第1回分科会 説明資料

「ゼロエミッション石炭火力技術開発プログラム /ゼロエミッション石炭火力基盤技開発 /革新的ガス化技術に関する基盤研究事業」 (中間評価)第1回分科会 資料7-2

「ゼロエミッション石炭火力技術開発プロジェクト」 ②「ゼロエミッション石炭火力基盤技術開発」 (1)「革新的ガス化技術に関する基盤研究事業」 イ)「石炭ガス化発電用高水素濃度対応低NOx技術開発」 (中間評価) (2008年度~2012年度 5年間) 分科会説明資料(公開)

2010/ 8/19 株式会社 日立製作所

I.背景および目的

Ⅱ.本研究の目標および実施工程 (1) 本研究の目標および大工程 (2) 本研究の実施内容 **Ⅲ. 研究開発成果** (1) 開発目標に対する達成度 (2) 検討内容 Ⅳ. 実用化の見通し (1) 実用化の見通し (2) 波及効果

Ξ

次

1

I-1. 背景および目的

*¹IGCC: Integrated coal Gasification Combined Cycle, *²CCS: Carbon dioxide Capture and Storage

I-2. 本研究対象のCCS-IGCCシステムの概要

公開 © Hitachi, Ltd. 2010. All rights reserved.

■小型装置でCO2回収効率が高い酸素吹きIGCC用ガスタービン
■燃焼前回収方式による高水素濃度対応低NOx燃焼技術の開発

I-3. CCS-IGCCシステムの燃料組成・発熱量

HITACHI Inspire the Next

■石炭ガス化ガスはCO2回収率により燃料中のH2濃度が大きく変化

■予混合燃焼器は低NOxであるが、逆火の危険性あり ■拡散燃焼器はNOx排出量が多く,対策のためプラント効率低下

I-5. 高水素濃度対応低NOx技術

Energy and Environmental Systems Laboratory

HITACHI Inspire the Next

I.背景および目的

Ⅱ.本研究の目標および実施工程 (1) 本研究の目標および大工程 (2) 本研究の実施内容

Ⅲ. 研究開発成果

(1) 開発目標に対する達成度 (2) 検討内容 Ⅳ. 実用化の見通し

(1) 実用化の見通し

(2) 波及効果

Ⅱ(1)-1. 目標および大工程(平成20年度~平成24年度)

HITACHI Inspire the Next

■H20年~22年で要素技術を開発,今後は実用化に向け研究を加速

*:ご指導により、一層実用化に向けた研究に比重をおくため共同研究に移行

Energy and Environmental Systems Laboratory

公開 © Hitachi, Ltd. 2010. All rights reserved. 8

■不活性ガス(窒素,水蒸気)の噴射などを用いず,NOx<10ppmの目標は世界最高水準 ■CO2回収率の変化に伴い幅広く変化する水素濃度に対応して 全対象範囲でNOx<10ppmとすれば,革新的な低NOx技術

Energy and Environmental Systems Laboratory

公開 © Hitachi, Ltd. 2010. All rights reserved. 9

Ⅱ(2)-1.本研究の実施内容(平成20年度~平成22年度)

■H20年~22年で要素技術を開発,中間評価数値目標を達成

■大気圧(要素)燃焼試験によりクラスタバーナー構造を最適化

・空気孔旋回プレートの 旋回角, 空気孔プレート形状および 燃料ノズルの燃料噴出流速(噴孔径)を対象に最適化

Ⅱ(2)-3. 実施内容(マルチクラスタバーナーの検討)

■実寸燃焼器による中圧燃焼試験により低NOx燃焼性能を検討

・NOx排出濃度, 燃焼効率, 燃焼安定性, 各部メタル温度, 火炎観察

マルチクラスタバーナー

ガスタービン

中圧燃焼試験装置

I.背景および目的 Ⅱ.本研究の目標および実施工程 (1) 本研究の目標および大工程 (2) 本研究の実施内容 Ⅲ. 研究開発成果

(1) 開発目標に対する達成度 (2) 検討内容

Ⅳ. 実用化の見通し

(1) 実用化の見通し

(2) 波及効果

Energy and Environmental Systems Laboratory

HITACHI Inspire the Next Ⅲ(1).開発目標に対する達成度

■凸型マルチクラスタバーナー燃焼器により目標達成

研究開発目標	成果	達成度
中 圧燃焼試験 (0.6MPa) NOx<10ppm (@16%O ₂)	 CCS 0%(H₂濃度27%相当) 5.4ppm CCS30%(H₂濃度45%相当) 5.8ppm CCS50%(H₂濃度58%相当) 6.5ppm CCS90%(H₂濃度84%相当) 9.2ppm 	O 達成

