�񍐏��N�x2010 - 2010
�a���v������6 nm �} 5 nm �̃{�����h�[�v�w�ɂ����ă{�����̃h�[�v���O�ʂ𐔌��ɂ킽���Ēi�K�I�ɕς����V���R���E�G�n�l������쐻���ASIMS �v������{�������ʁA�{�����iB�j�Z�x��2�~105 cts/s �ȏ�ɂ����āA���ʑ̑��ݔ�ŋK�i�����ꂽ11B �̐M�����x�Ȑ���10B �̐M�����x�Ȑ��̉����ɂ���邱�Ƃɂ��A���o�킪�O�a�X����������Ƃ�m�F���A�K�i��ĂɓK�p���邱�Ƃ�������Ă��钆�Ԋg�������ԃ��f���ɂ�銴�x�r�����f���̌��؂Ɏg�p�”\�ł��邱�Ƃ�m�F�����B�܂��ASIMS�̍��ەW�������������̂��߁AISO/TC 201�i�\�ʉ��w���́j/SC 6�iSIMS�j�̖k����c�ɃG�L�X�p�[�g���҂P����h�����A�p�����g�������ԃ��f����g����ToF-SIMS �p�̐M�����x�̐��`���Ɋւ���K�i��͍����ł���Ȃǂ̕W�����̓����Ɋւ�����𓾂��B
�p���v��We prepared a test sample using a silicon wafer where the concentration of boron as a dopant changes for several orders of magnitude within a doping layer of 6 nm �} 5 nm thick. The SIMS measurement of the sample showed that the curve of 11B ion signal intensity normalized by the isotope abundance ratio deviated downward from the 10B ion signal intensity curve above nominal B concentration of ca. 2�~105 cts/s and hence the saturation behavior of the ion detector was confirmed. The test sample was thus approved for the use to verify the calibration of the ion sensitivity based on the intermediate extended dead-time model.
For the investigation of the trend in the international standardization on SIMS measurement and system, we sent a candidate expert to ISO/TC 201 (Surface Chemical Analysis) /SC 6 (SIMS) Beijing meeting and obtained information about the standardization trend in SIMS such as a UK group had been seeking the development of a new ISO on the linearity of the TF-SIMS signal intensity based on the extended dead-time model, which was less accurate than the model employed in our project.