### 平成25年度実施方針

電子・材料・ナノテクノロジー部 新エネルギー部

1. 件名: プログラム名 ナノテク・部材イノベーションプログラム・環境安心イノベーションプログ ラム

(大項目) 希少金属代替材料開発プロジェクト

#### 2. 根拠法

独立行政法人新エネルギー・産業技術総合開発機構法第15条第1項第2号及び第3号

#### 3. 背景及び目的・目標

現在及び将来において我が国経済を牽引していく産業分野において、競争力を発揮し世界を勝ち抜いていくために、多様な連携(川上・川下産業の垂直連携、材料創製・加工との水平連携)による研究開発の推進により、当該市場のニーズに応える機能を実現する上で不可欠な高品質・高性能の部品・部材をタイムリーに提供し、又は、提案することができる部材の基盤技術を確立することを目的とした「ナノテク・部材イノベーションプログラム」、及び環境・資源制約を克服し循環型経済システムを構築することを目的とした「環境安心イノベーションプログラム」の一環として本プロジェクトを実施する。希少金属は我が国産業分野を支える高付加価値な部材の原料であり、近年その需要が拡大している。しかし、途上国における著しい需要の拡大や、そもそも他の金属と比較して、金属自体が希少であり、代替性も著しく低く、その偏在性ゆえに特定の産出国への依存度が高いこと等から、我が国の中長期的な安定供給確保に対する懸念が生じている。これに対する具体的な対策として、平成18年6月、資源エネルギー庁から報告された「非鉄金属資源の安定供給確保に向けた戦略」において、①探鉱開発の推進、②リサイクルの推進、③代替材料の開発、④備蓄、等が整理され、現在それぞれにおける具体的な対策が進められている。

本研究開発は、この総合的な対策の一部として非鉄金属資源の代替材料及び使用量低減技術の確立を目的としている。

なお、平成18年3月28日に閣議決定された「第3期科学技術基本計画」では、「ナノテクノロジー・材料」分野を「重点推進4分野」の一つとして位置づけ、これに優先的に資源配分することとしている。本研究開発は、第3期科学技術基本計画において位置づけられた重点推進4分野等について、分野内においても選択と集中の一層の徹底を図ることを目的として策定した「分野別推進戦略(平成18年3月28日総合科学技術会議)」にて、同分野の中で計画期間中に重点投資する対象となる「戦略重点科学技術」の1つとして挙げられている「資源問題解決の決定打となる希少資源・不足資源代替材料革新技術」にあたるものであり、文部科学省の元素戦略プロジェクトと連携し基礎から実用化までの間隙のない支援体制を確立して行うもので、我が国の科学技術力の向上という観点からも極めて意義が高いものである。

上記目的を達成するために、以下の研究開発を実施する。

### (委託事業)

①透明電極向けインジウム使用量低減技術開発

本研究では、インジウム使用量低減ITO材料開発としてインジウム系新組成材料の開発、新材料及びこれに最適な革新的プロセスの開発等、インジウム使用原単位を現状値より50%以上削減可能な基盤技術及び製造技術を開発するため、(a)「スパッタリング法における透明電極向けインジウム使用量低減化技術開発」(省In組成のITO並びにその薄膜化技術に関する開発)、(b)「非スパッタリング法による透明電極向けインジウム使用量低減技術開発」(導電性ITOナノインク塗布技術開発)の研究開発項目について研究開発を実施する。

#### 【中間目標】: 平成21年度

(1)新規ターゲット組成では、小型スパッタリングの実験装置でシート抵抗50 $\Omega \diagup s \ q$ を実現する。

薄膜化スパッタ技術開発では、ITO膜厚を100nm以下で透過率80%以上(測定波長550nm)を達成する。

以上の結果から Inの使用原単位を40%以上削減できることを実験的に立証する。

(2) ナノインクによる電導膜について、透過率80%以上、ヘイズ2%以下、表面抵抗率1000 $\Omega$ /sq以下を達成可能な塗布法の開発を目標とする。

以上の結果から Inの使用原単位を6%以上削減できることを実験的に立証する。

### 【最終目標】:平成23年度

(1) 新規ターゲット組成では、所定の諸特性(体積抵抗率  $200\sim250\mu\Omega$  cm、透過率は 波長 550 nmで 85%以上、エッチング性、高屈折率)を満足する材料を開発する。また、新規組成ターゲット作製工程の最適化を行い高密度(99.5%以上)ターゲットの工業化技術を 完成させる。

薄膜化スパッタ技術開発では、スパッタリング法における大型 FPD用の ITO膜の厚さを両面合せて現状値 2 0 n m から 1 0 0 n m 以下とし、シート抵抗  $16 \Omega / s q$  ( $160 \mu \Omega c m$ ) 以下、透過率 85%以上(測定波長 550 n m) とする製造技術を開発することを目標値とする。以上の技術を確立 1n の使用原単位を 40%以上削減できる工業化・製造技術を確立する。

(2) インクジェット法では、焼成温度 200-300  $\mathbb{C}$ 、膜厚 < 150 n m (R a < 10 n m)、抵抗値  $< 5 \times 10^{-3}$   $\Omega$  c m、透明性 > 96 % (450-800 n m)、耐擦性 > 3 H を満足する I TOP インクの確立を目指し、In使用原単位削減率 10 %を達成可能なインクジェット用ナノインクの開発を目標とする。

静電塗布法では、塗布プロセスと条件の最適化により、焼成温度200℃以下で、膜厚200 n m以下、透過率90%以上、ヘイズ1%以下、表面抵抗100Ω/s q以下を目指し、In使用原単位削減率10%を達成可能な塗布法の開発を目標とする。

以上の技術を確立しInの使用原単位を10%以上削減できる工業化・製造技術を確立する。 上記(1)、(2)の目標達成により、現在のITO薄膜で使用されているIn使用原単位の50%削減を達成する。

### ②透明電極向けインジウム代替材料開発

現状では、フラットパネルディスプレイ用透明電極は、ほぼ全面的にマグネトロンスパッタ製膜 にて蒸着されたITO透明導電膜が採用されている。酸化亜鉛系材料は、その優れた光学的・電気 的特性によって、従来からITO代替材料として最も有力な候補の一つであるが、製膜の均一性、 光学的・電気的特性、耐熱性、耐薬品性等の特性値について所定の目標値を満足する必要がある。 したがって、酸化亜鉛系材料を対象にITO代替材料として利用可能な材料開発を実施する。

### 【中間目標】: 平成21年度

スパッタ技術開発及び不純物の共添加等の材料開発により、化学的安定性、均一性に優れる成 膜技術を開発し、4インチレベルのパネル試作を実施する。

### 【最終目標】: 平成23年度

抵抗率、透過率、耐熱性、耐湿性、耐薬品性等の透明電極として使用に耐えうる諸特性を満足し、酸化亜鉛系材料及びその成膜技術を確立する。酸化亜鉛系材料を例えば液晶ディスプレイのカラーフィルター側の透明電極に適用することにより、インジウム使用原単位の50%以上低減を達成する。

・抵抗率: 4. 5×10<sup>-4</sup>Ωcm以下

· 透過率:可視光平均透過率85%以上

・耐熱性:抵抗変化率≦10%(230℃、大気中30分)

耐湿性:抵抗変化率≤10%(60℃、95%、500時間)

・耐薬品性:可視光透過率の変化率  $\leq 2\%$  (NaOH (5%) 又は $H_2SO_4$  (5%) 室温10分浸漬)

## ③希土類磁石向けジスプロシウム使用量低減技術開発

現状の商用焼結磁石の保磁力は、理論値である異方性磁場(90k0e)の10%程度の値に留まっている。これは $Nd_2Fe_{14}B$ 主相の結晶粒界で結晶磁気異方性が小さくなるウイークポイントが存在し、そこを起点として逆磁区が核生成するためと考えられている。よって、永久磁石の保磁力を上昇させるには、(1)逆磁区の発生頻度を下げるために磁石粒子のサイズを小さくすること、及び(2) $Nd_2Fe_{14}B$ 相と粒界相との界面の状態を制御することが必要である。そこで、この2点を実現するための技術と指導原理を追求し、保磁力の向上を目指す。

#### 【中間目標】: 平成21年度

結晶粒径の微細化、強磁場プロセスによる界面ナノ構造制御技術等の開発により、ジスプロシウム使用原単位20%削減を達成する。

#### 【最終目標】:平成23年度

下記の各項目について目標を達成し、ジスプロシウム使用原単位を30%以上削減可能な技術 を確立する。

- (1) 結晶粒径  $2 \mu$  mで元素濃度分布を最適化した原料合金、並びにジスプロシウムフリーで結晶粒径  $2 \mu$  m以下の焼結磁石、における量産化技術の確立。
- (2) 強磁場プロセスやジスプロシウム有効活用技術の導入等によって、高保磁力化の実現(1 0kOe)。
- (3) 内部又は界面の微細・平均構造と保磁力との相関や磁化反転機構を明らかにし、高保磁力省ジスプロシウム磁石開発における指導原理の確立。
- (4) モータ出力密度3倍のための開発要素の明確化。

### ④超硬工具向けタングステン使用量低減技術開発

本研究開発では超硬工具(切削工具)のタングステン使用原単位を30%以上低減するため、切削工具の基材部分をタングステン使用量の少ない材料に置きかえる(a)「硬質材料のハイブリッド化」、及び工具の刃先近傍や表面以外について炭窒化チタンを主成分とする(b)「複合構造硬質材料化」を図るための技術開発を行う。

【中間目標】: 平成21年度

(1) 「ハイブリッド切削工具の開発」

従来よりもタングステン使用原単位を 20%以上低減した硬質基材を開発し、先端部  $\mathbf{c}$  B N との接合技術を開発する。

(2) 「複合構造硬質切削工具の開発」

粉末複合化成形技術の開発により、タングステン使用原単位を15%以上低減する。

【最終目標】: 平成23年度

- (1) 「硬質材料のハイブリッド化」
  - ・超硬母材なしcBNとタングステン使用原単位を40%低減した硬質材料基材を接合する。
  - ・焼入れ鋼(SUJ2)の高負荷連続切削においてロウ付け工具と同等性能を達成する。
- (2)「複合構造硬質材料化」
  - ・一般鋼又は鋳鉄用被覆超硬工具におけるタングステン使用原単位を30%低減する。
  - ・コーティング処理した3次元ブレーカ付きM級精度の複合構造硬質工具による一般鋼の断続切削試験でコーティングを有する超硬合金と同等の切削性能を達成する。

## ⑤超硬工具向けタングステン代替材料開発

超硬工具(切削工具、耐摩耗工具)のタングステン使用原単位を30%以上低減するため、WC 基超硬合金に代わる硬質材料として有望な炭窒化チタン(Ti(C,N))基サーメットについて、新規サーメット基材の開発及び新規サーメットを基材とした新規コーティング技術の開発を行い、切削工具及び耐摩耗工具に適用するサーメット及びコーティング技術を開発する。

【中間目標】: 平成21年度

下記の各項目について技術を確立する。

- ・サーメットの組織形成シミュレーション技術
- ・新規固溶体粉末を用いたサーメット合成技術
- ・新規コーティング技術

【最終目標】: 平成23年度

下記の各項目について目標を達成し、新規炭窒化チタン(Ti(C,N))基サーメット材料を開発することで、WC基超硬工具(切削工具、耐摩耗工具)よりもタングステン使用原単位を30%以上低減する。

- (1) 「サーメット及びコーティングの基盤研究」
  - 1) 「サーメットの解析及び設計技術の開発」

積層体焼結(共焼結)のシミュレーション技術の確立と耐熱衝撃性や高温強度の機構を解明する。 さらに、組織形成と破壊メカニズムを解明する。また、成形体構造評価技術を確立し、最終的 に設計に必要なデータベースを構築する。

2) 「新規サーメット材料の開発」

下記の特性値を満足する新規サーメット材料を開発する。

· 抗折力: 3 G P a

・破壊靱性値:15MPa・m<sup>1/2</sup>

・耐熱衝撃抵抗: 75W・m<sup>-1/2</sup>

3) 「コーティング技術の開発」

サーメット基材上への安定したコーティングを可能とするために、コーティング時の加熱温度を低温化(800 $^{\circ}$ )した新規CVDコーティング技術の開発を行う。

(2) 「切削工具用サーメット及びコーティング技術の開発」

切削工具用サーメットの成形・焼結技術、傾斜組成化技術等を確立し、下記の特性値を達成する。

•破壊靱性値:13MPa・m<sup>1/2</sup>

・熱伝導率: 30W/m・K

・サーメット工具による鋼等の総合的切削性能 このことで、軽切削用スローアウェイ工具で約70%、穴明けドリル用(軸物)切削工具で 約70%のタングステン使用原単位の低減を実現する。

(3) 「耐摩耗工具用サーメット及びコーティング技術の開発」

耐摩耗工具用サーメットの成形・焼結技術、研削・放電加工技術等を確立し、下記の特性値 を達成する。

- ・硬さHV≥1400で破壊靭性13MPa・m<sup>1/2</sup>以上の高硬度型サーメット
- ・硬さHV≥1200で破壊靭性15MPa・m<sup>1/2</sup>以上の高靭性型サーメット
- ・サーメット工具によるダイス及び金型の総合的耐摩耗工具性能 このことで、ダイス・プラグ用耐摩耗工具で100%、金型用耐摩耗工具で約94%のタン グステン使用原単位の低減を実現する。
- ⑥-1排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/遷移元素による白金族代替技術及び白金族の凝集抑制技術を活用した白金族低減技術の開発

