成果報告書詳細
管理番号20100000001191
タイトル*平成21年度中間年報 低損失オプティカル新機能部材技術開発
公開日2010/10/26
報告書年度2009 - 2009
委託先名財団法人光産業技術振興協会
プロジェクト番号P06020
部署名電子・情報技術開発部
和文要約和文要約等以下本編抜粋:1.研究開発の内容及び成果等
平成18 年6 月に開始した本プロジェクトは、従来の光学部品の性能を超える新たな部材創出を目的とし、動作原理に近接場光を用いた低損失オプティカル新機能部材実現を目指したものである。そして、平成22 年度までに、ナノ構造を用いた低損失偏光制御部材について、赤、青、緑、各波長領域において透過率75 %、消光比1:2000(33 dB)が得られることの実証を目標としている。
さらに、ナノ構造部材オプティカル新機能応用技術として光論理ゲートと近接場光導波技術について検討し、機能を確認する。本年度はナノ構造偏光板と金属細線構造で、赤色、青色、緑色それぞれの波長領域において透過率75%以上、消光比1:2000(33dB)が得られる構成を明らかにした。
そして、2層積層量子ドット構造で、光論理ゲート動作につながる量子ドット間の励起エネルギー移動を室温(300K)にて観測した。また、加速資金にて量子ドットを意図した場所に形成するための作製装置および、量子ドットに電源光と信号光を入力し、光論理ゲートの動作を確認するための評価装置を準備した。これらの成果をもとに、平成22 年度最終目標達成に向けてプロジェクトを推進しているところである。以下各研究開発項目の成果と進捗状況を報告する。
英文要約Title: Innovative Nanophotonics Components Development Project (FY2006-FY2010) FY2009 Annual Report
1. Basic technology development:We investigated 3D nanostructure fabrication using e-beam litho and lift-off. Superposition accuracy of two layers was 10 nm by installing local registration method. We developed high aspect ratio structure using e-beam litho and RIE. Prototyped Al line pattern had 80-nm width and 540-nm height. We made Al wire-grid for red light with 60-μm area that showed polarization transmittance of 95% and extinction ratio of 1:500. We optimized the nanostructure of InAs QDs (quantum dot) for the nanophotonic logical circuit, and we obtained photo luminescence intensity of 2.5 times to the previous year. We constructed the high sensitivity detection method, and we compared the characteristics among tip enhanced Raman scattering method, tip enhanced photoluminescence method, and tip enhanced Rayleigh scattering method. As a result, the tip enhanced Rayleigh scattering method was excelled in spatial resolution. The spatial resolution was approximately 30 nm or less. We proposed a plasmon waveguide using a metal-coated Si tip to convert the input far-field light to the TM plasmon mode that couples with and propagates along the CNT nanoprobe. We calculated the field distribution and found that a propagation efficiency of 10 % and a 4 nm optical spot were obtained for an 800 nm long CNT at a wavelength of 886 nm. We optimized the nanostructure of QDs for the nanophotonic logical circuit, and we showed an energy transfer between QDs to nearfield lights at 300 K. We verified the improvement of heat resistance by the ligand structure where the heat resistance which can expect the both effect of hydrogen bond and π-π stacking of the core shell type metal nano-particle is high. We focused the propagating light into below 300 nm nearfield light spot by the spot size converter. 2. Nanometer-structured polarizing components development : We optimized the structure of the polarization plate with high extinction ratio of polarization using the FDTD simulator. We proposed the construction of the polarization plate for the final aim. The efficiency and the extinction ratio of the tree optimized plates in red, green and blue wavelength regions were 79 % and 48 dB (λ=640nm), 82 % and 40 dB (λ=530nm), 91 % and 35 dB (λ=460nm), respectively. We developed an optimization design tool based on genetic algorism and FDTD simulation and we got nanostructures with more than 60% of transmittance. Also we simulated polarization properties for Z-character shaped, battery-shaped, disk-shaped, and other various nanostrucures by Rigorous Coupled Wave Analysis (RCWA) which could reduce calculations using symmetric property of the model. Also we compared the results of RCWA with FDTD. We started to develop a large area Al nanopatterning. We progressed glass coating and planarization techniques for stacked metal nanostructures. And we set up the high-accuracy polarization measuring system.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る