成果報告書詳細
管理番号20110000000644
タイトル*平成22年度中間年報 新エネルギー技術研究開発 革新的太陽光発電技術研究開発(革新型太陽電池国際研究拠点整備事業)高度秩序構造を有する薄膜多接合太陽電池の研究開発 (配列制御ナノ結晶シリコン)
公開日2011/8/25
報告書年度2010 - 2010
委託先名国立大学法人東京農工大学
プロジェクト番号P07015
部署名新エネルギー部
和文要約和文要約等以下本編抜粋:1.研究開発の内容及び成果等 (1)ナノ結晶シリコン膜の作製プロセス技術の開発 シリコン系3接合太陽電池のトップセル材料開発に向け、量子サイズナノ結晶シリコン(nc-Si)を作製するウエットプロセス(陽極酸化)を検討し構造評価などを行った。陽極酸化法がトップセル作製法としての適性を備えているという前年度の結果をふまえ、今年度はnc-Si層作製の陽極酸化技術をさらに固めるため、(1)ウエハプロセスの確立、(2)セルフスタンディング膜の大面積化、(3)機械的ストレスの緩和、の3点に重点をおいて検討を行った。
英文要約Main Theme: Silicon-based Multi-junction Solar Cell
Sub-theme: Controlled Nanocrystalline Silicon Material
(Tokyo University of Agriculture and Technology, N. Koshida)
1. Outline of the Research and Development
(1) Development of nc-Si Fabrication Technology
Fabrication technology of quantum-sized nanocrystalline silicon (nc-Si) layer has been developed by wet-processing (anodization). Based on the establishment of wafer-compatible planar process, large-area self-standing nc-Si membranes (2-inch in diameter) have been obtained from sequential anodization technique. Flatness of these membranes was successfully enhanced by introducing a super-critical drying method due to a reduction in the mechanical stresses.
(2) Band Gap Tuning
Optical analyses of nc-Si membranes formed on various p-type and n-type substrates have verified that the band gap can be tuned from 1.6 to 2.4 eV by appropriate oxidation. This is consistent with the blue shift in the peak wavelength of photoluminescence spectra. Most nc-Si samples meet the band gap requirement (>1.7 eV) for the use as a top cell material in the multi-junction device.
(3) Photovoltaic Measurements
An nc-Si diode fabricated on a pn-junction substrate showed a significant photovoltaic behavior with an efficiency of 5.4% under an AM1.5 illumination (Voc = 532 mV、Jsc = 17.2 mA/cm2、FF = 58.9%). The spectral response of the nc-Si cell shifts toward the shorter wavelength region in comparison to that of the conventional bulk Si cell. This experimental result suggests that quantum confinement is not contradictory to the photo-carriers separation, and that the nc-Si is available for photovoltaic material with a wide band gap.
(4) Related Photonic Functions
As a potential application of the blue phosphorescence in oxidized nc-Si, the energy transfer effect was clearly observed in a sample doped with dye molecules. The mechanism of avalanche photoconduction we previously observed in an nc-Si diode was clarified by a theoretical analysis. These are potentially useful for advanced photovoltaic conversion.
In summary, there were significant progresses in studies on the fabrication process, optical characterization, and photovoltaic application of nc-Si, along with analyses of related photonic functions. The major subjects to be pursued are appropriate band gap tuning and interfacial control of nc-Si layer.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る