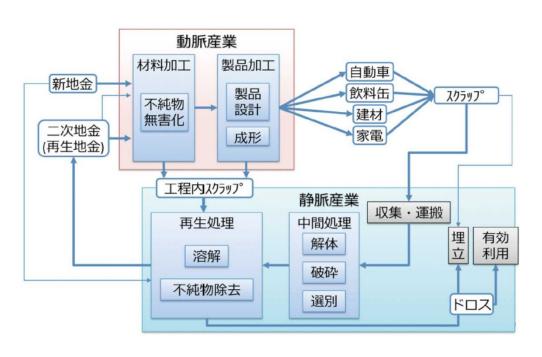


図16 アルミニウムリサイクルシステムと要素技術

出所: NEDO技術戦略研究センター作成 (2018)

工程	要素技術	内容
中間処理	解体	廃製品を部材に分離
	破砕	部材を素材単体に分離
	選別	素材ごとの分離・濃縮
再生処理	溶解	リサイクル材の溶解
	不純物濃度制御	ガス成分、不純物元素 の除去
加工処理	材料作り込み	不純物の存在下でも物 性を確保
	成形加工	低物性材料の使いこな し
	製品設計	中間処理効率化のため の商品形態・構造設計

●今後需要が増加する自動車向け展伸材へのリサイクルの実現(アップグレーディング)に向け、全ての工程(高度選別、不純物除去、材料作り込み等)の高度化による取り組みが重要

- ●資源循環の対象は、安定調達を目的とした希少資源に加え、コモディティに拡大(**産業分野のCO₂削減**への期待)
- ●回収プラスチックに**品質に応じた最適な処理**の選択,各処理法の高度化によって,処理量のみならず処理の質の向上によるCO₂削減の最大化を図る
- ●今後需要が増加する自動車向け展伸材へのリサイクルを実現し(アップグレーディング), アルミ循環社会の高度化を図る
- ●欧米企業は規模が大きく(リサイクルメジャー) 一括収集・自動選別により大規模なリサイクルを推進
- ●わが国の企業は**排出者分別により質の高い** リサイクルを推進するものの小規模. 産学 官・サプライチェーン全体での取り組みが重 要

