Japan's Action toward Public Implementation of Carbon Recycling [Progress over the Past Year]

September 26, 2022

Ministry of Economy, Trade and Industry

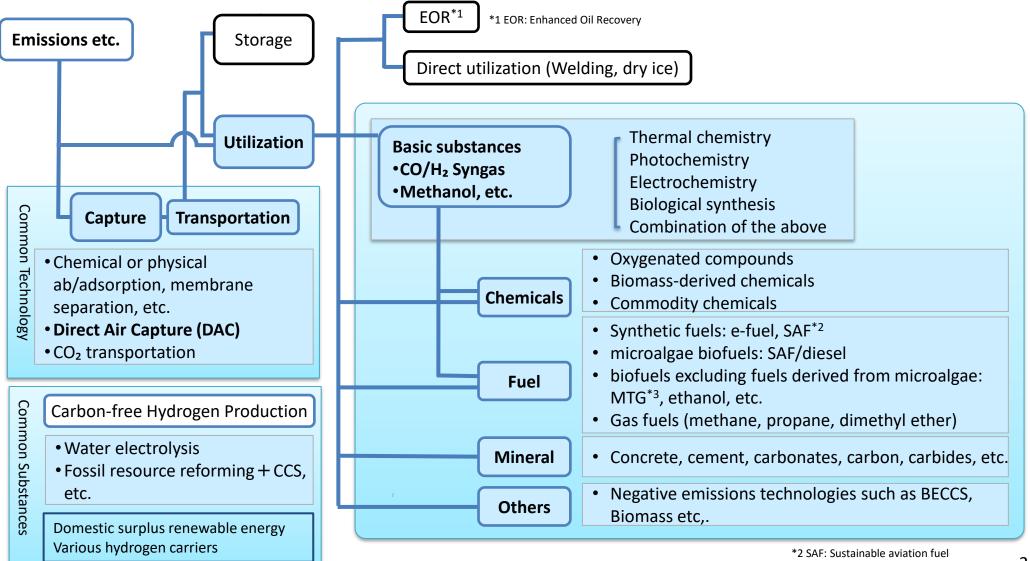
Carbon Neutrality by 2050

 In October 2020, the Japanese government declared that it aims to achieve "<u>Carbon Neutrality by 2050</u>". In December of the same year, the "Carbon Recycling Implementation Plan" was established, which <u>positioned</u> <u>carbon recycling as a key technology to realize carbon neutrality</u>. The plan clarifies <u>the path of technological</u> <u>development and demonstration for public implementation</u>.

Action 1. Open the R&D and demonstration base for Carbon Recycling

The Opening Ceremony for the R&D and demonstration base for Carbon Recycling was held on September 14, 2022. It consists of 3 areas (total area 14,300m²) : the Demonstration Research Area, the Basic Research Area and the Algae Research Area. It was developed as Japan's first facility capable of supplying CO₂ separated and captured by the adjacent Osaki CoolGen Project. More than 10 projects from industry, universities, etc. will be implemented. We will promote collaboration with overseas researchers using this center as a "showcase" for realization of carbon neutrality.

Action 2. Promoting Public offering and adoption of the Green Innovation Fund


METI accelerates R&D and demonstration for social implementation by using <u>the Green Innovation Fund</u> at the level of 2 trillion yen this year. New Energy and Industrial Technology Development Organization (NEDO) supports 4 projects such as <u>producing plastic feedstock</u>, <u>fuel</u>, <u>concrete</u> and <u>CO₂ capture</u> through utilizing Green Innovation Fund. The scale of budget is 336.5 billion yen. Furthermore, we are considering projects related to <u>Bio</u> <u>manufacturing</u>.

Action 3. Start the demonstration test for IGFC in Osaki Cool Gen Project

The demonstration test for <u>IGFC (Integrated Coal Gasification Fuel Cell Combined Cycle)</u> with CO₂ separation and capture facilities started on April, 2022.

CCUS/Carbon Recycling

<u>Carbon Recycling</u>: Under the concept of Carbon Recycling technology, we consider carbon dioxide as a source of carbon, and promote separating, capturing, and recycling of this raw material. Carbon dioxide (CO₂) will be recycled into concrete through mineralization, into chemicals through artificial photosynthesis, and into fuels through methanation, in order to reduce CO₂ emissions into the atmosphere.

