成果報告書詳細
管理番号20120000000370
タイトル*平成23年度中間年報 太陽エネルギー技術研究開発 太陽光発電システム次世代高性能技術の開発 三層協調界面構築による高効率・低コスト・量産型色素増感太陽電池の研究開発(高効率・高耐久性電解質材料の研究開発)
公開日2012/6/21
報告書年度2011 - 2011
委託先名メルク株式会社
プロジェクト番号P07015
部署名新エネルギー部
和文要約和文要約等以下本編抜粋
(1) 色素増感太陽電池の高効率化を可能とする電解質の研究開発
現在注目されているコバルト錯体を酸化還元対に用いた電解液に注力した。様々な構造のコバルト錯体を試作したところ、コバルト錯体はヨウ素と異なり様々な淡い色合いを示し、ヨウ素電解液の場合において無視できない光吸収を減らすことができた。また、得られたコバルト錯体を用いて電解液を作製し特性を調べたところ、色素や電極構造に対する選り好みが非常に大きいことが確認された。(独)産業技術総合研究所と住友大阪セメント(株)より提供を受けた有機色素とチタニアペーストとの組み合わせにより単純な有機色素を用いたセルとしては非常に高いVOC0.8VとFF0.8を両立することができた。
(2) 色素増感太陽電池向け高耐久性電解液の研究開発
高耐久性とモジュール低コスト化を両立しうるイオン液体からなる完全不揮発性電解液に焦点を絞り開発を行った。自社開発した様々な電解液成分を加えることにより、汎用の色素とチタニアを用いJIS B-1試験をクリアする電解液を開発できた。また、様々な電解液成分がどのように光電変換効率と絡み合うのかを理解するために、伝送回路を含む等価回路でテストセルの交流インピーダンス測定結果を評価した。ここで電解液そのものの電荷輸送特性の評価を行うために三次元顕微鏡と過渡電流応答測定を組み合わせた評価法も新規開発した。
英文要約Title: Research and development of high-efficiency and low-cost dye-sensitized solar cells and their mass production technologies based on the three phase-harmonized interface (FY2010-2012) FY2011 Annual Report
Part 1. Development of Electrolyte Materials to enable High Efficiency Dye-Sensitised Solar Cell. In response to reports from Ecole Polytechnique Federal de Lausanne (EPFL) etc on the use of Cobalt complex in the Dye-Sensitised Solar Cell (DSSC) electrolyte motivated us to pursue redox alternative to iodide-based conventional materials. It had generally perceived that the main focus of DSSC development toward higher efficiency was dye-electrode development. However, those recent reports demonstrated that the revision of electrolyte materials does indeed greatly contribute. The main reason for the enhanced performance, particularly extended open circuit photovoltage is due to the facile electrochemical reaction between oxidised dye and reduced form of Cobalt species so that the loss of chemical potential there is minimised. This could be realised by employing suitable redox active species and fine-tuned combination with dye-electrode materials. In this regard we prepared various Cobalt complexes and combine them with organic dye supplied by AIST and titania paste from Sumitomo Osaka Cement and confirmed to achieve more than 0.80 voltage. Furthermore, we developed a method to scale up synthessise Cobalt complexes reproducibly because we found a quality reliability problem to solve. Part 2. Development of Durable Electrolyte for Dye-Sensitised Solar Cell. In order to minimise module fabrication cost we continued to focus on purely ionic liquid-based electrolyte with negligible volatility. This year we could achieve nearly 100% efficiency retention in JIS B-1 test with using commercially available dyes and electrode materials which we demonstrated to be more durable than the most durable electrolyte system reported by EPFL. Absolute power conversion efficiency has still to be improved by introducing improved dye-electrolyte systems and developing electrolyte that make best use of them. In order to do so we developed methods to evaluate electrolyte properties in the first place. High frequency response of IV characteristics of our test cell was analysed by using a transmission line model developed by Bisquert et al. (J Phys Chem B 106 (2002) 325) and compared with power conversion efficiencies of test cells containing various electrolyte materials. We could identify key parameters and relevant evaluation condition to better understand how electrolyte component contribute to the diode characteristics of DSSC. Next, we analysed low frequency response by employing 3D microscopic observation so as to minimise technical error generated due to cell-to-cell variation and dimensional non-uniformity (to be published in Jpn J Appl Phys in October 2012).
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る