「次世代大型低消費電力ディスプレイの基盤技術開発」 (中間評価) 第1回分科会 **資料6-2**

4. プロジェクトの概要説明

- 4-1 事業化の位置付け・必要性、研究開発のマネジメントについて
 - (1)事業の位置付け・必要性
 - (2)研究開発マネジメント

4-2 研究開発成果、実用化、事業化の見通しについて

- (1)研究開発成果
- (2)実用化、事業化の見通し
- 4-3 プロジェクトの概要全体を通しての質疑

次世代大型低消費電力プラズマディスプレイ基盤技術開発 中間評価第1回分科会(平成21年8月19日)

1/10

4-2 (1)研究開発成果 II-3 (1)中間目標の達成度、(2)成果の意義、 (5)最終目標の達成可能性

研究開発成果および達成度について

公開

①パネル構成材料技術開発(達成度◎)/

二次電子放出機構を解明

材料設計シミュレータを開発

低電圧化が可能な 高y材料候補を得た 最終目標達成に向けた課題

最適な高γ材料 を選定

②プロセス・設備技術開発(達成度〇)

新規高γ材料に適した プロセス環境特性・設備要求を定量化

大型化に向けた実用的な製造プロセス の設計指針を得た

③パネル設計・駆動技術開発(達成度◎)

新規高γ材料に適したセル構造 を実用化する指針を得た

新規高γ材料に適した放電制御技術 を実用化する指針を得た 大型設備技術 の開発

> 大型パネル による技術実証

> > 大型パネル の実証

年間消費電力量を 2/3にできることを示す

・ 小型パネルで 実証実験できた

中間標の達成点(20kmの表現) 研究開発の達成点(20kmの表現) 研究開発成果および達成度について

公開

	究開発項目 固別テーマ)	中間目標 (H21年度)	成果	達成度	今後の課題
1	パネル構成材料技術開発	保護膜の二次電子 放出機構を解明	・二次電子放出機構を解明し、 計算モデルを作成	0	・新規高γ材料 候補の特性を 調べ、実用化 に適した材料 を絞り込む
		材料設計シミュレー タの開発	・材料設計シミュレータを開発 ・新規高γ材料の放電特性等に ついてデータベース化		
		新規高γ材料探索	・低電圧化できる新規高γ材料 候補を複数得た		
2	プロセス・設備技術開発	新規高γ材料の対プ ロセス環境特性を 詳細に把握	新規高γ材料に適したプロセス環境特性・設備要求を定量化し、小型パネルで検証した	0	・大型設備技 術を確立する・大型パネルで
		実用的なプロセス の検討を行う	・大型化に向けた実用的な製 造プロセスの設計指針を得た		の実証実験
3	パネル設計 ・駆動技術 開発	新規高γ材料に適し たセル構造と放電 制御技術を探索	・新規高y材料に適したセル構造および放電制御の指針を得た。小型パネルで検証した	0	・大型パネルによる技術実証
詳細な研究開発成果および個別研究開発項目の成果は、 非公開セッションにて説明				全体として、 年間消費電力 量を2/3以下に	

事業原簿 P24

次世代大型低消費電力プラズマディスプレイ基盤技術開発 中間評価第1回分科会 (平成21年8月19日)

3/10

4-2 (1)研究開発成果

Ⅱ -3 (3)知的財産権の取得、(4)成果の普及

知的財産権の取得及び成果の普及

公開

知的財産権及び成果の普及

- 1. 特許出願状況: O件 (出願準備中 9件)
 - ・平成19~20年度は主に材料、プロセスの基礎検討に重点を置く(アイデア抽出のみ)
 - ・H21年度から、その実用化検討を開始する中で実用化の可能性、侵害確認の可能性 を判断し、出願準備中。

2. 研究発表•講演

- (1)論文•学会等: 8件
 - ①Analysis of Discharges in High Luminous Efficacy PDP with 5lm/W,SID2008
 - ②Cathode Luminescence Study of SrO,IDW2008
 - 3Direct observation of vacuum ultraviolet radiation from AC-PDPs with narrow sustaining electrode, IDW 2008

など

(2)一般講演: 9件

- ①FPDインターナショナル2007フォーラム「FPD概論PDPの基礎」
- ②第18回ファインテックジャパン専門技術セミナー「PDPにおける5lm/W技術と10lm/Wへの展望」など

4. プロジェクトの概要説明

- 4-1 事業化の位置付け・必要性、研究開発のマネジメントについて
 - (1)事業の位置付け・必要性
 - (2)研究開発マネジメント

4-2 研究開発成果、実用化、事業化の見通しについて

- (1)研究開発成果
- (2)実用化、事業化の見通し
- 4-3 プロジェクトの概要全体を通しての質疑

事業原簿 P

次世代大型低消費電力プラズマディスプレイ基盤技術開発 中間評価第1回分科会 (平成21年8月19日)