Ⅲ.研究開発成果 (2) 検討内容 ①マルチクラスタバーナ中圧燃焼試験 (a) 平板型マルチクラスタバーナー燃焼特性 (b) 凸型マルチクラスタバーナー燃焼特性

(2)クラスタバーナの形状最適化(大気圧要素試験)

③乱流燃焼解析

■空気孔プレートのメインバーナー形状を変更し、各バーナーの 燃料配分をパラメータに中圧条件(0.6MPa)にて試験

■水素、メタン、窒素の3成分の試験用燃料により燃焼試験を実施

	項目	単位	CCS0 %	CCS30 %	CCS50 %	CCS90 %
축	2気流量	kg∕s	2.9	2.9	2.9	2.9
牥	2気温度	°C	387	387	387	387
燃	携器 圧力	MPa	0.6	0.6	0.6	0.6
ガスタ	ービン負荷	%	100	100	100	100
	水素	vol.%	40	55	65	84
燃料	メタン	vol.%	18	16	6	2
性状	窒素	vol.%	42	29	29	14
	低位発熱量	MJ∕m ³ N	11	12	9	10

試験条件

HITACHI Inspire the Next

■各バーナーの燃料配分をパラメータに中圧条件(0.6MPa)にて試験

Ⅲ(2)-4.平板型マルチクラスタバーナー 定格負荷特性(1)

HITACHI **Inspire the Next**

■広範囲な水素含有燃料に対し、同一バーナー構造で逆火なく燃焼 できることを確認 ■CCS 0%, 30%燃料のNOx排出濃度は, 5.9ppm, 7.6ppm(16%O₂) であり目標値10ppm以下を達成, CCS50%燃料は11.5ppm ■燃焼効率は99.99%以上であり、安定燃焼を確認

Ⅲ(2)-5.平板型マルチクラスタバーナー 定格負荷特性(2) HITACHI

 ■CCS30%燃料よりCO回収率(水素濃度)の高い場合, 燃焼振動に 対する裕度の拡大が必要
 ■メインバーナー中央メタル温度の低減対策が必要
 ■CCS90%燃料に対してはバーナー信頼性の強化が必要

<u>**Ш(2)-6.平板型マルチクラスタバーナー**部分負荷特性(1)</u> HITACHI Inspire the Next

■ガス化炉運用開始まで起動用燃料(油) 焚き部分負荷で待機 ■ガスタービン負荷に応じてメインバーナーの着火本数を制御

Ⅲ(2)-7.平板型マルチクラスタバーナー 部分負荷特性(2)

HITACHI **Inspire the Next**

■起動用燃料(油) 焚き部分負荷燃焼の燃焼効率の改善が必要 ⇒油噴霧ノズルの微粒化特性改善により対策 ■燃焼振動振幅は管理値に対して十分低く、部分負荷燃焼時も 燃焼安定性は良好

HITACHI Inspire the Next

■各バーナーの燃料配分をパラメータに中圧条件(0.6MPa)にて試験

広範囲な水素含有燃料に対し、同一バーナー構造で逆火なく燃焼できることを確認
 CCS 0%, 30%, 50%, 90%燃料におけるNOx排出濃度は、5.4ppm、5.8ppm、6.5ppm、9.2ppm(16%O2)であり、目標値10ppm以下を達成
 燃焼効率は99.99%以上であり、安定燃焼を確認

■燃焼振動振幅が管理値を超える場合があり、燃焼振動特性の改善が必要

Ⅲ(2)-11. クラスタバーナー構造の最適化

■大気圧要素燃焼試験にてクラスタバーナー構造を最適化

公開 © Hitachi, Ltd. 2010. All rights reserved.

26

■水素、メタン、窒素の3成分で試験用燃料を調整

	項目	単位	CCS0%	CCS30%	CCS50%	CCS90%
実材	幾水素濃度	vol.%	27	46	58	84
実機	低位発熱量	MJ/m ³ N	11	11	11	10
2	空気流量	m³N∕h	157(Type-P:170)			
2	空気温度	°C	350			
バーフ	ナー出口温度	°C	1500°C			
	水素	vol.%	40	55	65	84
燃料	メタン	vol.%	18	16	6	2
性状	窒素	vol.%	42	29	29	14
	低位発熱量	MJ∕m³N	11	12	9	10

