成果報告書詳細
管理番号20120000000800
タイトル*平成23年度中間年報 希少金属代替材料開発プロジェクト/ NdーFeーB系磁石を代替する新規永久磁石の実用化に向けた技術開発/窒化鉄ナノ粒子の大量合成技術およびバルク化技術の構築
公開日2012/7/11
報告書年度2011 - 2011
委託先名戸田工業株式会社 国立大学法人広島大学 国立大学法人東北大学 国立大学法人京都大学 国立大学法人秋田大学 学校法人加計学園 倉敷芸術科学大学 株式会社T&Tイノベーションズ
プロジェクト番号P08023
部署名電子・材料・ナノテクノロジー部
和文要約和文要約等以下本編抜粋:
1. 研究開発の内容及び成果等
資源枯渇に脅かされない至極ありふれた元素である鉄と窒素を主原料として構成することにより脱希少金属化を可能とし、現行のNd-Fe-B 系磁石の特性を凌駕するポテンシャルを有する鉄?窒素系化合物として、純2元素のFe16N2相窒化鉄に着目し、モータ用途への応用展開をにらみつつ、ナノレベルの微細構造・形成解析および磁気特性評価を通して、窒化鉄ナノ粒子の大量合成技術の獲得とバルク化技術の構築を図る。窒化鉄材料において実績が豊富な東北大学を中心とし、1)「分散・表面修飾の基礎技術」、2)「大量合成技術」、3)「バルク化技術」、4)「評価・解
析」、の4つの研究項目を設定し、本研究開発成果の最終ユーザとの連携を図りつつ、産学官連携のもと効率的かつ強力に推進する。
英文要約Title : Research and Development of Alternative New Permanent Magnetic Materials to Nd-Fe-B Magnets. (FY2011-FY2012) FY2011 Annual Report
Our final goal for realizing an iron nitride (Fe16N2) based magnet is to establish (i) Dispersion/surface modification technique, (ii) basic technology for mass production of Fe16N2 nanoparticles (NPs), (iii) bulk formation technique and (iv) characterization and analysis. (i) Modified beads mill dispersion technique could reduce the size of Fe16N2 NPs from the initial coagulated iron nitride nanoparticles with micron meter to the primary NP size. And Stable synthesis method for Fe16N2 core/ non-magnetic shell NPs are now developed using the primary sized Fe16N2 NPs with dispersion state as a starting NPs and iron oxide NPs covered with non-magnetic shell as thin as possible as a precursor oxide material. (ii)Stable synthesis conditions for mass production (5 - 10 gram) of Fe16N2 NPs are optimized from the view points of precursor synthesis and annealing process of the precursor. (iii) By assembling a simple mold apparatus, bulk formation under external magnetic field was succeeded for Fe16N2 NPs in millimeter size. And nano-sized ferrite NPs which covered with alkoxide-derived silica were fabricated. Low-temperature sintering was carried out using this nanoparticle. As a result, a dense sintered body without changing the size of the nanoparticles was obtained. In addition, nano-sized iron NPs were sintered under high load at low temperature. The relative density of the sintered body was about 75%. The grain growth was not observed, but the nano-sized grain was maintained. Furthermore, using pre-treated magnetite NPs (~60 nm as the primary size) with several tens to hundred micron meter, 69% of relative ensity was achieved by high pressure press molding under 1.2 GPa. (iv) The micromagnetics simulation has been investigated for the magnetization reversal at coercivity state. Accordingly, the calculation mesh size is required to be the order of 1 nm for the grain size of 10 - 20 nm, even though such grain diameter is enough small comparing to the diameter of single domain particle. We are developing a new high-magnetic-field magnetic force microscope (HMF-MFM) with a pulse magnet. We developed a power supply for the pulse magnet which achieves long fall time in pulse magnetic field and a scanner of HMF-MFM which has lower noise under pulse magnetic field. We successfully applied our previously developed simultaneous imaging method of perpendicular and in-plane magnetic field to NdFeB magnets by using our developed high-coercivity FePt tips. Relationship between particle morphology and crystal structure of Fe was studied by using transmission electron microscopes. The Fe NPs were aggregated, but a primary Fe NP was found to be a single crystal of Fe. Now, relationship between particle morphology and crystal structure of Fe and Fe16N2 is studying by electron diffraction methods.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る