成果報告書詳細
管理番号20120000000372
タイトル*平成23年度中間年報 太陽エネルギー技術研究開発 太陽光発電システム次世代高性能技術の開発 有機薄膜太陽電池モジュール創製に関する研究開発(新構造モジュールの研究開発)
公開日2012/6/20
報告書年度2011 - 2011
委託先名株式会社東芝
プロジェクト番号P07015
部署名新エネルギー部
和文要約和文要約等(以下本編抜粋)
モジュール変換効率6.2%(20cm角)と、セル変換効率8.03%(1cm角)を実現し、中間目標(各々6%、8%)を前倒しで達成した。開発した主なモジュール化技術は、高精度印刷技術、モジュール設計技術、シミュレーション技術の3点である。高精度印刷技術では、独自開発のメニスカス塗布法の膜厚精度と塗布幅精度を飛躍的に高め、従来は72%であったモジュール開口率(光電変換領域の割合)を90%まで向上できた。モジュール設計では、セル端部を覆う絶縁層を採用することでFFを大幅に改良した(従来の1.3倍)。シミュレーションでは、連立偏微分方程式を有限要素法で解くことにより導電層幅や膜厚などを計算で最適化し、モジュール効率の極大化を実現した。セル・材料開発では、極大吸収波長が従来より26nm長波長のP型ポリマーを独自開発すると共に、N型フラーレンの純度向上に成功し、セル効率が昨年の6.4%から8.03%に向上した。耐久性試験では、光照射試験において相対効率低下が20%となり、中間目標の10%以内を達成すべく劣化要因の解析を進めている。アプリケーションと事業化シナリオを検討し、屋内設置型、電子機器組込型、建材一体型太陽電池が有望であると判断した。事業部から電子機器組込型の具体的提案があり検討に着手すると共に、将来の発電システム実現へ向けた事業化シナリオを作成。
英文要約Title: New Energy Technology Development, High Performance Photovoltaic System Development for the Next Generation, Research and Development for the Creation of Organic and Thin Film Solar Cell Module, Research and Development for New Structure Module (FY2010-FY2012) FY2011 Annual Report
In order to achieve the midterm goal of “module conversion efficiency over 6%”, we worked on the development of planar modules. As a result, a 20-cm-square module with conversion efficiency of 6.2% was successfully developed. The technologies we developed for the module in this fiscal year were; highly-accurate printing technology, device design technology, electrical and optical simulation technology and optical management technology. By improvements of the meniscus coating technology, stripe-width-accuracy of 0.03mm and coating-thickness-distribution of 3% were attained. This has led a high opening area rate ( = the ratio of effective area / total area) of 90%. In design of the module structure, we adopted an insulate layer which covers the edge of striped cell layer to decrease local leak currents. This made significant improvement in FF value of the module. In the simulation development, estimation of I-V characteristics in the modules with various design parameters became possible. By this technology, thickness of the ITO layers and width of the cell electrodes were optimized to realize the maximization of module efficiency. To attain another midterm goal of “cell conversion efficiency over 8%”, we also developed the cell structures and materials. As a result, a conversion efficiency of 8.03% was successfully attained in 1-cm-square cell. For this purpose, we developed novel p-type polymers, n-type materials and optimizing technologies for the morphology of active layer and intermediate layer. By the p-type polymer which absorbs the lights of longer wavelength, larger Jsc and higher Voc were obtained. The conversion efficiency was also improved by controlling the solvent evaporation to have smaller material domain size of several nanometers. For the third midterm goal of “the relative efficiency decrease smaller than 10% in the durability tests”, the equipments for the durability tests were installed to start the experiment. In the light illuminating durability test, the efficiency decreased by 20%. This should be improved by analyzing the cause of depletion. Technologies for the measurement and evaluation were also developed to estimate the efficiency distribution in a module plane. Applications of OPV to various markets were also studied. At the first stage, the application to energy harvesting would be suitable. After that, OPV should be applied to power generating systems of small and medium size, and also to mega solar systems at the later stage.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る