*3 MTG: Methanol to Gasoline

Action 1. R&D and Demonstration Base for Carbon Recycling at Osaki-kamijima, Hiroshima

- Accelerating the Implement technological R&D of Carbon Recycling by <u>conducting</u> <u>underlying technology development and demonstration in a concentrated and</u> <u>extensive manner</u> with CO₂ separated and collected in Osaki Cool Gen Project at <u>Osaki-Kamijima, Hiroshima</u>.
- Its opening event was held on September 14, 2022.

Algae Research Area Demonstration Research Area Basic Research Area

R&D and demonstration base

(Ref.) Sample of R&D and demonstration for Carbon Recycling at Osaki-Kamijima, Hiroshima

R&D for expanding the scope Cast in Place Concrete **Concrete Product Field Test Elemental Test** Efficient CO₂-use Concrete • Development of technology to expand the scope of application of concrete for related to concrete S Road Blocks, etc Dams, River Structures, manufacturing technology and rust prevention performance at construction sites. • Confirmation of the performance of concrete manufactured with the above technology $(CO_2 \text{ absorption volume, Strength})$ Rein Corrosion status, etc). Waterways, etc. Buildings, Bridges, etc Proven Technology R&D Enercia 100年をつくる会社 う鹿島 📩 三菱商事 中国電力

Chemical Products Synthesis from CO₂

- Technology development for producing Para-xylene by using the methanol being synthesized from CO₂ and H2. (raw material of PET bottles and Textile products)
- Technology Development of higher-performance catalysts for synthesizing methanol from CO₂ and H₂ as well as catalysts with an improved ratio of para-xylene, the useful product among the xylenes.

Carbon Recycling by Microalgaederived SAF

- Production technology for microalgae-derived SAF and establishment of basic technology and standardization for the efficient photosynthesis by blowing CO₂ into the microalgae.
- ① Establishment of Microalgae Research Testbed
- ② Standardization of Measurement/Analysis Methods and Condition Settings

①Establishment of Microalgal Research Testbed

2 Standardization of Measurement/Analysis Methods

and Condition Settings

Environmental regulation will enable production and cultivation tests of diverse microalgae species in environments that simulate various climates, as well as trials of multiple drying and extraction processes.

Promote research and systematization of results through standardization of methods and conditions of measurement/analysis and of cultivation.

Action 2. Carbon Recycling R&D (Green Innovation Fund)

- NEDO supports 4 projects such as producing plastic feedstock, fuel, concrete and CO₂ capture through utilizing Green Innovation Fund (<u>336.5</u> billion yen).
- Furthermore, NEDO is considering projects related to **<u>Bio manufacturing</u>**.

1. Concrete/Cement*

Concrete production technology **X**

• The challenges are maximizing CO₂ reduction, expanding applications and reducing costs.

⇒Development CO₂ absorbing admixture of concrete that maximizes CO₂ fixation to reduce CO₂ emissions.

Cement production *

• CO₂ is inevitably generated in the process of manufacturing cement from the raw materials limestone.

 \Rightarrow Developed a cement manufacturing process capable of recovering almost all of the CO₂ derived from limestone.

2. Carbon Recycling fuel* SAF (Sustainable Aviation Fuel) SAF Utilization in the field of international air transport is essential. ⇒Develop SAF producing technology and achieve **the** production cost of 100yen level per litter. Synthetic fuel Key for decarbonization of mobility which is difficult to electrify is social implementation by synthetic fuels. ⇒Further improve efficiency of the entire manufacturing process. Synthetic methane • Decarbonization of gas body energy is an issue. ⇒Develop **highly efficient methane synthesis** by

integrally performing water electrolysis reaction and methane synthesis reaction.

Green LPG

 Establishment of LP gas synthesis technology derived from non-fossil fuels is essential.

⇒Develop catalysts and synthetic methods that are the basic technology for producing green LPG.

3. Chemical*

•About half of the CO₂ emitted by the chemical industry is due to processes like cracking naphtha to produce basic chemicals such as ethylene and propylene.

 \Rightarrow Develop for chemicals manufacturing technology

(artificial photosynthesis) from green hydrogen and CO₂, and naphtha decomposition furnace technology by making the carbon-free heat source.

Required

energy is

reduced to

about 1/3

4. Bio manufacturing

Amine

Porous

materials

- Integration of digital and genome modification technology promote bio-based products.
- \Rightarrow Considering on the promotion of joint development between microbial design platform operators and deferent field operators toward the production of bioplastics using hydrogen bacteria that directly utilize CO₂ as a raw material.