本研究では、ディーゼル車両の排気ガス浄化触媒中の白金族使用量を50%以上低減可能な基盤技術及び製造技術を開発するために、遷移元素による白金族代替技術及び白金族凝集抑制技術を軸とした、白金族使用量を低減した酸化触媒、リーンNOxトラップ触媒、ディーゼルパティキュレートフィルター用触媒の開発、プラズマによる触媒活性向上技術の開発、異なる触媒の機能統合化技術の開発の各研究開発項目について研究開発を実施する。

- (1) 遷移元素による白金族代替に関する研究開発
  - ・遷移元素酸化物によるTG測定法(TG: Transient Grating Method 過渡回折格子法) を開発する。
- ・DOC、LNT、DPF触媒用として触媒活性の向上策を決定し耐熱性向上技術の確立を行う。
- ・DOC、LNT、DPF触媒用として遷移元素活性点候補を3つ以上決定する。
- (2) 白金族凝集抑制手段に関する研究開発
  - ・TGを用い低温活性に最適なPdの最適サイズ、最適担体を明確化する。
  - ・Pt、Rhを使い最適な担体で耐久試験後の貴金属サイズを実現する。
- (3) DPFの反応向上要素とその実現に関する研究開発
  - ・反応モデルの妥当性を検証し、PM反応モデルを決定する。

- DPFの反応性を向上させる触媒担持位置を明確にする。
- ・DPFの触媒担時における重要な制御因子を明らかにする。
- ・PMの酸化特性を明らかにする。
- (4) プラズマによる活性向上に関する研究開発
  - ・触媒に必要な機能を列挙し、試作・評価により触媒設計指針を明確にする。
  - ・常温にて酸素共存下で十分に機能するNOx分解触媒を絞り込む。
  - ・ハニカム、繊維等の構造やアルミナ等材料組成を検討し、プラズマに効果的な支持体構造と組 成を選定する。
- (5) 排気触媒統合化に関する研究開発
  - ・白金族、白金族代替を用いた統合化した触媒システム全体での課題を明らかにする。
  - ・解決方策の具体案の検証を行い、耐久試験前で白金族使用量を85%低減可能な統合化システムを決定する。
- (6) 遷移元素化合物の実触媒化、量産化に関する研究開発
- ・耐久試験前において、DOCの白金族使用量60%低減を可能とする触媒仕様を決定する。
- ・耐久試験前において、LNTの白金族使用量75%低減を可能とする触媒仕様を決定する。
- ・耐久試験前において、DPFの白金族使用量65%低減を可能とする触媒仕様を決定する。

### 【最終目標】: 平成25年度

- (1) 現行の触媒システム(「DOC」+「LNT」+「DPF」の3つの触媒からなるシステム)について、平成21年10月に施行される排出ガス規制(ポスト新長期対応ディーゼル排気ガス基準)をクリアした、耐久試験後の触媒特性が確保できる触媒仕様を決定する。
  - ・ディーゼルシステム全体:白金族使用量50%以上低減(自主目標70%低減)
  - ・DOC単体:白金族使用量50%以上低減(自主目標60%低減)
  - ・LNT単体:白金族使用量50%以上低減(自主目標75%低減)
  - ・DPF単体:白金族使用量50%以上低減(自主目標65%低減)
- (2) 触媒機能を統合化した触媒システム(「DOC+DPF」+「LNT」等からなるシステム)について、平成21年10月に施行される排出ガス規制(ポスト新長期対応ディーゼル排気ガス基準)をクリアした、耐久試験後の触媒特性が確保できる触媒仕様を決定する。
  - ・ディーゼルシステム全体:白金族使用量50%以上低減(自主目標85%低減)
- ⑥-2排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/ディーゼル排ガス浄化触媒の 白金族使用量低減化技術の開発

本研究では、ディーゼル車両の排気ガス浄化触媒中の白金族使用量を50%以上低減するために、大型ディーゼル車排ガス浄化システムの酸化触媒とディーゼルパティキュレートフィルター用触媒を対象とし、基盤からプロトタイプ触媒製造までの必要な技術をシームレスにバランス良く取り組むことにより、白金族金属の使用量を低減しかつ高い浄化性能を持つディーゼル排ガス浄化触媒システムを実現する研究開発を実施する。

- (1) 白金族使用量を低減したディーゼル酸化触媒の開発
  - ・活性種・複合化・担体高度化技術:活性・安定性が高く、実用的な反応条件の変動にも対応できる触媒活性種を開発する。複合ナノ粒子を担体に固定化する技術を開発する。担体の長期性能改良の指針を得るとともに、触媒活性種を効果的に担持する技術を開発する。

- ・担体設計実用化技術:担体用粉末粒子の試作規模をパイロットレベルに高めて実証試験を行う と共に、実排ガス試験用の担体用粉末を提供する。
- ・触媒機能高度化技術:解明された触媒活性の制御因子に基づいた白金族使用量低減につながる 触媒設計指針を提案する。
- ・複合ナノ粒子調製技術:解明された触媒成分金属の複合化に関する知見に基づき、白金族使用 量低減につながる触媒設計指針を提案する。
- ・実用候補触媒の抽出:以上の技術に基づき、模擬排ガスを用いた条件で白金族使用量を従来より40%低減した酸化触媒を開発する。
- (2) 白金族代替DPF用触媒の開発
  - ・非白金族系DPF用触媒のスス燃焼温度400℃以下を達成し、白金族使用量を40%低減したDPF触媒を開発する。
- (3) 触媒の部材化技術とシステム構築
  - ・従来と比較して白金族使用量を10%低減できる機能分離コート技術を開発するとともに、各研究項目を総合した実用的なディーゼル排ガス触媒システムを提案する。

### 【最終目標】:平成25年度

(1) 実用触媒製造技術の確立

白金族使用量を50%以上低減した酸化触媒およびDPFを開発し、市販NOx除去後処理装置と組み合わせることにより、平成21年10月に施行される排出ガス規制(ポスト新長期対応ディーゼル排気ガス基準)をクリアすることを確認する。

- ・750℃、50時間の耐久に耐えるディーゼル酸化触媒を開発する。
- ・800℃、50時間の耐久に耐えるDPF用触媒を開発する。
- ・プロトタイプ触媒の試作に向けて有望な実用候補触媒を大量に調製するための技術を確立する。
- ・開発した触媒について、実機サイズのハニカムとDPFを用いた触媒システムでトラックエン ジンを用いたベンチ評価を行い、課題を確認する。この課題を解決し、実用性をもった触媒シ ステムを開発する。
- ⑦-1精密研磨向けセリウム使用量低減技術開発及び代替材料開発/代替砥粒及び革新的研磨 技術を活用した精密研磨向けセリウム低減技術の開発

本研究では、精密研磨向けセリウム使用原単位を30%以上低減可能な基盤技術と製造技術を開発するために、代替砥粒の要求特性解明と代替砥粒の開発、革新的研磨技術を活用した研磨要素技術と研磨プロセス技術開発の各研究開発項目について研究開発を実施する。

- (1) 研磨メカニズムの解明と代替砥粒の設計
  - ・量子分子動力学シミュレーションを用いた酸化セリウムによる研磨プロセスの電子論的メカニズムの解明及び、既存砥粒と単純ペロブスカイト酸化物をモデル材とした研磨メカニズムの解析によるモデル材の組成・構造と研磨特性の関連性を明らかにする。
- (2) 代替砥粒の研究開発
  - ・既存砥粒の研磨性能の把握・改良及び、複合酸化物を用いた代替砥粒構築プロセスの開発により、ラボレベルで酸化セリウム使用量の5%の代替を達成する。
- (3) 革新的な遊離砥粒研磨メカニズムに基づく酸化セリウム使用量削減要素技術開発

- ・電界配置制御された砥粒とガラス試料面における摩擦摩耗による化学反応を援用する研磨技術の創出及びガラス基板と砥粒もしくはその分散媒が活発なラジカル反応場を醸成あるいはフェムト秒レーザーなどによるガラス前処理の導入を検討し、革新的な研磨技術を組み合わせた高度な精密研磨要素技術として従来研磨効率の30%向上を達成する。
- (4) 革新的オングストロームオーダー表面創製技術
  - ・要素技術を、高速電界トライボ片面研磨技術及び革新的な前処理技術を導入する両面研磨技術 に適応することにより、ラボレベルで酸化セリウム使用量を10%削減する精密研磨システム 技術を実験的に確立する。

## 【最終目標】: 平成24年度

- (1) 研磨メカニズムの解明と代替砥粒の設計
  - ・研磨プロセスシミュレータとコンビナトリアル計算化学手法の融合による酸化セリウム代替砥 粒の理論的最適化及び、既存砥粒と単純ペロブスカイト酸化物をモデル材とした研磨メカニズ ムの解析による材料特性とその特性が研磨に関与する機構を明らかにする。
- (2) 代替砥粒の研究開発
  - ・代替砥粒とスラリーの最適化及び、複合酸化物を用いた代替砥粒の開発により、ラボレベルで酸化セリウム使用量の10%代替を達成する。
- (3) 革新的な遊離砥粒研磨メカニズムに基づく酸化セリウム使用量削減要素技術開発
  - ・酸化セリウム代替砥粒で構成したスラリーによる高効率な研磨手法の確立及び電界印加やガラス基板表面にフェムト秒レーザー等により研磨環境や研磨前処理技術をコントロールすることで、従来研磨効率に対し40%向上させる要素技術を開発する。
- (4) 革新的オングストロームオーダー表面創製技術
  - ・要素技術開発の成果を、高速電界トライボ片面研磨技術及び革新的な前処理技術を導入する両面研磨技術に適応し、最適化することで、ラボレベルで酸化セリウム使用量を20%削減する精密研磨システム技術を開発する。
- ⑦-2精密研磨向けセリウム使用量低減技術開発及び代替材料開発/4BODY研磨技術の概念 を活用したセリウム使用量低減技術の開発

本研究では、精密研磨向けセリウム使用原単位を30%以上低減可能な基盤技術と製造技術を開発するために、研磨技術を4つの要素(4BODY)に分けた砥粒、メディア粒子、工具(研磨パッド)、プロセス技術に注目し、従来と同等以上の研磨特性を有し酸化セリウムの成分比を30%削減した研磨材の開発、および従来と同等の酸化セリウムの使用量で研磨能率を向上させる技術開発の各研究開発項目について研究開発を実施する。

- (1) 複合砥粒の研究開発
  - 1) 無機複合砥粒の開発
  - ・酸化セリウムの成分割合を30%以上減じ、代表的なガラス素材であるソーダガラスに対して 従来の酸化セリウム砥粒と同等の研磨特性(研磨能率と仕上げ面粗さの比が同一)を実現する 無機複合砥粒を見い出す。
  - 2) 有機無機複合砥粒の開発

- ・代表的なガラス素材であるソーダガラスに対して従来の酸化セリウム砥粒の研磨特性(研磨能率と仕上げ面粗さの比)の1.4倍以上の研磨特性を実現する有機無機複合砥粒を見い出し、サンプルが提供できる状態にする。
- (2) メディア粒子を用いた研磨技術の研究開発
  - 1) 有機メディア粒子を用いた研磨技術の研究開発
  - ・代表的なガラス素材であるソーダガラスに対して従来の酸化セリウム砥粒の研磨特性(研磨能率と仕上げ面粗さの比)の1.2倍の研磨特性を実現する有機メディア粒子を見い出し、サンプルが提供できる状態にする。
  - 2) 無機メディア粒子を用いた研磨技術の研究開発
  - ・代表的なガラス素材であるソーダガラスに対して従来の酸化セリウム砥粒の研磨特性(研磨能率と仕上げ面粗さの比)の1.4倍の研磨特性を実現する無機メディア粒子を見い出し、サンプルが提供できる状態にする。
- (3) 研磨特性を向上させる研磨パッドの研究開発
  - 1) 多孔質熱硬化性樹脂研磨パッドの研究開発
  - ・代表的なガラス素材であるソーダガラスに対して従来の多孔質ウレタン研磨パッドあるいはセリアパッドに比較して、1.4倍以上の研磨特性(研磨能率と仕上げ面粗さの比)を実現する 多孔質研磨パッドを見い出し、サンプルが提供できる状態にする。
  - 2) 隙間調整型研磨パッドの研究開発
  - ・直径200mmのソーダガラスの工作物に対してうねりを発生させることなく均質に研磨する ことが可能な研磨パッドを見い出し、サンプルが提供できる状態にする。
- (4) プロセス技術の研究開発
  - 1) パッドエッチング技術の研究開発
  - ・代表的なガラス素材であるソーダガラスに対して従来の酸化セリウムを用いた研磨の研磨特性 (研磨能率と仕上げ面粗さの比)と同等の研磨特性を実現するパッドエッチング技術を確立する。
  - 2) 共振研磨技術の研究開発
  - ・水晶の研磨特性(研磨能率と仕上げ面粗さの比)を従来の1.1倍以上にする研磨技術を実現する。

