成果報告書詳細
管理番号20120000000136
タイトル*平成23年度中間年報 革新的ゼロエミッション石炭ガス化発電プロジェクト革新的ガス化技術に関する基盤研究事業CO2回収型次世代IGCC技術開発(H20~H24)
公開日2012/6/9
報告書年度2011 - 2011
委託先名財団法人電力中央研究所 国立大学法人九州大学
プロジェクト番号P08020
部署名環境部
和文要約1. 共同研究の内容及び成果等
(1) 研究開発の背景と目的
地球温暖化対策としてCO2排出量削減が求められる中、CCS(CO2分離・回収・貯留)が注目されているが、現状のCO2回収技術は多量のエネルギーを要するため、発電プラントにおける送電端効率の低下などが大きな課題となっている。
本事業は、石炭ガス化発電システムから回収したCO2をリサイクルすればCO2分離装置が不要となることなどにより、送電端効率を大幅に向上できる「CO2回収型次世代石炭ガス化発電システム」の実用基盤技術を開発するテーマ設定型基盤研究である。送電端効率の目標値として、CO2回収後において最新鋭微粉炭火力並の42%を設定している。具体的には、本システムに関し、CO2による石炭ガス化反応促進効果の解明と実証、高CO濃度条件における炭素析出を抑制する乾式ガス精製システムの最適化、実用規模プラントのFSなどを実施する。また、アジアなど環太平洋地域の多様な石炭に対する適応性についても検討を進める。
英文要約CCS is one of the counter measures for global warming problem, but installation of CO2 capture system reduces thermal efficiency. It is required to develop innovative CO2 capture power generation system without huge efficiency loss. CRIEPI and Kyusyu University started joint development program of oxy-fuel IGCC system that can keep high plant efficiency of 42%(HHV) even after capturing CO2. In H23 following results were obtained in this project. Various fundamental experiments showed that CO2 gas promotes coal gasification reaction. Gasification model for numerical simulation was improved and applied to CRIEPI numerical simulation code. Improved numerical simulation code analyzed gasification reaction in commercial scale gasifier, and clarified promotion effect of CO2 on carbon conversion rate. Gasification experiments with 3tpd entrained flow gasifier clarified increase of CO2 concentration in gasifying agent improve carbon conversion rate in reductor at constant reductor inlet temperature. Contract research clarified appropriate design of ASU unit for this system and plant operation procedure, and evaluated practicability of this system. Thermal conversions of the model compounds of coal derived tar, benzene naphthalene, were studied under various conditions simulating a reductor part of an entrained flow coal gasifier. The O2/CO2 blown gasification mode is more advantageous than O2/CO2 blown gasification mode in suppressing soot formation and enhancing conversion into gas. This advantage is more evident with decreasing the concentrations of the tar model compounds in gas phase. The detailed chemical kinetic model could successfully predict these observations. By using an 800 MHz multi-nuclei solid-state NMR, thermal transformations of local structures of coal ashes were investigated in detail. Based on the NMR database and XRD results, a chart of thermal structure transformations of major minerals in coals was constructed. Relationships between change of NMR spectra and melting characteristics of coal ashes were also confirmed. Furthermore, a new methodology of structural analysis of minerals was developed with the aid of the high magnetic field multi-nuclei solid-state NMR. The conditions that molten slag is flowing down from bottom of the gas furnace continuously and discontinuously were categorized by two dimensionless numbers, Oh number and Fr number. Considering temperature dependence of viscosity and influence of surface tension, a three-dimensional numerical calculation was performed by lattice Boltzmann method. The calculation results were compared with that of the cold testing, and they gave close agreement with each other. Additionally, a hypothesis of generation mechanism of needle-like molten slag was formulated. We will test the mechanism of generation of needle-like slag and perform analysis of fluid dynamics based on the experimental data of viscosity and surface tension obtained by actual measurement in the academic year 2012.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る