Solid absorbents

5. CO₂ capture technology^{*}

- The challenge is to reduce the energy cost to capture CO₂.
- Working on **innovation of separation materials** and reduce costs and strengthen international competitiveness. New amine absorbent (example)

** Participating organizations/companies were selected and publicly disclosed respectively on January 28 (1), April 19 (2), February 18 (3), and May 13 (5).

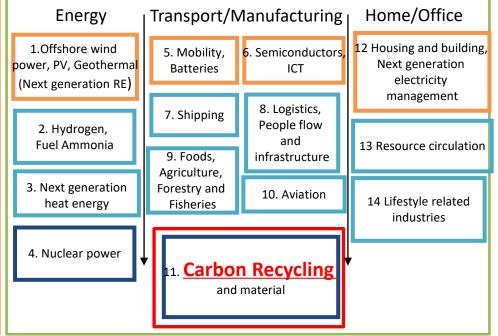
5

(Ref.) Green Innovation Fund (overview)

- Implement <u>technological R&D and demonstration base development</u> of Carbon Recycling through NEDO.
- In addition, <u>by utilizing the Green Innovation Fund, technological development and</u> <u>demonstration</u> for public implementation toward 2050 carbon neutrality <u>is accelerating</u>.

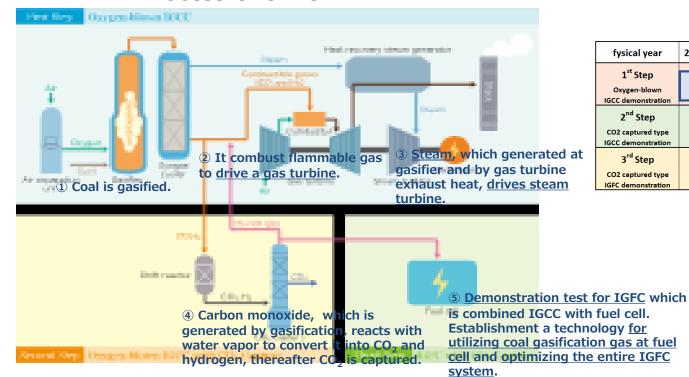
Carbon Recycling-related Budget (NEDO PROJECT) Budget amount for <u>FY 2022, 53.9 billion yen</u>

Development and demonstration of highly efficient CO₂ separation and capturing technology, and carbon recycling technology.

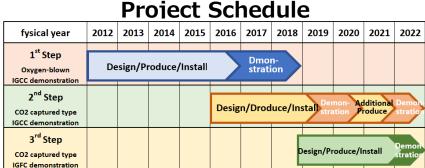

<Examples>

- Technological development of concrete that absorbs CO₂.
- Development of bio-jet fuel made from microalgae mass-produced by intensively injecting CO₂.
- Development of synthetic fuel (e-fuel) manufacturing technology using CO₂.
- Development of highly efficient CO₂ separation and capturing technology, etc.

* DAC (Direct Air Capture) is carried out by Moonshot Research and Development (NEDO).


Green Innovation Fund (NEDO Project) Supplementary budget for <u>FY 2020, 2</u> <u>trillion yen</u>

R&D/demonstration and public implementation of 14 fields, including Carbon Recycling, will be supported for 10 years.



Action 3. Osaki CoolGen Project

- Osaki CoolGen Corporation (share: The Chugoku Electric Power 50%, J-POWER 50%) proceed project implementation for IGCC/IGFC by 3 steps since 2012 at Osaki-Kamijima, Hiroshima supported by METI and NEDO.
 - -1st Step: Oxygen-blown <u>IGCC (Integrated Coal Gasification Combined Cycle)</u> [2012-2018] -2nd Step: CO₂ capture type <u>IGCC demonstration</u> [2016-2022]
 - -3rd Step: CO₂ capture type IGCC with fuel cell <u>IGFC (Integrated Coal Gasification Fuel Cell</u> <u>Combined Cycle) demonstration</u> [2018-2022]
- Since April, 2022, the demonstration by IGFC (166MW) with CO₂ Capture started as the third step.

Process Overview

(Ref.) Carbon Recycling Technology Roadmap

Volume of utilized CO₂

Phase 1

> Pursue all potential technologies for Carbon Recycling.

Chemicals

Further CO₂ emission cuts.

