成果報告書詳細
管理番号20120000000726
タイトル*平成23年度中間年報 グリーン・サステイナブルケミカルプロセス基盤技術開発 規則性ナノ多孔体精密分離膜部材基盤技術の開発
公開日2012/7/12
報告書年度2011 - 2011
委託先名学校法人早稲田大学 日立造船株式会社 三菱化学株式会社 株式会社ノリタケカンパニーリミテド 千代田化工建設株式会社 JX日鉱日石エネルギー株式会社 一般財団法人ファインセラミックスセンター 学校法人芝浦工業大学 国立大学法人大阪大学 国立大学法人宇都宮大学 国立大学法人山口大学 国立大学法人名古屋工業大学
プロジェクト番号P09010
部署名電子・材料・ナノテクノロジー部
和文要約和文要約等以下本編抜粋:
1. 研究開発の内容及び成果等
(学校法人早稲田大学)
本プロジェクトでは、化学・石油関連産業分野における分離精製工程に膜分離を導入することによって大幅な省エネルギー効果を実現するために、膜分離実用化のための基盤技術を開発することを目的とした。
英文要約Development of Fundamental Technologies for Green and Sustainable Chemical Processes
Green and sustainable chemistry/fundamental development of ordered-nanoporous membranes for highly-refined separation technology (FY2009-FY2013) FY2011 Annual Report
The dehydration of IPA requires a large amount of energy by distillation because relative volatility of water and IPA is close and IPA forms azeotrope with water at about 14 %(wt) of water. FAU type zeolite membrane is one of the strong candidates for the dehydration of IPA stream under the conditions containing fairly larger fractions of water. In the 2011 FY, in order to control membrane formation process, the interaction among seed FAU zeolite particles and between FAU zeolite seed particles and porous alumina support surface are important. The ?-potential of zeolite crystals and support surface governs seeding behavior, resulting in the different permselective properties of FAU membrane. By optimizing preparation procedure, the FAU membrane highly separated water from IPA with a high water permeance exceeding ca. 8 ? 10?7 mol m?2 s?1 Pa?1. The compactness of membrane is controlled the selectivity, suggesting that IPA permeated through the boundaries of zeolite crystals.
Regarding the dehydration of AcOH, in this FY2011, we studied the effect of ion-exchange on permeation properties through mordenite (MOR)-type membrane. Ion-exchange of as-made Na- type MOR membrane to H-type was carried out. After examining the permeation properties of H-type MOR membrane, ion-exchange from H-type to Na-type was carried out and performed the permeation tests again.
As for the permeation behavior of unary system of 100 kPa of water at 398 K, while the flux of Na-MOR membrane was 5.9×10-3 mol m-2 s-1, the ion-exchange form Na-type to H-type improved the water flux almost twice. After the re-exchange from H-type to Na-type, the water flux decreased to the value that as-made Na-MOR membrane showed. These results suggested that Na cation narrows the effective size of pore opening, hindering the permeation of water through MOR-membrane. Similarly, the permeation tests of the mixed vapor of water and acetic acid using Na- and H-type MOR membranes. The partial pressures of water and acetic acid were 3 and 97 kPa, respectively. In all experiments, the permeation of acetic acid was not detectable (<4×10-8 mol m-2 s-1). Whereas the water flux through Na-type MOR membrane was 7.3×10-5 mol m-2 s-1, interestingly water permeation was hardly detected (<6×10-7 mol m-2 s-1) through H-type MOR membrane. The water flux was recovered by re-exchange from H-type to Na-type. Consequently, we consider that acetic acid adsorbed on the surface of membrane strongly blocked water adsorption on membrane. Na-type MOR membrane developed in this study is an excellent candidate for the separation of acetic acid and water mixture.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る