成果報告書詳細
管理番号20110000001312
タイトル*平成22年度中間年報 セルロース系エタノール革新的生産システム開発事業 バイオエタノール一貫生産システムに関する研究開発 早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発
公開日2011/8/5
報告書年度2010 - 2010
委託先名王子製紙株式会社 独立行政法人産業技術総合研究所 新日鉄エンジニアリング株式会社
プロジェクト番号P09014
部署名新エネルギー部
和文要約和文要約等以下本編抜粋:1. 研究開発の内容及び成果等
バイオ燃料は、カーボンニュートラルとして扱われているため、地球温暖化対策の一手段として重要である。一方、供給安定性の確保、食料との競合や森林破壊等の生態系を含めた問題、化石燃料との価格競争性・価格安定性といった経済面での課題、LCA(ライフサイクルアセスメント)上の温室効果ガス削減効果・エネルギー収支等の定量化といった課題を今後克服していくことが重要となる。このような背景から、2008年3月に経済産業省は農林水産省と連携し、産業界及び大学・公的研究機関の協力を得た上で、2015年に向けた具体的な目標、技術開発、ロードマップなどを内容とする「バイオ燃料技術革新計画」が策定された。
本事業は、「バイオ燃料技術革新計画」における技術革新ケース(2015~2020年においてバイオエタノール製造コスト40円/L、年産10~20万kL、CO2削減率5割以上(対ガソリン)、化石エネルギー収支2以上)の実現に向けて、食料と競合しない草本系又は木質系バイオマス原料からのバイオエタノール生産について、大規模安定供給が可能なセルロース系目的生産バイオマスの栽培からエタノール製造プロセスまでの一貫生産システムを構築し、研究開発を実施する。また、環境負荷・経済性などを評価することを目的とする。
英文要約Comprehensive bioethanol production from fast growing trees by using “mechanochemical pulping” pretreatment is under development. This R & D concerns basic studies on raw material production of fast growing tree, pretreatment by pulping technology, simultaneous saccharification fermentation(SSF) with high temperature and acid tolerant yeast, and self-heat recuperation technology for distillation. And a comprehensive evaluation will be demonstrated through a pilot plant with a scale of 1 ton/day of raw material processing capacity.
Eucalyptus globulus, E. pelita and Salix species were selected for the best candidate for temperate, savanna and subarctic climatic zones respectively. Investigational afforestation in order to improve the yield of biomass has been carried out in around twenty hectare domestic and oversea fields.
Enzymatic saccharification of woody biomass was promoted by the pretreatment process similar to a semi-chemical mechanical pulping of paper manufacture. We revealed that a combination of hydrothermal treatment with alkali and wet milling increase a large specific surface area of woody biomass, and improve high enzymatic accessibility consequently.
To enhance the efficiency of SSF, continuous SSF using multi-stress tolerant yeast, Issatchenkia orientalis, with enzyme recovery process has been investigated. We revealed that the enzyme could use repeatedly up to ten times.
Improvement of filamentous fungus Acremonium cellulolyticus has also been developed as to hydrolyze cellulose and hemicellulose efficiently in hard-woods by genetic engineering. Extracellular beta-xylosidase activity has been raised 70-fold compared with wild-type strain and the putative genes encoding transcriptional factor involved cellulase production, and at least seven putative genes for sugar sensors and sugar transporters has been screened so far.
For the SSF process using I. orientalis that can efficiently co-ferment pentose and hexose to ethanol, we have been isolated several putative genes that are likely to be involved in xylose metabolism were identified from the genome of I. orientalis. Further improvement of xylose fermentation efficiency was studied on recombinant S. cerevisiae strains. Increase of xylose consumption was observed by introducing XUT1, one of the transporters. Construction of the strictly NADPH dependent xylose reductase was successful by site directed mutagenesis.
It is necessary to save energy for ethanol distillation because a lot of energy is consumed in conventional distillation process. In this development, a new distillation process based on self-heat recuperation technology is developed for significant energy reduction. The self-heat recuperation technology enables a high energy efficiency for ethanol distillation by circulating sensible and latent heat by vapor compression.
Economic estimation and GHG analysis were performed for the total process in which Australian plantation was considered. Sensitivity analysis of each technology was conducted using the standardized data and the design specifications.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る