試験条件

Ⅲ(2)-13. クラスタバーナー基本構造の検討

■バーナーの燃料配分をパラメータにバーナー形状の効果を検討

Ⅲ(2)-14. 燃料ノズル先端形状の検討

■燃料噴孔を縮小し、燃料噴流の貫通を強化して後流への混合 気侵入を防止 |燃焼騒音の発生を抑制でき、外周燃料比率を増加でき低NOx 燃焼を実現

HITACHI Inspire the Next

■凸型空気孔プレート形状により、空気孔プレートへの火炎付着を 防止でき、外周燃料比率を高く設定可能となり低NOx燃焼を実現

■Hyperbolic Tangent関数で反応進行度c分布を近似する予混合燃焼モデル

燃料の混合分率
$$f$$
: $f = f_0$ (一定値)
反応進行度 c : $\frac{\partial \rho c}{\partial t} + \frac{\partial \rho u_j c}{\partial x_j} = \frac{\partial}{\partial x_j} \left((D + D_t) \frac{\partial \rho c}{\partial x_j} \right) + \omega$
成分の質量分率 Y_i : $Y_i = (1 - c)Y_{i,u} + cY_{i,b}$ (添え字 u : unburnt, b : burnt)
予混合燃焼モデル: $\omega = \frac{8\rho_u Su}{\delta} c^2 (1 - c)$
ここに、 Su : 層流燃焼速度、 δ : 層流火炎の厚さ
 ρ_u : 未燃焼ガス密度、 c : 反応進行度
日特徴:
① Su/δ を通じて、空気温度、圧力、燃空比を考慮
②乱流拡散係数 D_t を通じて、乱流の影響を考慮
③層流、乱流に共通で適用可能

■予混合燃焼モデルを拡張し、拡散燃焼に対応 ■予混合~拡散まで対応可能な「統一的燃焼モデル」を開発

Ⅲ(2)-18. 乱流燃焼解析結果(1) [CO2回収率の影響]

■円錐形状浮上火炎の形成状況など、定性的傾向を再現 ■CCS90%での火炎帯厚さの縮小、火炎の上流側への移動を再現

	平板型, CCS30%, ^T g=1500℃ 外周燃料比率: 83%	平板型, CCS90%, ^T g=1500℃ 外周燃料比率:83%	スケール
速度ベクトル			U (j) 100 100 100 100 100 100 100 100 100 10
水素質量分率			14 12 10 8 [H ₂] 6 (wt.%) 4 2 0
ガス温度分布			1700 1500 1250 1000 (°C) 750 500 300

Ⅲ(2)-19. 乱流燃焼解析結果(2) [空気孔形状の影響]

34

公開 © Hitachi, Ltd. 2010. All rights reserved.

■凸型形状とすることでクラスタバーナー外周部の空気流動が変化 ■空気孔外周部の高水素濃度領域が消滅し、高温ガス領域が縮小

	凸型, CCS90%, ^T g=1500℃ 外周燃料比率:83%	平板型, CCS90%, ^T g=1500℃ 外周燃料比率:83%	スケール
速度ベクトル			100 90 70 50 40 (m/s) 20 10 0
水素質量分率			14 12 10 8 [H ₂] 6 (wt.%) 4 2 0
ガス温度分布			1700 1500 1250 1000 (°C) 750 500 300

■2010/7月までに寄稿3件,特許7件を出願

	H20 (FY2008)	H21 (FY2009)	H22 (FY2010)
寄稿	0	2	1
特許	3	4	0

Ⅲ(2)-21. 特許・寄稿リスト

特許リスト

No.	名称	国内/国外
1	ガスタービンの燃料供給方法	国内
2	燃焼器、燃焼器の燃料供給方法及び燃焼器の改造方法	国内
3	ガスタービンの運転方法及びガスタービン燃焼器	国内
4	水素含有燃料対応燃焼器および、その低NOx運転方法	国内
5	ガスタービン燃焼器の制御装置およびガスタービン燃焼器の制御方法	国内
6	ガスタービン燃焼器	国内
7	ガスタービン燃焼器	国内

寄稿リスト

No.	名称	発表誌名など	査読	発表年月日
1	水素リッチ燃料焚き低NOx燃焼器の開発	火力原子力発電 第60巻-10号(pp80-85)	無	2009/10/15
2	水素リッチ燃料焚き多孔同軸噴流バーナの 大気圧燃焼特性	第37回ガスタービン 定期公演論文(pp31-36)	無	2009/10/21
3	Applicability of a Multiple-Injection Burner to Dry Low-NOx Combustion of Hydrogen-Rich Fuels	ASME Turbo Expo 2010 GT2010-22286	無	2010/6/16

I. 背景および目的 Ⅱ.本研究の目標および実施工程 (1)本研究の目標および大工程 (2) 本研究の実施内容 **Ⅲ. 研究開発成果** (1) 開発目標に対する達成度 (2) 検討内容

Ⅳ. 実用化の見通し (1) 実用化の見通し (2) 波及効果

Ⅳ(1)-1. 実機搭載可能燃焼器構造

■実機ガスタービンに搭載可能な実寸燃焼器による開発を実施

Ⅳ(1)-2. 実用化のイメージ:本開発技術のロードマップ

■クラスタバーナーは将来システムのCO2クローズドGT, IG-HAT との親和性が良く、広く展開可能な燃焼基盤技術である。

Energy and Environmental Systems Laboratory

HITACHI Inspire the Next

HITACHI **Inspire the Next**

