成果報告書詳細
管理番号20120000000595
タイトル*平成23年度中間年報 「次世代機能代替技術の研究開発/次世代再生医療技術の研究開発/少量の細胞により生体内で自己組織の再生を促す自律成熟型再生デバイスの開発(生体内で自律的に成熟する臓器再生デバイスのための基盤研究開発)」
公開日2012/8/11
報告書年度2011 - 2011
委託先名国立大学法人東京大学 国立大学法人大阪大学 学校法人東京理科大学 野村ユニソン株式会社 国立大学法人神戸大学 学校法人福田学園
プロジェクト番号P10004
部署名バイオテクノロジー・医療技術部
和文要約和文要約等以下本編抜粋:
1.研究開発の内容および成果等
本プロジェクトでは、軟骨組織再生技術の汎用化、産業化を進めるため、臓器構造体としての軟骨の自律成熟に着目し、関節やその他の欠損部位を修復させるための基盤技術を確立する。このため平成23 年度は、以下の項目の研究開発を行った。
(1)「軟骨用自律再生デバイスのための細胞培養法の開発」 (東京大学)
成長因子であるFGF-2 およびIGF-1 は細胞増殖作用を有するが、ハイドロゲル、微粒子ポリマーにこれらの成長因子を担持させる技術を検討し、成長因子の徐放化を実現した。さらに、これらを軟骨細胞や骨髄細胞の培養法あるいは移植に適応することを検討し、従来の細胞培養法よりも、良好な細胞増殖を得た。
英文要約Title: Fundamental Research Project for Autonomous Regeneration Device (FY2010-FY2012) FY2011 Annual Report

Reconstruction of joints, based on autonomous regeneration of cartilages, would enable to promote generalization and industrialization of cartilage tissue engineering. In this project, we will establish a fundamental technology to apply the autonomous regeneration for reconstruction of joints. This financial year, for the development of a cell culture technique for an autonomous regeneration device for cartilages, we investigated techniques to have hydrogels and particulate polymers retain FGF-2 or IGF-I, and realized the controlled-release of them. We also examined application of the techniques to cultivation and transplantation, acquiring better cell proliferation than the former cell culture method. On bones, we fabricated artificial bone for weight-bearing sites, consisting of 3D titanium outer shell produced by selective laser sintering and the tetrapod-shaped granular artificial bones as filling. We implanted these artificial bones into the radial defects in dogs. At 24 weeks after implantation, we histologically evaluated the new bone formation inside artificial bones. We observed that the inside of the artificial bone was completely filled with new bone in 67% of dogs. For joints, the number of cultured synovial mesenchymal stem cells (MSCs) increased by 1500 times in 2 weeks, 30000 times in 3 weeks and 300000 times in four weeks, with the use of the artificial medium. MSC culture in the artificial medium enabled cell expansion which were affordable to the use for 10000 patients. As the production of hollow fibers made of biodegradable polymers, hollow fiber membrane was prepared using poly(lactic acid) as a biodegradable material. The prepared membrane had a water permeability of 700L/(m2 h atm) and PS particle rejection of 98%. The position of bore in the membrane was adjusted to the center. As development of a hollow fiber module, resolvability evaluation of the polylactic acid hollow fiber which consists of a biodegradable material was carried out. Autoclave sterilization could not be used for this module. Regarding hydrogel, in situ-gel formation system without an external stimuli was constructed using chitosan and end-activated PEG. As exploratory animal experiment for cartilage, we carried on transplant experiments on rabbits. We enhanced the properties of the hydrogels and improved conditions of the transplantation sites, succeeding in reducing the cell density for transplantation from 10^8 cells/ml, which is the former cell density, to 10^6 cells/ml. For joints, the composite material of β-TCP artificial bone with plasma-derived gel has been developed which could potentially enable minimal invasive surgery based on the plasticity of the material at implantation surgery. The optimal condition for forming gel including the artificial bone particles has been determined. Animal implantation study revealed that the composite material facilitated the development of subchondral bone with higher rate of remodeling.
ダウンロード成果報告書データベース(ユーザ登録必須)から、ダウンロードしてください。

▲トップに戻る