Application of Flexible Thermal Loads for Balancing Renewable Energy in Cold Climates

Lisa Dignard-Bailey and Steven Wong
November 19, 2014, Kyoto, Japan

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources (2014)
Contents

- Introduction
- Demonstration project - Summerside Community, Prince Edward Island, Canada
- Demonstration project - Chaninik Wind Group Multi-Village, Alaska, USA
- Conclusion
Flexible Thermal Loads: Electric Thermal Storage (ETS) and Water Heater (EWH)

- Winter Peaking Power System
 - 9 provinces out of 10 in Canada
 - Two peaks per day
- Lower load factor of the T&D network < 50 %
- Residential water heaters and electric heating at peak time

Graph:
- Peak reduction with EWH and ETS
- Load Profile (GW)
- Time of day (Hours)
- Reduction in peak demand through smart EWHs, ETS, and fuel switching
Controlled Heating and Wind Integration - New Brunswick Case Study

- Quantified benefits that the provincial energy generation system could receive by adopting smart-grid connected ETS

CanmetENERGY Findings:

- Controlled heating can permit much higher penetrations of wind
- At 25% penetration of smart electrical loads (electric water heaters and electric heating) will save 1% of generation costs each.
- Result in 0.3 and 0.5 t reductions in CO2 per unit per yr (0.7%).

Electric thermal storage (ETS) unit winter operation, demonstrating that the smart grid is important for controlling these devices (rather than time-of-use).
Yukon Electric Smart Grid - Case Study

~15,569 homes (~15,000 electrically heated)
- Must run diesel generators to meet peak demand
- Wind integration with local flexible hydro resources opportunity

CanmetENERGY Findings to date:

• Wind and electric thermal storage (ETS) can reduce the need for additional generation capacity
• The new technologies enable utility savings through better asset utilization and optimized generation
• Reduction in GHG (-29 to -86%)

CanmetENERGY

GHG Reduction (t CO\textsubscript{2}e) 830 (-29%) 7100 (-77%) 13 500 (-85%) 14 800 (-86%)
Award winning community engagement -

Demonstration Project - Summerside, Prince Edward Island, Canada
Summerside Local Municipal Utility

- Summerside Electric - Municipally owned utility, operating since 1920
- 14,500 population, 7,000 customers
- 12 MW wind farm built in 2009 by City of Summerside with power purchase agreement ($0.08 / kWh)
- In 2010 produced on average 15% excess electricity (8,500,000 kWh)
- Exporting surplus to New Brunswick Grid provided very low market prices ~ $0.03-$0.05 / kWh therefore net losses for Summerside Electric (~ $300,000 annually)
- Encourage customers – Heat for less with local wind power (Residential heating oil more expensive)
Summerside “MyPowerNet” Vision

Customer savings:
• CO2 emissions ↓ 42 %
• ↓ heating and hot water costs by 35 %
• 99 % customer satisfaction

Utility savings:
• Reduce exports, increase off-peak sales
 • 2010 exports: 8 500 MWh
 • 2011 exports: 7 443 MWh
 • 2012 exports: 4 103 MWh
 • 2013 exports: 3 363 MWh

Summerside 2006 Strategic Plan:
• Become 100 % green city (wind farm)

MyPowerNet Vision:
• Passing wind farm benefits to residents
• Creating additional revenue for the utility
• Create economic development opportunities
Summerside Dashboard and Gateway

- Higher wind energy integration – community profits; Wind farm creates long-term stable prices (wind-powered electricity vs. market-driven oil prices)
- Gateway for building energy management at no cost for the Community – Web Portal
- Living Lab for R&D in Energy Sectors – new HUB for renewable energy innovations.
“Empower the people of Summerside”

• 5 year or less payback (ROI >20%)
• $0.69 / Litre of Oil versus $1.153 today – savings on heating costs of 40%
• Convenient and comfortable (no life style change)
• Wind Green energy option - environmentally friendly
• Increased disposable income
• Electricity Conservation and Information – consumer portal
First of a kind community engagement -

Alaska First Nation Remote Community, USA
Multi-Village System Design

- Estimated average homeowner consumes 766 gallons of heating fuel at a cost of over $6.24 per gallon.
- Heating can be more than 60% of a household budget.
- The decision was then made to implement a wind system sufficiently large enough to generate excess wind energy.
- Local resources and local employment.
- This would represent a significant cost savings to the average consumer while increasing revenues to the local utility.

Source: Denis Meiners, Intelligent Energy Systems
Community Dashboard

- The Puvurnaq Power Company serves the community of Kongiganak, a traditional Yup'ik Eskimo village of 439 permanent residents.
- The community includes a school, washeteria, community center, clinic, lighted 2500-foot runway, a bulk fuel storage facility, two small local stores, and 135 residences.
- The economy is based primarily on a fishing and subsistence lifestyle.
- Wind-diesel systems hold promise for lowering power costs and reducing diesel fuel use for this and many communities in rural Alaska.
- Local employment includes work at the school, limited commercial fishing and seasonal construction.

Source: Denis Meiners, Intelligent Energy Systems
Electric Thermal Storage

- Heat from wind estimated to be approximately 50% lower compared to oil heating
- Regulated according to seasonal weather conditions using an outdoor temperature sensor and an onboard microprocessor
- Brick core of the heater ETS unit
- ETS control features include:
 - Under frequency detection and disconnection relay
 - Submetering of heating elements
 - Individual element control for 100 watt resolution per device
 - Two way communications between each ETS device and the powerhouse

Happy to replace oil heating to wind/ETS
Summary - Alaska remote village project

- Village local government formed the Chaninik Wind Group in 2005 as a way to pool resources.
- Cost of oil heating and diesel electricity was increasing every year. Wind is a local resources and clean power source at 50% lower cost.
- Heating surveys indicate that average hourly living room heat for a residence in Kongiganak is 14,000 Btu/hr.
- Each thermal storage unit can both produce and store up enough energy depending on the charge schedule to output 20,000 Btu/ per hour per unit, 24 hours a day. (This is similar in size and energy output to a Toyo Stove typically used – therefore replace oil heating).
- For the wind-diesel application using dynamic schedules, charging ETS in periods of high wind.
Concluding remarks

- Customer-Level Energy Systems Integration solutions are being deployed.
- Flexible thermal loads/Storage offer an opportunity to integrate variable wind energy.
- Demonstration projects show the benefit for the local community and the customers.
- Government funding helped to make these initial projects economic.
- The cost of residential solutions and communication systems need to decrease for these options to be deployed on a larger scale.
References

- Luigi Zanasi, Jean-Paul Pinard, Janne Hicklin, John Maissan, Initial Economic Analysis of ETS in the Yukon, Whitehorse, Alaska, March 2014
- Jean-Paul Pinard, TEDx-Whitehorse, 2013.
- Steven Wong, ETS workshop, Whitehorse, May 2014.
- Steven Wong, Canadian Residential Demand Response and Ancillary Service Market Opportunities, CanmetENERGY technical report, Varennes Research Centre, Natural Resources Canada, November 2014.
CanmetENERGY, Varennes Research Centre

For more information, please contact:
Dr. Lisa Dignard-Bailey
1615, Lionel-Boulet,
Varennes, Quebec

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2014
CanmetENERGY

- The largest energy science and technology organization in Canada
- Clean energy research, technology development, demonstration and deployment
- Over 400 scientists, engineers and technicians – Federal Department of Natural Resources Canada
- More than 100 years of experience