成果報告書詳細
管理番号20110000000784
タイトル*平成22年度中間年報 太陽エネルギー技術研究開発 太陽光発電システム次世代高性能技術の開発 三層協調界面構築による高効率・低コスト・量産型色素増感太陽電池の研究開発(高効率・高耐久性色素材料の研究開発)
公開日2011/9/28
報告書年度2010 - 2010
委託先名富士フイルム株式会社
プロジェクト番号P07015
部署名新エネルギー部
和文要約素増感太陽電池の高効率化技術、低コスト化技術、量産化技術、信頼性向上技術に関する技術開発を実施するにあたって、色素増感太陽電池の三層(酸化物半導体、色素、電解質)に注目し、それらの材料開発、光電変換現象、劣化機構の解析をおこなうとともに、それらを反映した高効率セル及びモジュールの試作・評価、信頼性に関する評価をおこなう。本事業では高効率・高耐久性色素材料の研究開発を進める。
1.高効率色素材料の開発
H22年度は、(1)高効率フタロシアニン錯体色素の開発、(2)高効率D-π-A型有機色素開発の為のドナー部位(D)の探索、(3)高効率D-π-A型有機色素開発の為の共役部位 (π)の合成方法の検討及び材料探索を実施した。
2.高耐久性色素材料の開発
色素由来の劣化要因を解明するために85℃の熱耐久性試験での劣化速度を異なる複数の色素、対極材料、および電解液を用いて組み合わせを変えて評価した。その結果、色素や対極材料の組み合わせで劣化機構が大きく変化することが分かった。より詳細な検討おこない、劣化メカニズムの解明を進め高耐久色素設計の指針を得る。 また、セル劣化の要因の一つとして色素の脱着が考えられている。吸着力強化のためダブルアンカー型色素を設計し合成を進めた。合成に成功したダブルアンカー型色素は、Vocを高める効果があることが判明。耐久性試験を実施中。さらに長波長な色素のダブルアンカー型化を進める。
英文要約Title: Research and development of high-efficiency and low-cost dye-sensitised solar cells and their mass production technologies based on the three phase-harmonised interfaces (FY2010-2012)
FY2010 Annual Report
Introduction: The purposes of this project are the development of materials for 1) the long durability module, 2) the high efficient dye-sensitized solar cells (DSCs) in our consortium. [Consortium targets (Period: until the end of FY2012)] 1) The energy conversion efficiency in about 30cm module attain to 7%. 2) The energy conversion efficiency in about 1cm cell attain to 11%. (Relative degradation ratio shall be reduced to less than 10% under JIS-C8938 standard tests)
Experiment and results:
1)   Technology for monolithic layer structure module using screen printing method was improved. The layer using former paste was crimped because particles were not enough joined each other. The development of technology was improved binding force between each other particles in porous electrode layer. The yield on making layer structure film was improved to nearly 100% from 3%. The energy conversion efficiency of the film was investigated equivalent performance as compared with high performance cell. This organized paste material for standard electrode was supplied to large module developer of our consortium.
  The amounts of absorbed dye on titanium oxide porous film was decreased by constructing insulation porous structure film layer over titanium oxide porous film. The pore size in insulator layer and characteristics of material were thought to be its cause. The pore size of insulation porous structure film were expanded few range. The examination is focused from material and structure.
The development of catalyst was tried screening many materials and using high electro conductive polymer as catalyst. Polymer A and Polymer B series were investigated about heat test at 85 degree C to have potential to platinum substitution material. PolymerB2 showed high performance catalysis that was similar to platinum. PolymerB1 showed relative degradation ratio was reduced about 60%. Polymer is possible to platinum substitution material.
2) Technology for surface control particles that showed specific crystal face is controlling nucleation and crystal growth. There is a possibility that electron transfer energy can be decreased when the nano particles surface become complete by a specific crystal face. The controlled surface nano titanium oxide particles, {101} plane, was developed using Sumitomo Osaka Cement (SOC) technology for crystal growth control.
SOC nano particles were investigated higher electron diffusion coefficient and open circuit voltage at same electron density than commercial material. (These particles characteristics were measured in cooperation with Shinshu Univ.)
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る