## 【最終年度】: 平成24年度

- (1) セリウム使用量低減に寄与する複合砥粒の開発
- ソーダガラスを中心とする種々の硝材に対し、
- ・酸化セリウム使用量低減率30%の無機複合砥粒を開発する。
- ・酸化セリウム使用量低減率30%の有機無機複合砥粒を開発する。
- (2) セリウム使用量低減に寄与する複合粒子研磨法のメディア粒子の開発 ソーダガラスに対し、
  - ・研磨能率40%以上向上できる有機メディア粒子を開発する。
  - 研磨能率40%以上向上できる無機メディア粒子を開発する。
- (3) セリウム使用量低減に寄与する研磨パッドの開発
- ソーダガラスを中心とする種々の硝材に対し、
- ・研磨能率40%以上向上できる研磨パッドを開発する。
- ・大型工作物の均一研磨を実現する。
- (4) セリウム使用量低減に寄与するプロセス技術の開発

ソーダガラスを中心とする種々の硝材に対し、

- ・軟質工作物に対して砥粒フリーの研磨技術を開発する。
- ・水晶の研磨能率を20%以上向上する。
- ・通常の砥粒と比較して研磨特性を向上させるラッピング砥粒の開発を行う。

⑧蛍光体向けテルビウム・ユウロピウム使用量低減技術開発及び代替材料開発/高速合成・評価法による蛍光ランプ用蛍光体向けTb、Eu低減技術の開発

本研究では、蛍光ランプの蛍光体に含まれるTb、Euの使用量を80%以上低減する基盤技術と製造技術を開発するために、蛍光ランプ用の材料及び新規製造プロセスの開発、最新の高速理論計算手法、材料コンビナトリアルケミストリを用いたTb、Eu低減型蛍光体の開発、ランプの光利用効率を高めるガラス部材の開発、これらの材料のランプシステムの適合性を高速で評価する基盤技術を確立する開発、ランプ製造プロセスとして、製造工程の低温化技術の開発と蛍光体種別分離再利用技術の開発の各研究開発項目について研究開発を実施する。

#### 【中間目標】: 平成23年度

- (1) 蛍光体のTb、Eu使用量低減技術の開発
  - ・ X線構造解析シミュレータの開発による蛍光体構造の決定、高速化量子化学計算を利用して蛍 光体の発光効率を予測するまでの手法を確立し、少なくとも一つ実証例を示す。
  - ・ランプでの適合性、量産性に問題のないTb、Euの使用を20%低減できる蛍光体の組み合わせを提示する。
  - ・ 蛍光体の励起発光メカニズム、劣化メカニズムの組成依存性を明らかにする。 この見出された蛍光体の量産技術について目途をつける。
- (2) ランプ部材の開発
- ・従来のガラス・蛍光体と組み合わせて15%以上高い光束を実現できるシリカ皮膜を開発する。
- ・全方位光に対して従来のガラス管より10%以上の取り出し効率を有するガラスを開発する。 量産化の方法について目途をつける。
- (3) ランプシステムにおける最適化・蛍光体省使用製造技術の開発
  - ・蛍光体等の高速評価法を実際の材料に適用し、改良した上で方法論として確立する。
  - ・開発された材料を用いて実ランプ試作と性能試験を行い最終目標に向けての問題点を明確にする。
  - ・各材料の光束向上への寄与を定量的に明らかにする。
  - ・ハロリン酸と3波長蛍光体の分離が可能になっていること。
- ・100℃程度低温化できるプロセス技術を開発する。また新材料に適用する場合の指針を得る。
- (1)  $\sim$  (3) で開発された技術をあわせて Tb、Euの使用量を 45%以上低減することを目標とする。

## 【最終目標】: 平成25年度

- (1) 蛍光体のTb、Eu使用量低減技術の開発
  - ・ランプでの適合性、量産性に問題のないTb、Euの使用を30%以上低減できる蛍光体の組み合わせを提示する。
  - ・この蛍光体の量産技術を確立する。
- (2) ランプ部材の開発
- ・従来のガラス・蛍光体と組み合わせて20%以上高い光束が得られるシリカ保護膜を開発する。

- ・全方位光に対して従来のガラス管より10%以上の取り出し効率を有するガラスを開発する。
- ・このガラス部材の量産方法について適切な方法を確立する。
- (3) ランプシステムにおける最適化・蛍光体省使用製造技術の開発
  - ・ランプ構成の最適化により Tb、Euの使用を 5%低減できる蛍光体の使用量低減技術を開発する。
  - ・ランプ製造工場内、市中で現在廃棄されている蛍光体が再利用できる技術を開発し、10%以上の蛍光体の使用量を低減する。
- ・ランプ製造プロセスの改善により、蛍光体のロスを10%程度改善する。

最終的には細管ランプなどの技術を併用し、(1)~(3)で開発された技術をあわせて従来のものより製造時のTb、Euの使用量を80%以上低減することが可能なランプを提示する。また、(1)の技術成果を用い、高効率に発光するLED用蛍光体の候補を少なくとも3つ提案する。

9-1 Nd-Fe-B系磁石を代替する新規永久磁石及びイットリウム系複合材料の開発/Nd-Fe-B系磁石を代替する新規永久磁石の研究

資源枯渇に脅かされない至極ありふれた元素である鉄と窒素を主原料とすることにより脱希少金属化を可能とさせ、現行のNd-Fe-B系磁石の特性を凌駕するポテンシャルを持つ高飽和磁束・高磁気異方性新規磁石材料の探索を行う。鉄一窒素系化合物として窒化鉄系材料と希土類 (R)-Fe-Nに着目し、モータ用途への応用展開をにらみつつ、ナノレベルの微細構造・形成解析と磁気特性評価を通し、窒化鉄の所望相の合成技術指針の獲得とR-Fe-Nのバルク化技術の構築を図る。

### 【最終目標】:平成22年度

- (1) 窒化鉄系材料の開発
  - ・出来る限り早期に80%以上の $\mathrm{Fe}_{16}\mathrm{N}_{2}$ 相からなる微粒子を作製し、高性能磁石化に資する基本特性を確認する。
  - ・磁石化に向けて、より保磁力を高める磁性粉末の開発指針を得る。
- (2) R-Fe-N系材料の開発
  - ・モータ用磁石としての実用を考え、保磁力20kOe程度を目標とする。
- ⑨-2 Nd-Fe-B系磁石を代替する新規永久磁石及びイットリウム系複合材料の開発/超軽量高性能モータ等向けイットリウム系複合材料の開発

本プロジェクトは、ジスプロシウムを含有するモータ部材に将来的に代わる可能性のある次世代モータ部材を実現するイットリウム系複合材料の開発を行う。イットリウム系複合材料は高温超電導材料であり、線材形状をしていることから界磁巻線同期回転機への適用が可能である。超電導材料は電気抵抗が零であることから損失なく電流を流すことができる。特に、イットリウム系超電導体( $YBa_2Cu_3O_y$ )は約90 K以上の臨界温度( $T_c$ )を有し、特に磁場中で高い臨界電流( $I_c$ )特性を示すことから、電動機等の回転機の磁場中での応用に適した材料である。しかしながら、コンパクトなモータを実現するためには効果的な磁場環境を作り出すことが必要であり、この条件を満たすためには、強力な電磁力に耐え得る機械的な強度と共に接続損失低減のために単長の長い

線材が必要となる。そこで、本研究開発では、まず、必要な特性を有した超長尺イットリウム系複合材料を作製するプロセスを開発する。並行して、更に希少金属の利用率の低減が期待できるプロセス開発を行うと共に、イットリウム系複合材料を用いたモータに対する構造最適化のための課題を抽出することを目的とした概念設計、巻線技術及び冷却技術等の要素技術開発を実施する。

### 【最終目標】: 平成22年度

(1) 300 A/c m幅(@77K、自己磁場)の特性を有し、1kmを超える超長尺複合材料作製を見通す。

#### (具体的目標値)

- ・ 1 km 長複合材料を作製し、平均  $I_c$  が 2 0 0 A / c m幅以上 (@ 7 7 K、自己磁場) であることを実証する。
- ・同条件で作製した10 m長以上の複合材料で $I_c$  が300 A/c m幅(@ 77 K、自己磁場)以上を実証する。
- (2) 超電導層の連続形成プロセスにおいて、原料収率40%以上を見通す。

#### (具体的目標値)

- ・全成膜領域に対し、静止成膜により原料収率40%以上を実証する。
- ・成膜領域の一部を通過する移動成膜により、静止成膜結果から予想される成膜量を実証する。
- (3) 大容量回転機(500kW級-1000rpm級)概念設計により、イットリウム系複合材料による大型回転機の優位性を見通す。また、傘型界磁巻線の試作とその熱的、電磁気的、機械的特性評価およびサーモサイフォン式冷却試験とその冷却特性評価により、500kW級-1000rpm級回転機の設計に資する。

### (具体的目標値)

- ・磁場―応力―伝熱を連成した回転機評価用シミュレータを開発する。
- ・上記シミュレータを用いた総合評価により傘型コイル利用回転機で従来の永久磁石回転機に 比べ希少希土類元素使用量が1/10となる成立性を示す。
- ・傘型界磁巻線工程等における加工劣化を抑制し、巻線状態での特性で複合材料  $I_c$  の 70 %以上を得ることを実証する。
- ・Neを用いたサーモサイフォン式冷却装置において高速回転時の回転数と冷却能力の関係を明らかにし、回転機の冷却設計を可能にする。

#### ⑨-3 Nd-Fe-B系磁石を代替する新規永久磁石の実用化に向けた技術開発

資源枯渇に脅かされない元素を主原料とし、現行のネオジム磁石(Nd-Fe-B系磁石)と同等の性能を有する新規磁石の開発を行う。開発にあたっては、モータ用途への応用展開をにらみつつ、ナノレベルの微細構造・形成解析と磁気特性評価を通し、新たな磁性材料のバルク化技術の構築を図る。これまでにネオジム磁石そのものの代替として研究開発項目9-1で窒化鉄系やR-Fe-N系(R は希土類元素)の磁性材料の研究開発を行ったが、実用化までには至っていない。

#### 3. 達成目標

### 【目標】 平成24年9月

- (1) さらなる磁性材料の探索
- ① 新規磁石材料の探索:磁石材料探索マップの中で有望と思われる、代替磁石の可能性を見極める。

- (2) 磁石化技術の開発
- ①「分散・表面修飾の基礎技術」:単分散粒子50 v o 1 %以上
- ②「大量合成技術」:約10g/バッチの合成技術確立
- ③「バルク化技術」:ナノ鉄粉末において磁性相充填率70vo1%以上のラボレベル実証
- ⑩-1B 排ガス浄化向けセリウム使用量低減技術及び代替材料開発、透明電極向けインジウムを代替するグラフェンの開発/排ガス浄化向けセリウム使用量低減技術及び代替材料開発/高次構造制御による酸化セリウム機能向上技術および代替材料技術を活用したセリウム使用量低減技術開発

自動車等のエンジン排ガス浄化装置には助触媒としてセリウムが使用されているが、世界的な自動車需要の増加、排ガス基準値強化への対応、白金触媒の材料コスト削減のための使用量増などにより引き続き使用量が増えることが想定される。そのため本研究開発では、セリウム助触媒を対象に、(1)材料設計、(2)セリウム低減のためのシーズ技術開発、(3)実用触媒の観点に基づく評価指針と実用化の検討により、セリウム使用量を30%以上削減する技術を確立する。また、触媒の設計指針および実用化指針を確立する。

### 【最終目標】:平成23年度

- (1) 触媒の設計指針および実用化指針を確立する。
- (2) 触媒の量産化技術を確立する。
- (3) セリウム使用量を30%以上低減した、ガソリン車向け排ガス浄化触媒を製作、評価する。
- ⑩-2 排ガス浄化向けセリウム使用量低減技術及び代替材料開発、透明電極向けインジウムを代替する グラフェンの開発/透明電極向けインジウムを代替するグラフェンの開発/グラフェンの高品質大量 合成と応用技術を活用した透明電極向けインジウム代替技術の開発

インジウムは、液晶テレビやパソコンモニター等のフラットパネルディスプレイのガラス上の透明導電用にITOとして使用されている。インジウムの使用量低減技術の開発、ZnOによる代替材料開発を本プロジェクトでは平成19年度から行っているが、インジウムの供給不安定による影響がなく、さらに新たな機能を備えた代替材料の開発も進められ成果が発表され始めている。グラフェン等のナノ炭素材料を用いた透明導電フィルムの開発は、炭素というありふれた材料を用いることから材料コスト低減や、フレキシブル用途への展開も可能であることから、我が国の産業競争力の向上が期待できる。そのため本研究開発では、プラズマCVDによる低温大面積グラフェン合成技術を基に、新しいナノ炭素材料であるグラフェンの高品質化、大量合成法及び透明電極利用の技術を開発することにより、透明電極材料としての優れた特性を引き出し、ITO代替材料実現に資するグラフェンを開発する。

#### 【最終目標】:平成23年度

- (1) 幅600mm、連続合成速度0.6m/分以上が可能なロール t o ロール装置を開発する。
- (2)線幅0.3mmのグラフェンパターンニング技術を開発する。
- (3) 300m幅のロール t o ロールフィルム工程で、長さ5m以上の連続転写法を開発する。
- (4) 下記の特性を持つグラフェン透明導電膜をロール t o ロールで製造する技術を開発する。

シート抵抗: 500Ω/sq以下

透 過 率: 87%以上

b\* : 4以下

へ イ ズ: 3%以下

### (助成事業)

平成24年度、以下の2件の事業を採択した。

- ① 超硬工具のタングステン使用量を削減する代替サーメット材料の実用化
- ② 耐摩耗工具用新規開発サーメットの改良と実用化

## 平成25年度公募内容

(1) 概要

希少金属の使用量低減を加速するため、研究開発項目①~⑩の早期実用化、産業界で取り 組まれている希少金属代替・低減技術の実用化開発で、事業終了後数年に実用化することが 期待される優れた提案に対し、助成金を交付する。