(逐次)

技術移転

(逐次)

技術移転 (逐次)

5/10

4-2 (2)実用化、事業化の見通し

実用化に向けた体制(申請時)

公開

Ⅱ-4-(1)成果の実用化可能性

開発技術は逐次参画企業へ移転し、製品化する

保有技術と

テレビセットメーカー

㈱日立製作所

組み合わせて テレビを製造・販売 (株)次世代PDP開発センター 技術移転

本事業の成果

年間消費電力量を2/3以下にする技術 パネル製造に関する基盤技術

①パネル構成材料技術

②プロセス・設備技術

③パネル設計・駆動技術

広島大学 梶山教授

共同研究

日立製作所の保有技術 と組み合わせて テレビを製造・販売

H24年以降

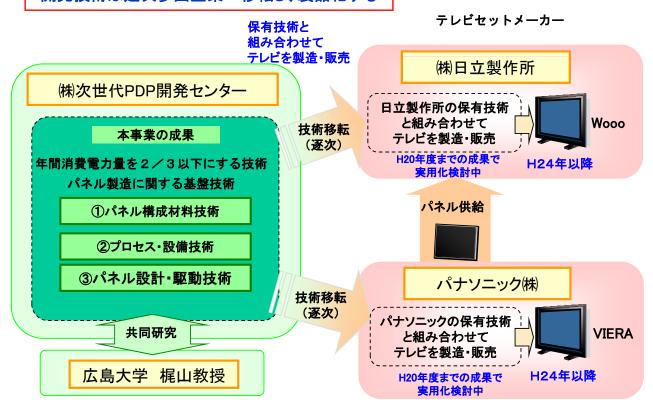
パナソニック(株)

パナソニックの保有技術 と組み合わせて テレビを製造・販売

H24年以降

パイオニア(株)

パイオニアの保有技術 と組み合わせて テレビを製造・販売

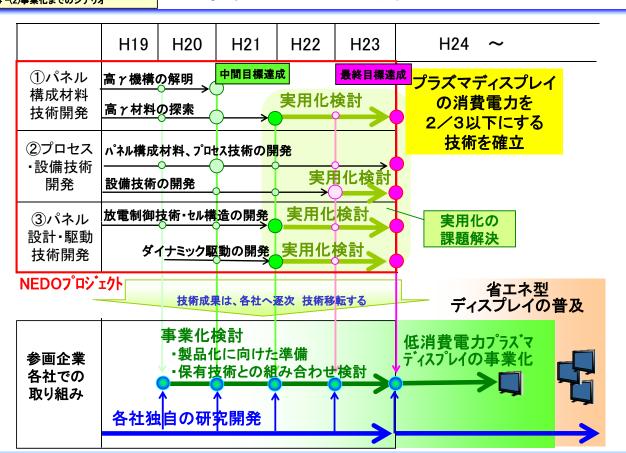


KURO

公開

Ⅱ-4-(1)成果の実用化可能性

開発技術は逐次参画企業へ移転し、製品化する


事業原簿 P25

次世代大型低消費電力プラズマディスプレイ基盤技術開発 中間評価第1回分科会 (平成21年8月19日)

7/10

4-2 (2)実用化、事業化の見通し 事業化までのシナリオ Ⅱ-4-(2)事業化までのシナリオ

公開

公開

Ⅱ-4-(3)波及効果

・国内メーカーの国際競争力強化

プラズマディスプレイの部材メーカーのうち、特にガラス基板、光学フィルタ、ドライバIC、蛍光体材料などは国内メーカーのシェアが高く、プラズマディスプレイ市場の拡大により、産業発展が見込まれる。

・家庭内の電気代を抑えることができる テレビ1台当たり、電気代1694円/年安くできる。

(1kWh=22円で計算)

・(社)全国家庭電気製品公正取引協議会電力料金目安単価により1kWh=22円で計算。 ・H24年度の50型インチの年間消費電力量を230kWh/年程度であると予想し、本成果にて230kWh/年→153kWh/年に省エネ化したと仮定して算出。

・国際的なCO2削減活動に協力できる。

省エネ機器の普及によりCO2削減に協力できるとともに、 日本の技術を海外へ普及させることができる。

事業原簿 P25

次世代大型低消費電力プラズマディスプレイ基盤技術開発 中間評価第1回分科会(平成21年8月19日)

9/10

4-3 プロジェクトの概要全体を通しての質疑

公開

- 4. プロジェクトの概要説明
 - 4-1 事業化の位置付け・必要性、研究開発のマネジメントについて
 - (1)事業の位置付け・必要性
 - (2)研究開発マネジメント
 - 4-2 研究開発成果、実用化、事業化の見通しについて
 - (1)研究開発成果
 - (2)実用化、事業化の見通し
 - 4-3 プロジェクトの概要全体を通しての質疑