Liquid Fuels

Reduce cost to around 1/8 -1/16 of current levels.

Concrete Products

Reduce cost to 1/3 - 1/5 of current levels.

Phase 2

- > Reduce costs of technologies.
- Prioritize technologies that produce high-demand, general purpose commodities.

Expected to spread from 2030

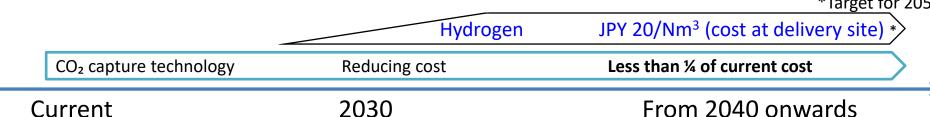
- Chemicals (Polycarbonate, etc.)
- Liquid Fuels (Bio jet fuel, etc.)
- Concrete Products
- (Road curb blocks, cement, etc)

*Technology requiring no hydrogen and/or high-value added products will be commercialized first.

Phase 3

Pursue further cost reduction

High consumption expected from 2030


- Chemicals: Polycarbonate, etc.
- Liquid Fuels: Bio jet fuels, etc.
- Concrete Products: Road curb blocks, etc.

Expected to start spreading from around 2040

- Chemicals (Commodities)
- Liquid Fuels (Gas, Liquid)
- Concrete Products (Commodities)

*Expansion into commodity markets with robust demand

*Target for 2050

(1-1) R&D Projects within Carbon Recycling Budget of NEDO (FY2022)

Minerals	Commodity/Product	Development stage	R&D and Demonstration Base for Carbon Recycling at Osaki-Kamijima		Commodity/Product	Development stage
Idemitsu Kosan, Ube Industries, Ltd. JGC HOLDINGS CORPORATION, Seikei University, Tohoku University	Calcium carbonate	Basic -Demonstration (NEDO)	The Chugoku Electric Power CO.,INC., Kajima Corporation, Mitsubishi Corporation		Improved type carbon absorption concrete	Basic -Demonstration (NEDO)
The Chugoku Electric Power CO.INC. Hiroshima University, Chugoku Koatsu Concrete Industries	Greening infrastructure material, etc.	Basic -Demonstration (NEDO)	Kawasaki Heavy Industries, Osaka University	a	Paraxylene	Basic -Demonstration (NEDO)
Kobe Steel, Ltd, Kobelco Eco-Solutions Co.Ltd.	Calcium carbonate	Basic -Demonstration (NEDO)	The Chugoku Electric Power CO., Hiroshima University	NC.,	Cosmetics etc.	Basic -Demonstration (NEDO)
JFE Steel Corporation	Calcium carbonate	Basic -Demonstration	Keio University、Tokyo University of Science、JCOAL		Formic acid	Basic (NEDO)
Mitsubishi Materials Corporation	Carbon nanomaterial	Basic -Demonstration (NEDO)	Tokai National Higher Education and Research System, KAWADA INDUSTRIES, INC		Urea	Basic (NEDO)
Chemicals	Commodity/Product	Development stage	NIPPON STEEL CORPORATION		Fuel for steel making	Basic (NEDO)
University of Toyama, Nippon Steel Corporation, Nippon Steel Engineering, HighChem, Chiyoda Corporation, Mitsubishi Corporation	Paraxylene	Basic -Demonstration (NEDO)	Tohoku University		Silicon carbide	Basic (NEDO)
IHI Corporation	Olefin	Basic -Demonstration (NEDO)	ENEOS GLOBE Corporation, NIPPON STEEL CORPORATION , University of Toyama		LPG	Basic (NEDO)
JFE Steel Corporation, RITE	Methanol	Basic -Demonstration (NEDO)	Algal Bio Co.,Ltd、Kansai Electric Power Company, INC		Bioplastic etc.	Basic (NEDO)
Kao Corporation, Taiyo Vinyl Corporation, Nippon Paper Industries, Ube Industries, Tosoh	Cellulose nanofiber	Basic -Demonstration (NEDO)	Institute of Microalgal Technology(IMAT)		Jet fuel	Basic -Demonstration (NEDO)
Corporation, Daio Paper Corporation, Sugino Machine Limited, AIST, Panasonic, Sumitomo Rubber Industries, University of Fukui, etc.			※ JCOAL and Osaki CoolGen operate the center, support research, and maintain the facilities.			
AIST, NITE, Environmental Health and Science			Sector coupling		Commodity/Product	Development stage
Institute of Shizuoka, The University of Tokyo, Ehime University, Shimadzu Techno-Research, Nisshinbo Holdings	Marine biodegradable plastic	Basic -Demonstration (NEDO)	Yokogawa Electric Corporation		rbon recycling cooperation ject in Chiba Goi area	Basic (NEDO)
Fuels	Commodity/Product	Development stage	RING, JCOAL	bus	rbon recycling cooperation siness of petrochemical nplex nationwide	Basic (NEDO)
INPEX	Methane	Demonstration (NEDO)	JAPEX, Deloitte	Ca	bon recycling cooperation	Basic (NEDO)
JPEC、ENEOS, Idemitsu Kosan Co.Ltd Seikei University	Synthetic fuel(e-fuel)	Basic (NEDO)		P.0	,	
IHI Corporation, Mitsubishi Power, Euglena, bits, Chitose, J-POWER	Jet fuel	Basic -Demonstration (NEDO)				g