(2) 対象事業者

日本に登記されていて、日本国内に本申請に係る主たる技術開発のための拠点を有し、助成事業終了後、実用化を主体的に実施する事業者。

(3) 研究開発テーマの実施期間

2年を限度とする。(必要に応じて延長する場合がある。)

(4) 研究開発テーマの助成率

2/3以内

(5) 本年度事業規模

約150百万円

事業規模については、変動があり得る。

4. 実施内容及び進捗(達成)状況

各研究開発項目毎に研究開発責任者(テーマリーダー)を設置し、以下の研究開発を実施した。

- 4.1 平成24年度までの(委託事業)事業内容
- ①透明電極向けインジウム使用量低減技術開発
- 1) テーマリーダー: 国立大学法人東北大学 中村 崇 教授
- 2) 実施体制:国立大学法人東北大学、株式会社アルバック、三井金属鉱業株式会社、DOWAエレクトロニクス株式会社
- 3) 事業内容

平成20年度の実施事項

- ・コンビナトリアルスパッタリング実験装置の立ち上げ、及び電気電導度測定器、分光光度計、 電子顕微鏡、ホール測定器、シート抵抗測定器等の評価装置の設置を行い、研究開発体制を構 築した。
- ・シミュレーションにより、第4元素を添加した系の状態密度、電荷密度分布の評価を実施した。 その結果、Ti, Al, Si, Mg, Mo, Sbなどが電気伝導度を維持できることを明らか にした。また、塗布法に使用するナノ粒子の形状分布と電気伝導性の関係をパーコレーション モデルにより評価した。

- ・高い伝導性をもつSi、Al、Ti、Mg、Sb等の第4元素を添加したITO膜の探索研究 を実施した。
- ・従来組成のITOならびに金属Sbターゲットを同時スパッタで膜生成を行い、抵抗率はIT Oに比較し一桁高いが、赤外領域での高い透明性を確認した。
- ・また、アルカリ溶液に対してIn-Sn溶液を加える、逆混法によってIn-Sn系シングルナノ粒子の合成に成功し、それらの熱処理によって、シングルナノサイズのITO粒子を得た。
- ・さらにそれらのナノインクを用い、インクジェット法で作成した膜は従来の本プロジェクトの中間評価の目標である膜厚 200nm以下、透過率 90%以上、ヘイズ 1%以下、表面抵抗率  $100\Omega/s$  q をほぼ達成した。

#### 平成21年度の実施事項

- ・表面元素分析装置、高速シミュレータ、パラレル合成装置、噴霧乾燥機、インク分散機、静 電塗布装置、大型ターゲット成形装置などの装置を設置し、より研究開発を加速した。
- ・高濃度のSn、第4元素を添加した系を計算対象にし、バンド構造、キャリア濃度、有効質量の濃度依存性を明らかにし、最適な添加元素、添加量を見出した。その結果、Ti、Sbについては30%以上添加しても電気伝導度を維持できることを明らかにした。また、塗布法に使用するナノ粒子の形状分布と電気伝導性の関係を明らかにするパーコレーションモデルの改良を行い、塗布を行った場合の電気伝導確保の粒子分布の理論的解析を行った。
- ・高い伝導性をもつTi、Sb等の第4元素を添加したITO膜の探索研究を実施した。
- ・Sb-Sn複合酸化物からなるターゲットを用いてコンビナトリアルスパッタ法を行い、熱処理の有無によらず比較的良好な可視光透過率および熱処理によりITO側の値よりも高い導電率を得た。
- ・二源同時スパッタ法により Ti あるいは Sbの添加、基板加熱および積層化により、従来の ITO 薄膜と同程度あるいはそれ以上の体積抵抗率および可視光透過率を有する省インジウム組成 ITO スパッタ薄膜を実現した。
- ・10 n m以下のA g を挟み込んだ I T O 薄膜の作製を行い、薄膜の厚さをトータル 50 n mで ほぼ従来の特性と同等の薄膜作製に成功した。また、その薄膜は通常の環境ではかなり安定で あることも確認した。
- ・従来のITO粒子に比べて 4%ほどIn使用量を減らした、単分散立方体状ITOナノ粒子(10~50 nm)のエチレングリコール溶媒を用いた加水分解直接法合成に成功した。
- ・また、アルカリ溶液に対してIn-Sn溶液を加える、逆混法によってIn-Sn系シングルナノ粒子の合成に成功し、それらの熱処理によって、シングルナノサイズのITO粒子を得た。
- ・さらにそれらのナノインクを用い、インクジェット法で作製した膜は従来の本プロジェクトの中間評価の目標である膜厚 200nm以下、透過率 90%以上、ヘイズ 1%以下、表面抵抗率  $100\Omega/s$  q をほぼ達成した。

### 平成22年度の実施事項

・高濃度のSn、第4元素を添加した系を計算対象にし、バンド構造、キャリア濃度、有効質量の濃度依存性を明らかにし、最適な添加元素、添加量を見出した。その結果、Ti、Sbについては30%以上添加しても電気伝導度を維持できることを明らかにした。また、塗布法に使用するナノ粒子の形状分布と電気伝導性の関係を明らかにするパーコレーションモデルの改

良を行い、途布を行った場合の電気伝導性を確保する粒子分布の理論的解析を行った。

- ・赤外線分光光度計、粉体物性評価装置、微粉砕機、RF電源、アークモニタ、粉体特性装置などを設置し、インクの研究開発、省インジウム組成の研究開発を加速した。
- ・S b を添加した省インジウム組成 I T O ターゲット (直径 1 0 0 mm) を試作し、D C スパッタ法により薄膜を作製し、基板加熱および積層化により従来の I T O 薄膜と同程度の体積抵抗率および可視光透過率を有する省インジウム組成 I T O スパッタ薄膜を実現した。また、本年度に購入した赤外線分光光度計を用い、熱処理あるいは基板加熱により赤外光領域において従来の I T O 薄膜よりも非常に高い透過率が確認された。
- ・二源同時スパッタ法で作製したFe添加省インジウム組成ITO薄膜でも、平成21年度に開発した手法で従来のITO薄膜と同等あるいはそれ以上の電気伝導度と光透過度を実現した。
- ・ $I_{n_2O_3}$ を50mass%まで減少させた薄膜について、従来通りのエッチング性能が確保できるための湿式エッチング技術を検討した。
- ・量産用カソード(6  $10 \, \text{mm} \times 300 \, \text{mm} \times 5 \, \text{mm}$ )にて省インジウム組成のITO(I  $n_2$  O  $_3-50 \, \text{mass} \, \text{S} \, \text{NO}_2$ )ターゲット製造法を検討し、相対密度  $80 \, \text{%}$ (目標  $99.5 \, \text{%}$ )のターゲットを試作した。
- ・省インジウム組成 I T O (I n  $_2$  O  $_3$   $_3$   $_5$  0 m a s s  $_8$  S n O  $_2$ ) ターゲットにて  $_2$  5 0  $_2$  C 加熱 成膜した I T O 膜の体積抵抗率は、単層膜で  $_2$  7 0 0  $_4$   $_4$  C m、下地に結晶化した I T O 膜を挿入した積層膜で  $_4$  5 0 0  $_4$   $_4$  C m を達成できた(最終目標  $_4$  5 0  $_4$   $_4$  C m の約 2 倍)。透過率は 単層膜、積層膜共に  $_4$  9 6 %(測定波長  $_4$  5 0 n m)で目標値  $_4$  5 %以上を達成した。
- ・省インジウム組成 I T O 間に 1 0 n m以下のA g 合金を挟み込んだ薄膜を作製し、従来の特性 と同等の薄膜作製に成功した。しかし、金属挟み込み技術による高導電性 I T O 薄膜の耐候性 について調べた結果、金属薄膜の膜厚が 3 0 n m以下においては耐候性が不十分であった。
- ・平成21年度の噴霧乾燥機に続き粉体特性装置を設置し紛体特性の最適化を図り、 $In_2O_3$ が50mass%組成の実機スパッタ装置に搭載可能サイズのターゲットを作製した。
- ・アルカリ溶液に対して I n S n 溶液を加える、逆混法によって I n S n 系シングルナノ粒子の合成についてソルボサーマル法を適用することにより、低温焼成性を有するシングルナノサイズの I T O ナノ粒子の液相直接合成に成功した。
- ・逆混法により得られた I T O ナノインクを用いて作製した膜は、膜厚 150 nm以下、透過率 95%以上、ヘイズ 1%以下、表面抵抗率  $100 \Omega / \text{sq}$ であり、本プロジェクトの最終目標 にきわめて近い特性を示すことが明らかとなった。

## 平成23年度の実施事項

- ・第4元素、Sn高濃度添加におけるバンド構造、キャリア濃度、有効質量の濃度依存性を評価 した。GW計算でバンドギャップ値を評価し、光透過率の波長依存性を計算した。これらの計 算結果から第4元素としてA1の有効性を示した。
- ・パーコレーションモデルを3次元に発展させ、ITOナノ粒子の濃度と電流値の関係について 詳細解析を行った。2種類の粒径のITOナノ粒子、コアシェル構造をもつITOナノ粒子に より、インジウム使用量の削減が図られることを明らかにした。
- ・二源同時スパッタ法で作製したA1添加省インジウム組成ITO薄膜でも、平成21年度に開発した手法で従来のITO薄膜と同程度の電気伝導度と光透過度を実現した。

- ・Fe添加省インジウム組成 I T O 小型ターゲットを試作した。このターゲットを用いて省インジウム組成 I T O スパッタ薄膜作製を行い、体積抵抗率  $270 \mu \Omega cm$ 、透過率 95%以上の特性を持つ省インジウム組成 I T O 薄膜のプロセス技術を開発した。
- ・ I  $n_2O_3$  e 5 0 m a s s %まで減少させた新規省インジウム組成 I T O 薄膜に対して、従来通りのエッチング性能が確保できる湿式エッチング技術を確立した。
- ・省インジウム組成ITO間に10nm以下のAg合金を挟み込んだ薄膜を作製し、従来の特性と同等の薄膜作製に成功した。ITO作製条件、金属挟み込み技術の工夫により高導電性ITO薄膜の耐候性が向上することを確認した。
- ・省インジウム組成のF e 添加 I TO (I  $n_2O_3$ : 50 m a s s %) ターゲット製造法を確立するにあたり、更なる原料の造粒、成型・焼成工程の最適化を図り、量産用カソードサイズ(610 mm×300 mm×5 mm)で相対密度約99%(目標99.5%)のターゲットを試作した。
- ・上記ターゲットを用いて大型スパッタ装置での省インジウム組成 I T O 薄膜作製を行い、量産 プロセスとして安定放電して不具合なく成膜できることを確認した。
- ・インクジェット法塗布用ナノインクの工業化技術確立を目指して、インクとなる単分散粒子の 再現性のある安定的な生産技術の開発を重点的に行った。ITOナノインクの経時安定性・完 成度を向上した。
- ・インクジェット法塗布用ナノインクのパイロットプラントの製作と工業化技術を確立した。 I T O ナノインクのさらなる低抵抗化のため、ガス・有機物吸着分析装置を導入し、 I T O ナノ 粒子表面の吸着物の解析を行った。また、 I n 使用量削減率 6 %を達成可能な微粒子を合成した。
- ・これまでに開発した高性能 I T O ナノ粒子のさらなる低抵抗化・インク組成・焼成条件の最適 化により本プロジェクトの最終目標を満たし得るインクジェット法塗布用 I T O ナノインク を開発した。

### ②透明電極向けインジウム代替材料開発

- 1) テーマリーダー:公立大学法人高知工科大学 山本哲也 教授
- 2) 実施体制:公立大学法人高知工科大学、アルプス電気株式会社、株式会社オルタステクノロジー、ジオマテック株式会社、ハクスイテック株式会社、三菱瓦斯化学株式会社

#### 3) 事業内容

## 平成20年度の実施事項

- ・樹脂から成るカラーフィルター (CF) 上成膜と同じ基板温度条件下で、反応性プラズマ蒸着 法(RPD法)、及び、スパッタ法、両面におけるガラス基板上製膜条件、製膜プロセスを検 討した。両成膜技術の優位性の検討を通して、相乗効果を図ったその結果、ガラス基板上で膜 厚150nmのGaドープZnO膜(GZO膜)において、シート抵抗及び透過率の年度目標 値を満足し、かつ、耐熱性、耐薬品性における最終目標値を達成する製膜を実現した。
- ・膜厚150nmのGZO膜の耐湿性向上を目的としたキャップ層の効果を検討し、その効果を確認した。
- ・GZO膜の熱安定性を検討し、熱処理雰囲気、製膜法、製膜条件の違いが与える影響、熱処理 による薄膜内亜鉛の蒸発と残留膜応力、電気特性、光学特性の変化との相関について新たな知 見を得た。

