

Carbon Recycling to Chemicals and Fuels

Ahmed O. Khowaiter October 2021

CO₂ Utilization Pathways | CO₂ as a feedstock

Contents

Recycling CO₂ into Chemicals Recycling CO₂ into Fuels Enabling 4 Rs

CO₂ to Chemicals | CO₂ as a feedstock

CH₄ Dry Reforming

- Technology demonstrated, commercial-ready
- Technology providers: Linde/BASF and Chiyoda
- Saudi Aramco/KAIST next-generation catalyst

Catalysis without the coking

Defect-free MgO crystals (bottom) avoid the reaction-killing carbon buildup from MgO sheets (top).

CO₂ Hydrogenation to Methanol

- Technology commercial
- Technology providers: CRI, BluChemicals, BASF, Haldor Topsoe

CO₂ to Methane (SNG):

- Technology commercial
- Technology providers: TKI, BASF

CO₂ to Urea

- Technology commercial
- Technology providers: Stamicarbon

CO₂ Polymerization

- Technology semi-commercial
- Converge® technology Aramco Performance Materials

Polyols (containing up to 40 wt% CO_2)

CONVERGE® Polyols Products

FOAMS (Polyurethane)

CONVERGE* Polyals CONVERGE[®] Polyols in Flexible Foam in Rigid Foam

THERMOPLASTICS

Ceramic **Binder Materials**

Electronic Materials

CO_2 Hydrogenation to C_{2+} Alcohols and HCs

- Early development stage
 - Methanol-mediated route
 - CO₂ modified Fischer-Tropsch route

Electro/Photo-catalytic CO₂ Conversion

- Early development stage
- $xCO_2 + nH^+ + ne^- \rightarrow product + yH_2O$

CO_2 in construction materials | CO_2 recycle and storage

CO₂ Polymerization

- Technology demonstrated
- Large sink for CO₂
- Superior products in mechanical strength and chemical resistance
- Reduce curing time and increase productivity

Contents

Recycling CO₂ into Chemicals Recycling CO₂ into Fuels Enabling 4 Rs

CO₂ to Fuels | Energy carriers derived from H₂

CO₂ to Fuels demo plants | Two 50 BPD fuel demo plants

Synthetic fuels carbon intensity

Lifecycle carbon inetnsity (g-CO2/MJ)

- More than 80% CI reduction possible compared to fossil fuels
- Comparable CI to advanced (waste based) biofuels

Contents

Recycling CO₂ into Chemicals Recycling CO₂ into Fuels Enabling 4 Rs

Enabling the 4 Rs | Technology-agnostic low-CO₂ products enabled through regulation

Carbon Recycling to Chemicals and Fuels

Ahmed O. Khowaiter October 2021