(1-2) R&D Projects within Carbon Recycling Budget of NEDO (FY2022)

CO ₂ capture	Commodity/Product	Development stage	Basic and pilot research	Commodity/Product	Development stage
Osaki CoolGen Corporation	Physical absorption	Demonstration (NEDO)	Central Research institute of Electric Power Industry, Tokyo Institute of Technology	Development of CO ₂ electrolysis reversible solid oxide cell	Basic (NEDO)
Kawasaki Heavy Industries, RITE	Chemical absorption (solid)	Demonstration (NEDO)	AIST, Doshisha University	CO ₂ reduction and decomposition using high temperature soluble salt electrolysis	Basic (NEDO)
Sumitomo Chemical, RITE	Membrane separation (organic membrane)	Base- Demonstration (NEDO)			
Toray Industries, Inc	Membrane separation	Basic - Demonstration	Toshiba Energy Systems & Solutions, Kyushu University	CO ₂ /H ₂ O co-electrolysis	Basic (NEDO)
···, ···, ·	inorganic membrane)	(NEDO)	Mitsubishi Gas Chemical, Central Research institute of Electric Power Industry, TOYO CONSTRUCTION CO., LTD., JCOAL	Intermediate for the production of polycarbonate using CO ₂	Basic (NEDO)
KYUSHU UNIVERSITY, Tokyo Institute of Technology, TOSOH CORPORATION	Membrane separation (organic membrane)	Basic - Demonstration (NEDO)			
DAC (Direct Air Capture)	Commodity/Product	Development stage	Tokyo Institute of Technology、Saitama University、 Hokkaido University	Electrocatalyst to enable to direct reduction of CO ₂ to higher hydrocarbons by gas- phase electrolysis	Basic (NEDO)
Kanazawa University, RITE	DAC Chemical absorption (solid)	Basic (NEDO)	Kitasato University、University of Tokyo、 Nihonkaisui CO.,LTD、	CO ₂ mineralization method using seawater and biogenic	Basic (NEDO)
Nagoya University, TOHO GAS CO., Ltd.	DAC (Chemical absorption • Cryogenic energy utilization)	Basic (NEDO)	Idemitsu Kosan Co., Ltd JGC HOLDINGS CORPORATION, JGC CORPORATION, Hiroshima University	amines Ammonia methanation for CO ₂	Basic (NEDO)
Tokyo University, Osaka University, Ube Industries, Ltd., Shimizu Corporation, etc.		Basic (NEDO)	Kyushu University、 The Japan Research and Development Center for Metals	Activated carbon conversion technology derived from marine biomass utilizing CO ₂	Basic (NEDO)
AIST, Tokyo Institute of Technology, Nagoya University	DAC(microbial CO ₂ fixation)	Basic (NEDO)	Institute of Japan Green LP Gas Promotion、 AIST、N.E. CHEMCAT CORPORATION	Synthesis for Carbon Recycling LP Gas	Basic (NEDO)
Tokyo University, Hokkaido University	DAC $(CO_2$ fixation through mineralization)	Basic (NEDO)	AIST, Hitachi Zosen Corporation	CCU process with dual	Basic
Tohoku University, Osaka Metropolitan University	DAC(Membrane separation)	Basic (NEDO)		function material (DFM)	(NEDO)
Kyushu University, Kumamoto University, Hokkaido University	DAC (Membrane separation)	Basic (NEDO)			