- ・3インチ小型液晶ディスプレイパネルに実装可能な基本特性(電気特性・光学特性)を有し、 密着性及び耐薬品性においてパネル製造プロセスに適合性のあるZnO系透明電極付CF基 板のスパッタ法による製膜技術を開発した。
- ・薄膜トランジスタ (TFT) 画素電極において、厚さ 50 n m  $\sim$  100 n m に対して、線幅 (L) / 線間隔 (S) = 4  $\mu$  m / 4  $\mu$  m の微細加工を実現するエッチング液を開発した。加えて、 3  $\mu$  m / 3  $\mu$  m の加工見通しまで得た。
- ・TFTのアルミニウム金属電極とZnO透明電極間のオーミック接触を実現した。
- ・CF側共通電極としてZnO系透明電極を用いた3インチ小型液晶ディスプレイパネルの 実現に世界で初めて成功した。信頼性評価として、温度60℃、湿度90%の環境下で、パネ ル点灯特性が変わることなく、連続動作1,000時間以上を達成、実用レベルであること を確認した。本研究開発の意義として、ZnO透明導電膜形成プロセス以外は、ITO電極 を用いた従来の液晶ディスプレイパネル製造プロセスから変更することなく、パネル製造がで きることを実証したことにある。

#### 平成21年度の実施事項

酸化亜鉛透明電極材料に関する事業:

「ZnO透明導電膜部材(ZnO薄膜)の開発」

- ・反応性プラズマ蒸着法による酸化亜鉛透明導電膜材料開発において、Ga添加ZnO(GZO)に微量のインジウム(1%以下)を添加することにより耐湿熱性向上を実現し、耐湿熱性における抵抗変化率の中間目標値を達成した。なお、本件は特許出願(平成22年10月1日)を行っている。
- ・反応性プラズマ蒸着法により製膜したGZO膜の光吸収特性や電気特性について、成膜条件および熱処理条件との相関を解明するとともに、キャリア散乱機構の膜厚依存性、ドーパント周囲の局所構造を解明した。
- ・製膜法(反応性プラズマ蒸着法とスパッタ法の製膜法)の相違が、GZO膜の電気特性、光学特性にもたらす影響を電気特性・光学特性および耐熱性の観点から検討した。その結果、応用に対する要求特性を満足する適当な製膜法に対する知見を得た。加えて製膜法に依存なく、従来のITO透明導電膜に対する酸化亜鉛透明導電膜の優位性、特に光学特性に対する優位性を明らかにした。
- ・薄膜トランジスタ(TFT)アレイ基板側の画素電極において、酸化亜鉛透明導電膜の微細加工に必要なフォトリソグラフィ技術に関連するアルカリ性薬液のp H値、処理温度そして処理時間ならびに酸化亜鉛膜向けの酸性エッチング液の最適化を行った。その結果、フォトリソグラフィに用いる露光装置(コンタクトアライナー)の光学的適用限界を超えた、これまで内外において報告のない、線幅(L)/線間隔(S)=  $2 \mu m/2 \mu m$ の微細パターン形成に成功した。
- ・TFTに用いられるMo/A1重ね電極と酸化亜鉛透明画素電極間の接触抵抗率を評価するためのフォトリソグラフィ用マスクの設計と作製を行った。このマスクを用いて接触抵抗率を評価するためのケルビン多層構造素子の作製技術を開発した。

酸化亜鉛透明電極の液晶ディスプレイパネルへの応用に関する事業:

「大型基板対応製膜技術の開発」

・大型基板に対応可能な酸化亜鉛透明導電膜製膜技術開発として、反応性プラズマ蒸着法の特徴 の一部を直流マグネトロンスパッタ法に応用するための、研究開発用スパッタ製膜装置の設計 および製作を行った。

「大型液晶パネルの応用開発」

- ・量産用のスパッタ製膜装置を用い、20インチクラス液晶ディスプレイパネル製造プロセスに 対応可能な基板サイズ680×880mmのガラス基板上で、前年度までの320×400m mのガラス基板上と同等の電気特性、光学特性を有するGZO膜の成膜を確認した。
- ・大型液晶パネルと同等の製造プロセスからなる20インチ液晶ディスプレイパネルを試作した。酸化亜鉛透明導電膜の今期の耐湿性に関する知見を活かし、酸化亜鉛透明電極表面にキャップ層を設けた透明電極を用いた。その結果、カラーフィルター上透明電極への酸化亜鉛膜の適用にあたって、3インチ小型液晶パネル製造プロセスとは異なる工程に関連した課題(薬液対応、上記キャップ層の本事業の目的を睨んだ膜厚最適化など)を抽出することができた。
- ・酸化亜鉛系透明電極に関する標準化検討委員会の立ち上げに先駆け、有識者からの助言を得る ための酸化亜鉛フォーラムを開催(平成22年1月28日、東京秋葉原、参加人数180名) した。

#### 平成22年度の実施事項

酸化亜鉛透明電極材料に関する事業:

「ZnO透明導電膜部材 (ZnO薄膜)の開発」

- ・反応性プラズマ蒸着法による酸化亜鉛透明導電膜材料開発において、Ga添加ZnO(GZO) に対して、昨年度のような第3元素(インジウム)を添加することなしに、成膜条件の制御の みにより、耐湿熱性向上を実現し、耐湿熱性における抵抗変化率の中間目標値を達成した。
- ・反応性プラズマ蒸着法により製膜したGZO膜の光吸収特性や電気特性について、成膜条件および熱処理条件との相関を解明するとともに、粒界のホール移動度への負(大きさの減少)の 影響を解明し、その影響を軽減するための方針を立てた。
- ・製膜法(反応性プラズマ蒸着法とスパッタ法の製膜法)の相違が、GZO膜の電気特性、光学特性にもたらす影響を電気特性・光学特性および耐熱性の観点から検討した。その結果、応用に対する要求特性を満足する適当な製膜法に対する知見を得た。加えて製膜法に依存なく、従来の ITO 透明導電膜に対する酸化亜鉛透明導電膜の優位性、特に低温成膜条件での光学特性に対する優位性、差別性を明らかにした。
- ・薄膜トランジスタ(TFT)アレイ基板側の画素電極において、昨年に引き続き、酸化亜鉛透明導電膜の微細加工に必要なフォトリソグラフィ技術に関連するアルカリ性薬液のpH値、処理温度そして処理時間ならびに酸化亜鉛膜向けの酸性エッチング液の最適化および管理方法の精査を行った。その結果、フォトリソグラフィに用いる露光装置(コンタクトアライナー)の光学的適用限界を超えた、これまで内外において報告のない、線幅(L)/線間隔(S)=  $2 \mu m/2 \mu m$ の微細パターン形成の再現性確認に成功した。
- ・TFTに用いられるMo/A1重ね電極と酸化亜鉛透明画素電極間の接触抵抗率を評価するためのフォトリソグラフィ用マスクの設計と作製、およびこのマスクを用いて接触抵抗率を評価するためのケルビン多層構造素子の作製技術の開発を実用化に活かすべく装置の設計を行った。酸化亜鉛透明電極の液晶ディスプレイパネルへの応用に関する事業:

「大型基板対応製膜技術の開発」

・大型基板に対応可能な酸化亜鉛透明導電膜製膜技術開発として、反応性プラズマ蒸着法の特徴 の一部を直流マグネトロンスパッタ法に応用した研究開発用スパッタ製膜装置により、従来の スパッタリング法よりも、より低抵抗率のZnO透明導電膜を得ることに成功した。 「大型液晶パネルの応用開発」

- ・量産用のスパッタ製膜装置を用い、20インチクラス液晶ディスプレイパネル製造プロセスに 対応可能な基板サイズ680×880mmのガラス基板上で、前年度までの320×400m mのガラス基板上と同等の電気特性、光学特性を有するGZO膜の成膜および特性の膜厚依存 性を確認した。
- ・大型液晶パネルと同等の製造プロセスからなる20インチ液晶ディスプレイパネルの2回目の 試作を行った。
- ・上記、試作に当たって、本プロジェクトの成果を広報し、酸化亜鉛材料開発の推進を国内で図るべく、「酸化亜鉛の最先端技術と将来」なるタイトルの書籍(出版社:シーエムシー出版、平成23年1月31日発刊)の監修(「液晶ディスプレイ用透明導電膜」なる章に本プロジェクトの成果をまとめた)を行った。

### 平成23年度の実施事項

酸化亜鉛透明電極材料に関する事業:

「ZnO透明導電膜部材(ZnO薄膜)の開発」

- ・酸化亜鉛多結晶透明導電膜における低抵抗率化への重要因子であるホール移動度の更なる向上のためには、多結晶構造における柱状構造の配列度向上が最も重要であることが判明した。この知見を基に、酸化亜鉛透明導電膜と同系統の結晶構造を有するナノシート(膜厚1.2 nm)をガラス基板(アモルファス構造)上にバッファ層として塗布し、酸化亜鉛透明導電膜を成膜することで、基板温度200℃条件下で得られるホール移動度とほぼ同程度の大きさを有する酸化亜鉛透明導電膜を室温条件でも実現できることが判明した。
- ・材料開発において、重要課題であった耐湿熱特性については、膜厚によって、解決策を変えた。 液晶デイスプレイテレビ実装に当たる膜厚 150nm あるいはそれよりも厚い場合には、成膜中の酸素流量の制御のみで、耐湿熱試験(温度  $60^{\circ}$ 、湿度 95%、500 時間)前後の抵抗変化率が 10%程度と、耐湿熱特性に優れた ZnO透明電極材料を開発した。
  - 一方、膜厚がさらに薄い、具体的には100nmにおいては、成膜中の酸素流量の制御および導電性向上のために添加しているGa以外の添加元素をガリウム濃度よりも1桁程度低い濃度において同時添加することで、耐湿熱試験(温度60°C、湿度95%、500時間)前後の抵抗変化率が10%程度(最小では6.6%)と、耐湿熱特性に優れたZnO透明電極材料を開発した。本件は、特許出願済(出願日:平成24年1月23日、出願人:高知工科大学、件名:

「透明導電性酸化亜鉛薄膜及び該透明導電性酸化亜鉛薄膜の製造方法」)。

「大型基板対応製膜技術の開発」

- ・昨年度の「反応性プラズマ蒸着法の特徴の一部を直流マグネトロンスパッタ法に応用した研究開発用スパッタ製膜装置により、従来のスパッタリング法よりも、より低抵抗率のZnO透明導電膜を得ることに成功した」において再現性を十分に検討し、安定成膜が得られることを確認した。「大型液晶パネルの応用開発」
- ・液晶ディスプレイパネルへの応用開発では、G a 添加 Z n O透明電極を適用した20インチ液 晶カラーテレビを試作(第3回目)し、従来テレビ(ITO電極)に比較して、表示軌道時輝 度において、5%優れている事を確認した。当該液晶デイスプレイテレビでは、共通電極にお いて、ITO代替100%を達成している。この結果、インジウム原単位削減率50%以上の プロジェクト目標を達成した。尚、パネルメーカーによる長期駆動試験においても合格の判定

となった。本件は、NEDOとの共同においてリリース(平成23年9月30日、「インジウム代替・酸化亜鉛で鮮明画像を実現」)した。当該液晶デイスプレイテレビは、CEATEC Hおよび n a n o t e c h 2 0 1 2 において展示した。

・TFT(Thin Film Transistor)画素側電極として酸化亜鉛を適用する際に必要となる微細パターン形成プロセスの開発を行い、弱酸性のエッチング液を用いることにより、ライン&スペースが  $2 \mu m \& 2 \mu m$ を実現した。さらにTFTの金属電極との間でオーミックコンタクト等の電気特性を評価し、Z n O透明電極の可能性を確認した。

## ③希土類磁石向けジスプロシウム使用量低減技術開発

- 1) テーマリーダー:国立大学法人東北大学 杉本 諭 教授
- 2) 実施体制:国立大学法人東北大学、国立大学法人山形大学、独立行政法人物質・材料研究機構、 独立行政法人日本原子力研究開発機構、株式会社三徳、インターメタリックス株式会 社、TDK株式会社、トヨタ自動車株式会社

### 3) 事業内容

### 平成20年度の実施事項

- ・磁石原料合金の結晶粒径の微細化では、現在の量産品の結晶粒径より小さい3.9  $\mu$  mを 実現した。
- ・原料粉末の超微細化・高純度化装置の雰囲気を高純度化することにより、従来より微細かつ低酸素量の粉末の作製に成功した。また、Nd-Fe-B系焼結磁石を作製して粉末微細化により保磁力増加の傾向を実証した。
- ・ストリップキャスト材において $Nd_2Fe_{14}B$ 相の層間隔と凝固長さを評価する技術を確立した。また、焼結磁石においてNdリッチ相存在形態の均一性を評価する技術を確立し、水素処理後の粗粉におけるNdリッチ相存在頻度、ジェットミル後の微粉末におけるNdリッチ相存在状態も明確化した。
- ・磁場中熱処理後急冷することにより、4kOe程度の保磁力の上昇を確認した。
- ・粒子サイズ 3 μ m以上のN d <sub>9</sub>F e <sub>14</sub>Bエピタキシャル薄膜を作製した。
- ・Dyリッチ原料合金の組成・組織の検討、粉体特性の最適化により、シェル化率:80%以上を達成し、焼結磁石における保磁力、残留磁化の増加を確認した。
- ・既存の商用焼結磁石のマルチスケール解析により、最適化熱処理の有無、Cu、A1添加の有無による保磁力変化のメカニズムの解明を行い、焼結磁石で保磁力を高めるために必要な界面ナノ構造について知見を得た。
- ・中性子小角散乱で強磁場プロセス中のその場観察を行えるようにするための超伝導電磁石の設計・製作を行った。また、Nd-Fe-B焼結磁石に対する中性子小角散乱測定を実施し、内部平均構造と保磁力の相関について示した。
- ・Nd-Fe-B系焼結磁石において微細結晶粒子群の磁化測定に成功し、結晶粒子集団における反転領域の発生機構が保磁力発現機構に重要な役割を果たしていることを示した。
- ・Nd<sub>2</sub>Fe<sub>14</sub>Bの結晶粒表面の磁気特性を電子論的立場から評価し、保磁力が結晶粒の表面状態によって強く支配されることを明らかにした。
- ・磁石の損失分布を提示するとともに到達磁石性能のケーススタディーを完了した。

