成果報告書詳細
管理番号20110000001778
タイトル*平成22年度中間年報 バイオマスエネルギー技術研究開発 戦略的次世代バイオマスエネルギー利用技術開発事業(次世代技術開発) 軽油代替燃料としてのBTL製造技術開発 ーバイオマスからのバイオLPG(軽油代替燃料)合成の研究開発ー
公開日2011/12/27
報告書年度2010 - 2010
委託先名公立大学法人北九州市立大学 日本ガス合成株式会社
プロジェクト番号P10010
部署名新エネルギー部
和文要約和文要約等以下本編抜粋:1.研究開発の内容及び成果等
(1)研究開発の内容
本研究開発プロジェクトでは、バイオマスを高いエネルギー効率でガス化することにより得られたバイオガスから、軽油代替燃料としてのLPGを高収率で合成するプロセスを確立することを目的とする。LPGは、分散型エネルギー供給源であり、災害時対応に優れ、その備蓄の着実な推進がエネルギー基本計画の中でも提言されている。LPGは化石燃料の中でも比較的CO2排出が少ないが、これをバイオマスから製造することにより、さらにCO2削減に寄与するとともに、エネルギー供給資源の多様化(高度化)/エネルギーセキュリテイに貢献できる。すでにLPGは国内での流通体系が完備し、また供給先も確保されていることから、合成LPGの流通・消費に問題はない。本研究開発の全体スキームとしては、原料バイオマスの組成特性を利用しながら、LPG合成に適したバイオガス製造のための省エネ型ガス化技術を開発し、さらにここで得られたバイオガスの性状変動に対応可能な高性能LPG合成触媒を創製、これにより、エネルギー収支・エネルギー回収率の高い、コスト競争力のある技術をラボスケールにて確立し、製品LPGの市場への投入が十分に期待できるLPG合成プロセスを構築することを試みる。
英文要約Purpose of this project is to establish thermo-chemical process of synthesizing bio-LPG, which is one of alternative diesel fuels, with high efficiency and low cost.
The oil palm residue was gasified using a small-scale entrained-flow type gasification reactor. The oil palm residue was well gasified and its gasification rate was 95.8% or higher even when gasified with steam alone. And more, [H2]/[CO], which is one of the most important parameter for LPG synthesis, was about 3.6. This value was higher than that obtained in Japanese cedar wood gasification ([H2]/[CO] was around 2-2.5). This high value suggests that amount of steam, used as a gasification agent, and energy consumption will be reduced. We continue analyzing their thermal properties to clarify dependences of gasification performances on biomass.
Heat and electric power required for the bio-LPG process are producible from heat and off-gas from the LPG synthesis, respectively. Petroleum fuel is consumed only when collecting biomass feedstock and transporting the synthesized bio-LPG. Applying the LCA analyses reported from METI, energy ratio of the bio-LPG to consumed petroleum fuel is estimated to be 32-80. Reduction ratio of greenhouse gas emitted from the bio-LPG compared to petroleum fuel is estimated to be 96-98%. However, energy conversion rate from feedstock biomass to the bio-LPG is 0.24, slightly lower than those of other process. We continue improving every process to improve the energy conversion rate.
For making LPG directly from synthesis gas, a hybrid catalyst composed of methanol synthesis catalyst and methanol conversion (to LPG) catalyst is designed. It was found that a Cu-Zn-based methanol catalyst was sufficiently active and selective when it contained a certain amount of alumina. The performance of the catalyst was sensitive against the pre-treatment conditions such as the temperature for calcination or the reduction. The best catalyst could be used for more than 1000 hours at around 260-270 °C without regeneration. The reaction performances of the hybrid catalyst showed the CO conversion as high as 80% and the selectivity of C3-C5 paraffins as high as 50% (including CO2) under conditions as ~2.0MPa and 270 °C in the fixed bed reactor. Catalyst development of a new hybrid system has been established which can run for almost 2,500 hours with one time regeneration, giving the LPG selectivity of 85% by weight.
The economic evaluation of the bio-LPG process was also challenged. The evaluation assumed the following conditions: 1) the LPG yield from biomass is 8% by weight, 2) feed rate of biomass is 100t/day, running day: 350 day/year, 3) off-going price of LPG is \130,000/ton. The evaluation result gives the return of \244,000,000/y (feed cost: \0/t) and \34,000,000/y (feed cost \6,000/t). The running day and the LPG yield show high impacts of \1,04,000/day and \45,000,000/year, respectively.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る