成果報告書詳細
管理番号20110000001191
タイトル*平成22年度中間年報 超ハイブリッド材料技術開発(ナノレベル構造制御による相反機能材料技術開発)(2)
公開日2011/9/9
報告書年度2010 - 2010
委託先名財団法人化学技術戦略推進機構 国立大学法人東北大学 国立大学法人東京工業大学 国立大学法人長岡技術科学大学 国立大学法人九州大学
プロジェクト番号P08022
部署名電子・材料・ナノテクノロジー部
和文要約和文要約等以下本編抜粋:1.研究開発の内容及び成果等
1~1.まえがき
有機材料・無機材料の特徴を活かし、相反機能を発現する材料開発として、本研究開発を平成19 年度より開始した。目標材料としては電気・電子周辺材料分野での高熱伝導材料、光学材料分野での屈折率制御材料と定め、高い目標値をクリアーすべく化学技術戦略推進機構の材料創製技術、東北大学・東京工業大学・長岡技術科学大学の基盤技術・プロセス技術および九州大学・産業技術総合研究所の評価解析技術との共同研究体制で、幅広い技術領域をカバーしつつ開発を進めている。
平成21 年度においては中間目標を達成。平成22 年度では基盤技術から実用化に向けた開発を更に進めると共に、高機能ハイブリッドサンプルの形成と評価、及び表面改質技術としての超臨界システムの実用化検討を行ってきた。平成22 年度の成果を以下に報告する。
英文要約High thermally-conductive polymer hybrids
Control of organic-inorganic interfaces is one of the most promising technologies to improve properties of hybrid materials. Surface modification of inorganic materials is effective method in reducing thermal-resistance. In this fiscal year, we analyzed surface-modification states of thermal conductive particles. We also optimized the process to improve the productivity of the surface-modified particles. Thermal conductivity of hybrid composites was drastically improved by alignment control of the particles toward horizontally to the thermal conducting paths.
Optical materials
As optical materials with low refractive index, we have already cleared the final target of the refractive index. In the present year, further optimization of the hybrid films was carried out. We succeed in improvement of the water-, alkaline-, and organic solvent-resisting properties of the films. We also investigated surface modification procedures of inorganic nanoparticles with high refractive indices. In particular, we focused on dispersion method of the nanoparticles into organic metrics. The hybrid materials exhibited high refractive index and transparency in visible light range and become promising potentials to clear the final target of the project.
Fundamental research
We studied the dispersion of surface-modified nanoparticles in various solvents. By measuring the cloud points of the nanoparticles in the solvents, we obtained a phase diagram of the nanoparticles. We also studied the interaction between the nanoparticles and substrates. Investigation about rheological properties of the nanoparticle in solvents indicated that resulting dispersions show Newtonian fluid-like behavior in the range of the mixing ratio up to 60 wt%. Polyimide blend films with percolation structure were hybridized with boron nitride and ZnO-particles. The hybrid films exhibited significantly higher thermal conductivity than those of homo-PI films. Thermal stability of polystyrenes with adamantly moieties was investigated, and the polymer showed high glass transition temperature.
Process development
We optimized the production conditions of water-dispersible ZrO2, organic-dispersible ZrO2, BN, and Al2O3. In order to realize further scale up, we developed elementary technologies including a) visualization and simulation of mixing, b) anti-corrosion, and c) concentration and purification of hybrid nanoparticles. As a result, we constructed nanoparticle production systems with the productivities up to 1t/year. By two-step polymerization process, hybrid material with high index and transparent can be synthesized. Boron nitride (BN) nanosheets/polysiloxane composites were fabricated under nano-pulse width electric field to enhance the anisotropic alignment.
Analysis
Transparent ZrO2 nanoparticle dispersed hybridized samples was characterized by the combination of STEM and the three-dimensional electron tomography. After the acquisition of tilt series, they were aligned spatially and rotationally, and then reconstructed three-dimensionally. The distribution of ZrO2 nanoparticle can easily be seen. In particular, quantification method was developed and upgraded further. After the quantification, relationship between the transparency and the microstructures of the sample was fully correlated.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る