#### 平成21年度の実施事項

研究開発の中間目標である「結晶粒径の微細化、強磁場プロセスによる界面ナノ構造制御技術

等の開発により、ジスプロシウム(Dy)使用量原単位 20%削減」に対し、結晶粒径の微細化技術の開発により、粉末粒径を  $2.7\mu$  mまで小さくすることにより高保磁力を実現し、Dy  $20\% \sim 30\%$ 削減に相当する磁気特性を有するDy フリー焼結磁石の作製に成功した。一方、界面ナノ構造制御技術の開発により、全粒子の 82%にDy リッチシェルを形成させ、Dy 20%削減に相当する磁気特性を有する焼結磁石の作製に成功しており、研究開発の中間目標を達成している。

なお、本研究開発テーマでは参画機関を(a)から(d)に示した研究開発グループに分け、各 グループ間の連携を図って研究を行ってきた。これまでにおける各研究開発グループの進捗を 示すと以下のようになる。

- (a) 「結晶粒の微細化・原料粉末最適化による保磁力向上技術の開発」(微細化Grp)
  - ・原料合金開発ではデンドライト間隔  $2 \mu$  mを達成し冷却速度による D y の分布傾向を把握した。また、結晶核生成段階で溶湯に応力を加えることによりさらなる微細化が可能であることを知見した。
- ・焼結磁石においてはジェットミルの最適化により原料粉末粒径  $1 \mu$  mまで微細化を達成し、D y 削減率 20%相当磁石の開発に成功した。
- ・組織最適化に関する研究では、ストリップキャスト (SC) 材の組織とジェットミル (JM) 粉末におけるNdリッチ相の存在形態の定量的評価から、SC材の厚みを薄くすればラメラ間 隔を小さくできること、JM粉末粒径が小さいほど、Nd-richの付着率が低下すること を明らかにした。この結果から、新原料合金作製手法を提案した。さらに薄膜を用いた粒界モデルの組織観察から、保磁力の回復には粒界に形成されるアモルファス相が関係することを世界で初めて提唱した。
- (b) 「界面ナノ構造制御による保磁力向上技術の開発」(界面Grp)
- ・強磁場印加による保磁力向上の研究では、Dyを10%含有する試料において、強磁場中熱処理による6kOeの保磁力上昇を観測した。一方、粒径微細化試料に対しても、強磁場中熱処理による5kOeの保磁力上昇を観測した。
- ・薄膜を用いたモデル界面を作製する研究では、 $SiO_2/Ta$ (110)上で最大粒径  $5\mu$  m 程度の $Nd_2Fe_{14}$ B粒子作製に成功した。また、サファイア(110)/Mo(110)上で最大粒径  $2\sim 3\mu$  m程度のエピタキシャル $Nd_2Fe_{14}$ B単結晶粒子の作製に成功し、Nd overlayer を被覆して熱処理することによって、14kOe の保磁力上昇を実現した。
- ・Dyを結晶粒界に集中させて高保磁力磁石を開発させる技術では、中間目標値であるDy削減率20%磁石(8%Dy-30kOe)を実現した。また、同磁石の界面組成が従来と異なることを確認した。
- (c) 「界面構造解析と保磁力発現機構解明による指導原理の獲得」(解析Grp)
- ・高速アトムプローブ用検出器の導入によって解析手法を高度化し、焼結磁石粒界近傍のDy他の元素分布を定量的に明らかにした。
- ・中性子小角散乱法で得られる散乱パターンに、焼結温度や焼結粒径による内部平均構造の相違 が敏感に現れること、散乱パターンと保磁力の間に強い相関があることを確認した。
- ・粒子集団での磁化反転を確認、協同現象単位としての粒子集団径を $10-100\mu$ mサイズと磁区構造観察から見定め、そのサイズの微小磁石試料を作製し、体積測定を行い、表面全体にDy等の金属スパッタを行う手法を確立した。また、試料の調製から測定まで、一切大気と遮断して行える手法も確立した。

- ・電子状態に関する第一原理計算からR-Fe-Bの磁気特性を評価する手法を確立し、Nd FeB粒界における磁気異方性定数が面方位によってバルクと異なる符号になることを示した。この結果をマイクロ磁気シミュレーションに用いることにより、粒界近傍から磁化反転が始まり、粒全体の保磁力が40%程度低下する可能性があることを示した。
- (d) 「自動車用磁石への応用」(応用Grp)
- ・シミュレーションにより最適モータ設計を行い、Dy30%低減させたNd-Fe-B系焼結 磁石の使用によるモータトルク向上率ならびにその場合における必要保磁力を明らかにした。 平成 22 年度の実施事項

研究開発の最終目標である、「結晶粒径の微細化、強磁場プロセスによる界面ナノ構造制御技術等の開発により、ジスプロシウム(Dy)使用量原単位 30%削減」に対し、結晶粒径微細化技術によって粉末粒径を $1.2\mu$  mまで小さくし、高保磁力でかつDy 量 40%削減に相当する磁気特性を有するDy フリー焼結磁石の作製に成功した。一方、界面ナノ構造制御技術でも、全粒子に均一にDy リッチシェルを形成させるH-HAL(Homogeneous High Anisotropy Field layer)法によって、Dy 量 25%削減に相当する磁気特性を有する焼結磁石の作製に成功しており、研究開発は順調に進捗している。

なお、本研究開発テーマでは参画機関を(a)から(d)に示した研究開発グループに分け、各グループ間の連携を図って研究を行ってきた。これまでにおける各研究開発グループの進捗を示すと以下のようになる。

- (a) 「結晶粒の微細化・原料粉末最適化による保磁力向上技術の開発」(微細化Grp)
- ・原料合金開発では結晶核生成段階で溶湯に応力を加えることで  $2 \mu$  m以下の結晶粒を持つ合金が作製可能になった。また、量産化に向けた検討では、ストリップキャスト法を改良し、連続的に溶湯に応力を加える鋳造法の完成に向け検討を進めた。
- ・焼結磁石においてはジェットミルの最適化により原料粉末粒径  $1~\mu$  mまで微細化を達成し、焼結・熱処理条件の最適化と合わせて、N~d~Jッチ相をある程度細かく分散することに成功した。これにより D~y 削減率 4~0~%相当磁石の開発に成功した。
- ・組織最適化に関する研究では、焼結体組織の定量化評価を行い、 $1 \mu m$ 程度の微細な粒子からなる焼結体の粒子が、a 面方向に伸びていること、高い保磁力が得られた磁石においては、そのN d リッチ相の三重点の分布が理想状態に近くなっていることを見出した。
- (b) 「界面ナノ構造制御による保磁力向上技術の開発」 (界面Grp)
- ・強磁場印加による保磁力向上の研究では、新規に構築したネオジム系焼結磁石のための強磁場 プロセス装置を用いることで、Ndリッチ相に力を生じさせることでその構造制御の可能性 を示し、最大6kOeの保磁力上昇を確認した。
- ・薄膜を用いたモデル界面を作製する研究では、サファイア/Mo(110)単結晶下地層上で 50nmから  $2\mu$  m程度の粒径のエピタキシャル $Nd_2Fe_{14}B$ 粒子の作製に成功した。また、 MgO(100)/Mo(100)単結晶下地層上で粒径 100 nm程度の孤立したエピ タキシャル $Nd_2Fe_{14}B$ 単結晶微粒子の作製に成功した。両試料ともにNd over1a yer を被覆して熱処理することによって、<math>11kOeの保磁力上昇を実現し、最高 26kO e の保磁力を達成した。
- ・Dyを結晶粒界に集中させて高保磁力磁石を開発する技術では、上記H-HAL法において、 平成21年度までにDy削減率20%(8%Dy-30kOe)の結果を得ていたが、平成2

2年度は主に組成調整により D y 削減率を 2 5% (7% D y - 2 9 k O e) に改善し、最終目標の D y 削減率 3 0% (7% D y - 3 0 k O e) に着実に近づいている。

- (c) 「界面構造解析と保磁力発現機構解明による指導原理の獲得」(解析Grp)
- ・高速アトムプローブ用検出器の導入によって解析手法を高度化し、焼結磁石粒界近傍のDy他の元素分布解析の効率を著しく高め、試作焼結磁石の結晶粒界の定量解析を実施した。
- ・非偏極及び偏極中性子小角散乱法を用いて、焼結主相粒の異方的な形状と保磁力の間に相関が あることを明らかにした。
- ・粒子集団の磁化反転について、平均結晶粒子径が  $5~\mu$  mと  $3~\mu$  mの 2 種の試料について、表面酸化と機械的ダメージの保磁力と飽和磁化に及ぼす影響を分離するため、 $2~0~-1~2~0~\mu$  mサイズの微小試料を異なる酸素分圧下で調製し、約 1~0~0 試料の高感度測定を行い、酸化の影響の方が大きいことを確認した。また、微小試料でも研磨面(c~ 面とそれに垂直面)の相違の影響が顕著であることを確認した。
- ・電子状態に関する第一原理計算からDyFeBの結晶磁気異方性を評価し、DyFeB粒界においてもNdFeB粒界と同様、磁気異方性定数が面方位によって負符号になることを示した。ただし、NdFeB結晶粒において表面から 5 層程度をDyで置換することで保磁力は増大することがマイクロ磁気シミュレーションにより示された。
- (d) 「自動車用磁石への応用」(応用Grp)
- ・シミュレーションにより最適モータ設計を行い、Dyを330%低減させる事で得られると期待される高磁束密度により、出力密度を1.65倍に向上させた。

#### 平成23年度の実施事項

研究開発の最終目標である、「結晶粒径の微細化、強磁場プロセスによる界面ナノ構造制御技術等の開発により、ジスプロシウム(Dy)使用量原単位 30%削減」に対し、結晶粒径微細化技術によって粉末粒径を $1.1\mu$ mまで小さくし、高保磁力でかつDy量 40%削減に相当する磁気特性を有するDyフリー焼結磁石の作製に成功した。一方、界面ナノ構造制御技術でも、全粒子に均一にDyリッチシェルを形成させるH-HAL(Homogeneous High Anisotropy Field layer)法によっても、Dy量 30%削減に相当する磁気特性を有する焼結磁石の作製に成功しており、2つの研究開発方針のいずれにおいても、最終目標を達成した。

なお、本研究開発テーマでは参画機関を(a)から(d)に示した研究開発グループに分け、各グループ間の連携を図って研究を行ってきた。これまでにおける各研究開発グループの進捗を示すと以下のようになる。

- (a) 「結晶粒の微細化・原料粉末最適化による保磁力向上技術の開発」(微細化Grp)
  - ・原料合金開発では、結晶核生成段階で溶湯に応力を加えることで  $2 \mu$  m以下の結晶粒を持つ合金が作製可能になった。また、量産化に向けた検討では、ストリップキャスト法を改良し、熱間塑性変形プロセスにより、微細粒状組織率 33%を達成し、その際の主相粒子径 1.25  $\mu$  mを達成した。
  - ・焼結磁石においては、NdJッチ相のさらなる均一分散を目指して、 超微粉作製装置により、平均粒径 100nmのNdJッチ相微粉末を安定して生産できる技術を確立した。また、これまで開発した、Dyフリーで 20kOeの保磁力をもつ磁石に関して、熱的安定性を高めるため、原料合金や粉砕工程を最適化して、磁化曲線の角形性を究極的な高レベル ( $\sim 97\%$ ) に高める技術を確立した。さらに、安定生産できる技術を目指して、磁気特性のばらつきを小

