成果報告書詳細
管理番号20110000000262
タイトル*平成22年度中間年報 バイオマスエネルギー技術研究開発 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発) 非可食バイオマス由来混合糖からのバイオブタノール生産に関わる基盤技術開発
公開日2011/5/10
報告書年度2010 - 2010
委託先名バイオブタノール製造技術研究組合 国立大学法人東京工業大学
プロジェクト番号P10010
部署名新エネルギー部
和文要約和文要約等以下本編抜粋:1. 研究開発の内容及び成果等
本プロジェクトでは、既存のアセトン・ブタノール・エタノール(ABE)醗酵法とは全く異なるコンセプトに基づく革新的バイオプロセス「増殖非依存型バイオプロセス」をコア技術として、ブタノール生合成系遺伝子組み換え株の改良研究により、非可食バイオマス由来の混合糖(C5+C6 糖類)を出発原料とした“高効率バイオブタノール生産基盤技術”の研究開発を行っている。本技術開発では、「増殖非依存型バイオプロセスによるバイオブタノール生成技術の開発」(技術研究組合担当)及び「コリネ型細菌におけるRNA 分解酵素による糖代謝制御機構の解析」(東京工業大学担当)について研究を実施している。
研究項目1 「増殖非依存型バイオプロセスによるバイオブタノール生成技術の開発」(技術研究組合担当)
英文要約Title: Research and Development of Technology for Biomass Energy Conversion / Strategic Development for Next-generation Technology for Utilization of Biomass Energy / Development of Biobutanol Production Fundamental Technology from Non-edible Biomass Resources (FY2010-FY2011) FY2010 Annual Report We have conducted research and development of “fundamental technology of high-efficiency butanol production” from mixed sugar (C5 and C6 sugars) derived from non-edible biomass resources. Our biobutanol production, which is quite different from Acetone-Butanol-Ethanol (ABE) anaerobic-fermentation of Clostridium acetobutylicum, employs an innovative growth-independent bioprocess as the core technology. (1) Metabolic engineering of Corynebacterium glutamicum for butanol production The production of butanol by microorganisms has been achieved by harnessing the 2-ketoisovalerate pathway. Since this 2-ketoisovalerate is an intermediate of the valine metabolic pathway, we aimed to construct a butanol production platform based on C. glutamicum, a well-known amino-acid producing microorganism. We experimented with the following for the improvement of STY (Space/Time/Yield) and of productivity (yield per mol sugar); 1) Isolation of analog-resistant mutants and cloning of mutant-type AHAS (Acetohydroxyacid synthase) enzyme, 2) Search for enzyme with high substrate specificity and high enzymatic activity in the pathway for butanol production. 3) Conversion of cofactor requirement for the adjustment of the redox balance and 4) Elimination of by-product formation pathway in butanol production. The improvement of butanol production was confirmed through metabolic engineering. (2) Regulatory mechanism of sugar metabolism by RNase in Corynebacterium glutamicum The E. coli RNase G is involved in the degradation of mRNAs encoding glycolysis enzymes. In RNase G mutant cells, glycolysis is accelerated and pyruvic acid is consequently overproduced. These led us to investigate the characteristics of an RNase E/G family enzyme in an industrially important bacterium, Corynebacterium glutamicum. This microorganism has only one RNase E/G homolog, NCgl2281, encoding a protein of 1021 amino acid residues. In order to investigate a physiological role of NCgl2281, we constructed an NCgl2281 disruptant. The NCgl2281 was dispensable in C. glutamiucm, and the disruptant accumulated precursor molecules of 5S rRNA. Primer extension analysis revealed that the NCgl1221 cleaved at -1 site of the 5S rRNA precursor (the mature 5’-end is assigned as +1). These results indicate that the NCgl2281 is involved in the 5’-end maturation of 5S rRNA. We then performed the microarray analysis of the wild type and NCgl2281 disrupted strains. As a result, it was found that amounts of several mRNAs increased in the NCgl2281 disruptant. We are now doing the Northern analysis to confirm the target mRNAs of the NCgl2281 RNase.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る