- さくするためのジェットミル工程を確立した。これらの技術により、Dy削減率40%相当磁石開発の目標を達成した。
- ・組織最適化に関する研究では、新規に開発された高保磁力磁石の熱特性を評価し、保磁力向上の要因が、 $N_{\rm eff}$  (局所反磁界)の低下によるものであることを示した。加えて、モデル界面を解析することにより、保磁力が回復した試料の主相と接するN d リッチ相において、非平衡相の存在比が高いことを示した。
- (b) 「界面ナノ構造制御による保磁力向上技術の開発」(界面Grp)
- ・強磁場印加による保磁力向上の研究では、新規に構築したネオジム系焼結磁石のための強磁場プロセス装置を用いることで、Ndリッチ相を含む粒界構造を制御できる可能性を示し、最大6kOeの保磁力上昇を確認した。Dy拡散に対しても、磁気力が効果を高めることを確認した。
- ・薄膜を用いたモデル界面を作製する研究では、サファイア/Mo(110)単結晶下地層上で $50\,\mathrm{n}\,\mathrm{m}$ から $2\,\mu\,\mathrm{m}$ 程度の粒径のエピタキシャルNd $_2\,\mathrm{F}\,\mathrm{e}_{14}\,\mathrm{B}$ 粒子の作製に成功した。また、膜厚を制御することにより膜中の粒径を微細化し、約 $10\,\mathrm{k}\,\mathrm{O}\,\mathrm{e}$  の保磁力上昇を達成した。また、Ndoverlayerの被覆と熱処理によっても約 $10\,\mathrm{k}\,\mathrm{O}\,\mathrm{e}$  の保磁力上昇を達成した。加えて、これらの粒径微細化効果と界面制御効果がそれぞれ独立した現象であることを示した。
- ・Dyを結晶粒界に集中させて高保磁力磁石を開発する研究では、上記H-HAL法において、 平成22年度までにDy削減率25% (7%Dy-29kOe) の結果を得ていたが、主に組成・組織調整により、最終目標であるDy削減率30% (7%Dy-30kOe) を達成した。
- (c) 「界面構造解析と保磁力発現機構解明による指導原理の獲得」(解析Grp)
- ・20kOeを示すDyフリー微細粒焼結磁石について、FIB-SEM/TEM/アトムプローブを用いた詳細なマルチスケール組織解析を行い、最終熱処理によって高Nd組成の厚い粒界相が増加し、保磁力が向上することを明らかにした。また、一般的な焼結磁石のアトムプローブ解析結果及びモデル薄膜実験結果から、粒界相が軟磁性特性を示すことがわかり、粒界相中の非磁性元素濃度を更に増加させることが保磁力向上のために重要であることを明確にした。
- ・中性子小角散乱によって得られたデータを解析することにより、焼結磁石内部の平均構造の 異方性と保磁力の間の相関を定量的に明らかにした。
- ・粒子集団の磁化反転について、微小試料で研磨面(c面とそれに垂直面)の相違の影響が顕著であることを確認した。 $90\mu$ mサイズ付近を境界として、より大きな試料では、mmサイズ試料群と同様に、c面平行研磨の方が保磁力低下をもたらすが、それ以下では関係が逆転することを示した。
- ・電子状態に関する第一原理計算から、3次元アトムプローブにより同定された組成の磁気特性を検討した結果、粒界相(f c c F e -N d 不規則合金)がF e J y チ組成側で強磁性を示すことを確認した。
- (d) 「自動車用磁石への応用」(応用Grp)
  - ・シミュレーション計算により、Dyを30%低減する事で得られる高磁束密度磁石に加え、 高磁束密度軟磁性材料の採用、磁石配置の工夫によるリラクタンストルク最適化、巻線占積 率向上などの組み合わせにより、出力密度が2倍程度向上する可能性が出てきた。

### ④超硬工具向けタングステン使用量低減技術開発

- 1) テーマリーダー:独立行政法人産業技術総合研究所 小林 慶三 相制御材料研究グループ長
- 2) 実施体制:独立行政法人産業技術総合研究所、住友電気工業株式会社

### 3) 事業内容

#### 平成20年度の実施事項

- ・試作した雰囲気制御型の通電接合装置によりタングステン量を70質量%未満にしたサーメット合金基材に超硬母材つきcBNを接合した。接合には機械的合金化等の処理によって作製したインサート材料を使用。接合強度が100MPa以上であることを確認。さらに1000℃の加熱を行っても剥離しないことを確認した。
- ・TiCNを主成分とするサーメット合金とWCを主成分とする超硬合金を同時に焼結した際の界 面状態を詳細に調べた。界面での反応に炭素量が影響することを明らかにし、同時焼結のための基礎データを収集した。さらに積層プレス成形を行うため、新しいコンセプトの装置を導入し、プレス条件等について検討した。また、焼結時の硬質粒子の結晶成長メカニズムを調べ、構成粒子の大きさを制御した焼結技術の基礎検討を行った。

### 平成21年度の実施事項

- ・雰囲気制御通電接合技術により耐熱性を損なわずに、タングステン量が70質量%未満のサーメット合金基材に超硬合金母材つき硬質材料を120秒/個以内で接合できるインサート材料を開発した。得られた実用チップ形状の試作品は、焼入れ鋼の連続切削試験において従来のロウ付け切削工具と同等の性能を達成した。なお、評価はコーティング処理を行わずに実施し、チップ材質のみの評価を精密に行った。超硬母材なしの硬質材料をタングステン量が70質量%未満のサーメット合金基材に通電接合する技術へ高度化を図っている。
- ・炭窒化チタン系硬質粒子と結合金属相との反応性を評価し、焼結特性及び伝熱特性の改善を 行った。さらに、多相組織硬質材料と被削材との反応性を評価し、切削工具としての性能を 確認した。
- ・これらの知見から、異種硬質材料粉末から複合構造硬質切削工具をプレス成形したのち、同時焼結できる技術を構築した。タングステン量を72質量%未満とした3次元ブレーカ付チップを試作してコーティング処理を施した後、一般鋼の連続旋削試験を行い、従来の超硬合金切削チップと同程度の性能を達成した。

#### 平成22年度の実施事項

- ・雰囲気制御通電接合技術により、タングステン量が55質量%未満のサーメット合金基材に 超硬合金母材つき硬質材料を120秒/個以内で接合できるインサート材料を開発した。さ らに、接合強度を向上するため、インサート材料の配置技術についても開発した。超硬母材 なしの硬質材料をサーメット合金基材に100MPa以上の接合強度を得ることができた。 一連の接合作業をさらに短時間で実現するため、ロボットを組み込んだ接合技術の高度化を 図っている。
- ・炭窒化チタン系硬質粒子を主成分とするサーメットと超硬合金の焼結特性を詳細に調べ、同時焼結するための要素技術を精査した。サーメット粉末と超硬合金粉末を積層状にプレス成形する技術を開発し、合金組成や焼結条件などを適正化して、変形量を抑えた切削工具(M級チップ)を試作した。また、サーメット/超硬界面における反応相を詳細に調べ、同時焼結における密着性を改善した。硬質粒子を球状化することで破壊靭性 $K_{1C}$ が10MPa・m-1/2を超える材料を開発した。

・タングステン量を60質量%未満とした3次元ブレーカ付チップを試作して、断続切削試験が行えるよう技術の高度化を図っている。

### 平成23年度の実施事項

- ・ハイブリッド切削工具では、刃先を構成する超硬母材なし硬質材料と炭窒化チタンを含む硬質材料基材とを強固にかつ耐熱性を持たせて短時間で接合する新しい技術を開発した。これによりタングステンの使用量を40%以上低減した工具の開発に成功した。試作したハイブリッド切削工具で焼入れ鋼の高負荷連続切削試験を行い、従来のロウ付け切削工具と同等の性能(焼入れ鋼SUJ2に対して、切削速度150m/min、切り込み量0.3mm、乾式の切削条件において、0.25mm/rev以上の送り量で1分間の切削加工を実現)を達成した。
- ・複合構造硬質切削工具では超硬合金とサーメットを積層成型し、同時に焼結する技術を開発した。超硬合金層へ圧縮応力を導入し、強靭化を図ることができた。その結果タングステン使用量を30%以上低減した切削工具の開発に成功した。積層プレスに適した超硬合金およびサーメットの粉末を作製し、3次元ブレーカを有するM級(外周無研磨)チップを作製した。本チップに従来のコーティング処理を行い、一般鋼(SCM435溝材)に対して、切削速度200~250m/min、送り量0.2~0.4mm/rev、切り込み量1.5~2.0mm、湿式の切削条件で断続切削を行い、従来のコーティング超硬合金と同程度の性能であることを確認した。

#### ⑤ 超硬工具向けタングステン代替材料開発

- 1) テーマリーダー:国立大学法人東京大学 林 宏爾 名誉教授
- 2) 実施体制:独立行政法人産業技術総合研究所、財団法人ファインセラミックスセンター、株式会 社タンガロイ、富士ダイス株式会社

## 3) 事業内容

#### 平成20年度の実施事項

- ・新規炭窒化物固溶体粉末の合成条件を確立し、同粉末を用いたサーメットの焼結条件の検討、焼結したサーメットの組織の観察と解析、破壊靭性、硬さ、熱伝導率などの特性を明らかにした。 また、レーザーCVD法によってアルミナ等のハードコーティング温度を従来よりも低温化する ことに成功し、サーメット基材へのコーティング技術開発を大きく進展させた。
- ・切削工具用サーメット開発のための新規固溶体粉末等を用いたサーメットを作製し、切削工に成功し、サーメット基材へのコーティング技術開発を大きく進展させた。
- ・耐摩耗工具用サーメット開発についても新規固溶体粉末等を用いたサーメットを作製し、組織、 材料特性等を明らかにすると共に、サーメット大型部材の焼結時の割れの原因を解明した。

#### 平成21年度の実施事項

- ・新規固溶体粉末等を用いて開発したサーメットの強度、靱性、熱伝導率などと組織学的因子との 関係を明らかにし、またTEM観察等によって新規サーメット組織の特徴を明らかにした。
- ・サーメット焼結体の変形・そりなどのシミュレーション技術、液相の接触角の精密測定技術を 確立した。
- ・サーメット基材にレーザーCVD法によってアルミナおよび窒化チタン膜をコーティングする 条件を明らかにした。切削工具用および耐摩耗用の新規サーメットの材料特性、切削性能、耐

摩耗性、被研削性を明らかにした。そして、それらの研究を通して本テーマに関する中間目標を達成した。

## 平成22年度の実施事項

- ・ (Ti, Mo) (C, N) 等の新規固溶体粉末等を用いてサーメットを作製し、均質化および 微粒化技術を確立した。
- ・サーメットのTEM観察技術によって硬質相粒子界面等の微構造の特徴を明らかにし、サーメットの成形体構造評価技術を確立した。
- ・レーザーCVD法によるサーメット基材へのアルミナのコーティングにおいて、その組織制御技術等を確立した。
- ・切削工具用サーメットとして、新規固溶体粉末を用いた高熱伝導率及び高破壊靭性値サーメットを開発すると共に、サーメット表面の傾斜組成化を実施して高靭性層を形成することに成功した。
- ・耐摩耗工具用サーメットとして、(Ti, Mo)(C, N)等の新規固溶体粉末を用いたサーメットの組織と特性を明らかにし、また大型サーメットのための成形・焼結技術、加工技術を開発した。

### 平成23年度の実施事項

- ・新規サーメットの基盤技術として、高温に於ける炭窒化物とニッケル間の濡れ性評価技術、大型サーメットの高速脱脂を実現した成型技術、TEMによる微構造解析技術を確立した。
- ・材料組成 (焼結収縮挙動) の異なる層からなる多層成形体の焼結シミュレーション技術および サーメットの耐久性を向上させる新規コーティング技術を開発した。
- ・新規サーメットに適した固溶体粉末を開発し、機械的特性を向上させた均質組織を有するサーメットを開発した。
- ・切削工具については新規固溶体粉とサーメットの組成制御技術を開発し、従来より高い熱伝導率および破壊靱性を有するサーメット工具を開発した。
- ・耐摩耗工具については新規サーメットの開発を通じて研削加工性の向上、大型部品焼結の為 の粉末成形技術を開発し、製造技術を確立した。
- ⑥-1排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/遷移元素による白金族代替技 術

及び白金族の凝集抑制技術を活用した白金族低減技術の開発

- 1) テーマリーダー:日産自動車株式会社 菅 克雄 主幹研究員
- 2) 実施体制:国立大学法人電気通信大学、国立大学法人名古屋大学、早稲田大学
- 3) 事業内容

#### 平成21年度の実施事項

・Feを使った触媒活性点として触媒活性を高めるためにはFeを2価の状態にしておくことが必要であること、COとの結合エネルギーが高いと触媒活性点として機能低下することが粉末を使った触媒活性試験及び第一原理計算に基づくシミュレーションから明らかになった。これを具現化する活性点としてFeにLaやPrを添加したペロブスカイト型酸化物等が有効であることがわかった。今回の結果からCOとFe活性点の結合エネルギーが遷移元素触媒活性点選択の指標の一つとして使えることが明確になった。

- ・耐久試験後の貴金属粒子径をシングルナノオーダーに留める方策として基材粒子径を数百 n m に小さくすることが有効であるが、従来よりも約20%基材粒子径を小さくする触媒製造法を明らかにした。
- ・DPF触媒において、HC、CO、O<sub>2</sub>、NOを考慮したPM反応速度の定量化手法及び気孔率約60%、平均細孔径16 $\mu$ mのDPFをベースに、HC、CO、O<sub>2</sub>、NOを考慮したPMの反応モデルを作った。
- ・プラズマによる触媒反応性向上確認試験として、充填層及びディップコート触媒を用いた反応 装置によるNOの分解、および吸蔵能力の評価を行い、常温でもプラズマ併用下ではPt/B a系触媒は高いNO分解能、吸着能を有していることを明らかにした。
- ・プラズマを触媒層上流で発生させた状況を模擬し、触媒にオゾンを供給して $C_3H_8$ 、CO、NO酸化反応試験を行い、いずれも反応温度が低温化することを確認した。さらに、オゾンによる低温化の効果代とPt担持量との関係から、反応温度 $200\sim250$ ℃の範囲でPt担持量が50%程度低減できる可能性が示された。一方、NOx直接分解反応への促進効果は確認できなかった。
- ・DOCとDPFとの機能一体化のため、エンジン始動時のHCおよびCO浄化に対するDOC とDPFの分担率を求めた。COは、ほぼすべてDOCで浄化しているが、HCはDPFも浄 化に寄与していることが明らかになった。

#### 平成22年度の実施事項

#### • 白金族代替材料技術

Feを使った触媒活性点として触媒活性を高めるためには、Feの電子状態を還元側にシフトすることが必要である。酸化セリウム等の酸素吸蔵放出材料に担持することによって担持基材とFe酸化物の間の相互作用によりFeの酸化数が還元側にシフトし、反応の酸化還元サイクルが促進されることを明らかにした。

微細な鉄化合物活性点は、高温の使用条件で容易に凝集粗大化し活性低下することが問題であるが、この問題に対し、担持基材のナノ粒子間に鉄化合物を配置する調製法を開発した結果、800℃以上のエンジン排ガス耐久後も数ナノメートルの微粒子を維持することに成功した。耐久試験後の白金族粒子径をシングルナノオーダーに留める方策として基材粒子径を数百nmに小さくすることが有効であるが、従来よりも基材粒子径を約50%小さくする触媒製造法を明らかにした。

白金ナノ粒子の粒径、触媒活性、白金ナノ粒子にレーザー光を当てた時の電子の(緩和)応 答特性との間に相関関係があることが分かった。

#### プラズマによる触媒反応促進技術

プラズマ反応場における触媒反応促進効果を解析し、プラズマ放電時の触媒へのNO x 吸着促進挙動、酸素及び水蒸気の共存影響、投入電圧の効果、NO x 吸蔵材料濃度の影響を明らかにした。プラズマ反応場でP t - B a / アルミナ等の触媒を使用することによって 2 0 0  $^{\circ}$  C以下の低温域においてもNO分解反応におけるN  $_2$  への選択性が 9 0  $^{\circ}$  以上にまで高まる。触媒とプラズマ反応場との組み合わせの有効性を検証した。

#### DPF反応性向上シミュレーション技術

X線CTによって得られたDPF内部構造のデータ、酸化反応の活性化エネルギー等を用いてシミュレーション解析のための計算コードを作成した。これによりDPF内部のガス流れ及びパーティキュレートの堆積・反応過程の解析が可能となった。

#### ・触媒機能統合システム

酸化機能を統合したDOC+DPF触媒は、HCの低温活性向上が課題であることがわかった。エンジン始動時のHCおよびCO浄化に対するDOCとDPFの分担率を調べると、COについては、ほぼすべてDOCで浄化しているのに対して、HCについてはDPFも浄化に寄与していることが明らかになった。

また、DOC+DPF触媒の下流にLNTを配置することを考慮し、還元雰囲気下での還元剤の透過量を調べた。DOCのみに比べ約1/4まで低下することがわかった。

#### 平成23年度の実施事項

### • 白金族代替材料技術

Feを使った触媒活性点の候補材料を決めた。Feの複合酸化物を酸化セリウム等の酸素吸蔵放出材料の粒子間および細孔内に担持した材料を候補材料として実用化を目指すこととした。この材料中のFeは、Feの電子状態が還元状態をとりやすくなるため、反応の酸化還元サイクルが促進され、触媒活性が向上する。さらに、通常のFe複合酸化物は高温の使用条件で容易に凝集粗大化や、還元雰囲気下で複合酸化物の結晶構造が壊れやすいことが問題であるが、本研究で開発した材料は、800℃以上のエンジン排ガス耐久後も数ナノメートルの微粒子を維持し、また、Fe複合酸化物の耐還元性も大きく向上することに成功した。

また、白金粒子と同様に、ロジウムに関しても、ロジウムナノ粒子の粒径、触媒活性、ロジウムナノ粒子にレーザー光を当てた時の電子の(緩和)応答特性との間に相関関係があることが分かった。パラジウムについても検討を進めている。

### ・プラズマによる触媒反応促進技術

平成22年度は、常時プラズマを放電させたプラズマ反応場における触媒反応促進効果を解析し、プラズマ放電時の触媒へのNOx吸着促進挙動、酸素及び水蒸気の共存影響、投入電圧の効果、NOx吸蔵材料濃度の影響を明らかにした。H23年度は、間欠的にプラズマを放電する反応場におけるプラズマの添加効果および触媒反応促進効果を解析した。その結果、プラズマを常時放電させた状態にしなくても、間欠的にプラズマを放電することにより、Pt-Ba/アルミナ等の触媒で約150℃の低温域においても高いNO浄化反応を示すことを明らかにした。

### DPF反応性向上シミュレーション技術

X線CTによって得られたDPF内部構造のデータ、HC、CO、Noxおよび02存在下でのPM酸化反応の活性化エネルギー等を用いてシミュレーション解析のための計算コードが完成した。これによりDPF内部のガス流れ及びパーティキュレートの堆積・反応過程の解析が可能となった。

# ・触媒機能統合システム

酸化触媒とDPFは、大きな跳ね返りなく一体化できコンパクト化の可能性があることを確認した。酸化機能を統合したDOC+DPF触媒開発では、触媒機能とDPFの圧力損失を両立させるためにDPF担体への触媒の担持技術が重要な課題になることから、H23年度は、DPFへの触媒担持工法策を立案し、工法検討を開始した。

### 平成24年度の実施事項

### 白金族代替材料開発

触媒活性点の材料候補種(鉄の複合酸化物)を決定し実用化に向けた触媒仕様の研究に着手 した。本研究では、Feの複合酸化物を数ナノメートルまで微粒子化し、さらに、酸化セリウ ム等の酸素吸蔵放出材料に担持することによって、触媒活性が向上することを見出した。さら に、エンジン排ガス耐久後も数十ナノメートルの微粒子を維持し、Fe 複合酸化物により、白金触媒とほぼ同等の触媒性能を発現可能であることを確認した。また、Fe の複合酸化物と白金族の組合せ検討において、反応活性に有効な使い方があることがわかった。

・プラズマによる触媒反応促進技術

プラズマー触媒反応に有効な触媒材料の設計指針を明らかにするため、反応メカニズム解析を行った。更に、グライディングアーク法によるハニカム担体へのプラズマ添加法など車両への搭載を前提とした添加方法の研究を開始した。

・DPF反応性向上シミュレーション技術

DPFのシミュレーションおよび機能一体化(DOC, DPF)の効果を検証するため、DPFへの触媒コートトライアルを開始した。DPFの触媒反応性向上および触媒機能の一体化では、低圧損性を維持しつつDPFに触媒をコーティングする技術が重要である。種々の触媒コーティング方策を策定し、効果の検証を開始した。

- ⑥-2排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/ディーゼル排ガス浄化触媒 の白金族使用量低減化技術の開発
- 1) テーマリーダー:独立行政法人産業技術総合研究所 浜田秀昭 新燃料自動車技術センター副 センター長
- 2) 実施体制:国立大学法人名古屋工業大学、国立大学法人九州大学、三井金属鉱業株式会社、水澤 化学工業株式会社
- 3) 事業内容

平成21年度の実施事項

- ・酸化触媒に関し、種々の酸化物担体に白金を担持した触媒の炭化水素酸化およびNO酸化活性 を評価し、触媒活性と耐久性に対する担体効果ならびに白金分散度の効果を明らかにし、触媒 活性支配因子の解明につながる知見を得た。
- ・酸化触媒の調製法として、シングルナノサイズの白金及びパラジウムを凍結乾燥ゲル担体に高分散するプロセッシング技術を確立し、その最適化により市販触媒に比べて30℃以上触媒反応温度を低温化させることに成功した。また、白金および第2成分金属のセリウムを複合化したナノ粒子の液相合成について検討し、白金粒子の周囲にセリウムを単分子層状に固定化した新規複合ナノ粒子を得ることに成功した。
- ・触媒担体に関し、各種金属イオンを添加したシリカーアルミナ系メソ多孔質材料を検討し、金属イオンの添加手法とメソ細孔径分布の制御手法を確立した。また、耐熱性および耐硫黄性に優れたベース担体としてアルミナが優れていることを明らかにした。さらに、担体の多元構造を表現する計算手法としてハニカムチャンネル部におけるシミュレーションプログラムを作成した。
- ・DPF用白金代替銀触媒に関し、種々の添加元素によりHC/CO浄化性能が変化することを確認した。また、銀の分散状態および酸化能力を調べ、 $CeO_2$ 上の銀は高分散状態かつ高酸化能を有し、 $ZrO_2$ 上の銀は低分散でも酸化作用を示す酸素種を多く保持することを見出した。

・多様なコート法によってコートされた触媒をディーゼル発電機排ガス評価装置とエンジンベンチで評価し、多層化コート法によるNO酸化活性が低温領域において促進することを確認した。また、既存触媒(中型トラック)に関するベンチマーク試験を行った。

### 平成22年度の実施事項

- ・酸化触媒の活性種について、担体効果、金属粒子径効果、添加物効果を検討し、NO酸化については担体の表面酸塩基性や活性種の複合により特性が向上すること、また炭化水素酸化については金属粒子径効果とともに、第2成分添加、活性種の複合により活性が向上することを見出した。
- ・酸化触媒に関して、凍結乾燥ゲルの細孔構造を最適化することにより、高温耐久後の触媒活性を改善し、市販触媒と比較して高い活性を有する触媒の開発に成功した。また、白金および第2成分金属のセリウムを複合化したナノ粒子の合成を検討し、セリウムの周囲に白金を単分子層状に固定化した新規複合ナノ粒子を得ることに成功した。
- ・酸化触媒の担体について、金属イオン添加シリカが高い炭化水素酸化活性を有すること、及び、酸化活性と担体酸性に相関性があることを見出した。また、担体のマクロ構造制御によりミストの影響を抑制できることを見出すとともに、確立した3次元マルチスケールシミュレーションの技術により、マクロ孔構造とハニカム触媒の性能の相関を明らかにした。
- ・酸化触媒の触媒構造やコート方法を検討し、大細孔を有する触媒構造にすることで低温での触 媒性能が向上することを見出し、白金族金属を大幅に低減できる可能性を示した。
- ・DPF用白金代替銀触媒に関し、機能分離コートの最適化で炭化水素酸化性能が向上すること、 及び、銀合金系触媒により耐熱性が大きく向上することを見出し、白金族を大幅に低減できる 可能性を示した。また、スス燃焼反応の速度論的解析を行い、燃焼に対する担体酸素の関与が 銀上の酸素の寄与に比べて少ないことを明らかにした。
- ・酸化触媒とDPF触媒の組み合わせシステムの評価が可能となり、既存触媒に対する開発触媒のベンチマーク試験を行った。

#### 平成23年度の実施事項

- ・酸化触媒について、担体の効果を詳細に検討し、強いルイス酸点の重要性を明らかにした。得られた知見に基づき、添加物の効果ならびに白金とパラジウムの複合化を検討し、NO酸化、炭化水素酸化ともに高い活性を示す触媒を見出した。今後の性能向上には、担体との相互作用の制御および触媒被毒への対応がポイントになると推定した。
- ・複合ナノ粒子固定化触媒の検討において、担体上における金属の配置を制御できることを見出 し、それによって活性を著しく向上できる可能性を示した。また、白金とパラジウムを構造化 した複合ナノ粒子をアルミナに担持することにより、高い耐熱性と触媒活性を得られることを 見出した。
- ・種々の第2成分を添加したアルミナ担体を検討した結果、Si等を添加したアルミナを担体とする白金触媒が高活性を示すことを見出した。この結果を踏まえ、種々の第2成分を添加できるアルミナ担体製造設備のパイロットプラントを設計、建設し、サンプルの調製を開始した。また、担体構造に関して、マクロ孔を備えた二元構造化により触媒が高性能化することを計算シミュレーションにより確認した。
- ・上述の研究成果を統合して実用触媒候補の抽出を行い、模擬排ガス条件で現市販品に対して白金族使用量を40%低減できる酸化触媒開発の目途を得た。

- ・DPF用触媒について銀合金触媒をベースにして耐熱性と酸化性能の両方の機能向上を達成 し、白金族使用量を現市販品に対して40%低減した触媒を開発した。スス燃焼のメカニズ ム解明においては、合金化することにより高活性な銀の還元状態が保持されやすくなること がわかった。
- ・機能分離コート技術やマクロ孔形成技術により、酸化触媒の低温での軽油発熱性能の改良や DPFの圧損の低下等が可能となり、白金族使用量を大きく低減できることが明らかとなった。

#### 平成24年度の実施事項

- ・酸化触媒に関し、優れた排ガス浄化性能を示したシリカ添加アルミナ担体について、シリカ添加率の最適化を行い、4wt%添加で最高活性を示すことを見出した。また、担体のメソ孔サイズ制御手法を検討し、メソ孔が大きいほど排ガス浄化性能が高くなることも判明した。これら両知見をハイブリット化させたメソ孔拡大4wt%シリカ添加アルミナ担体を開発した。
- ・酸化反応において重要な役割を担うアルミナ担体のルイス酸性改良を目的とした第二成分の添加効果を検討し、ジルコニア添加の有効性を明らかにした。このジルコニア添加アルミナの組成や調製法等の最適化を行い、大量合成のための調製条件を提示した。
- ・触媒活性種の白金にパラジウムを複合することにより耐久後の金属分散度が向上し高い活性を 維持することが明らかになった。この知見を基に、白金ーパラジウム構造化複合ナノ粒子を担 持した触媒の量産化に向け、触媒担体上での金属種の新たな還元手法を開発した。シリカ添加 アルミナ担体に本法を使用して白金ーパラジウム複合ナノを担持した触媒を調製したところ、 高い耐熱性と触媒活性を示すことを確認した。
- ・担体上における金属の配置制御法を検討し、白金をルイス酸点上に選択的に固定化する技術を 確立した。この技術により、同じ触媒組成でも、より高活性な触媒を調製できるようになった。
- ・上述の研究成果を統合し、NO酸化、炭化水素酸化ともに高い活性を示す候補触媒を抽出した。 前年度は、材料の効果で白金族使用量を40%削減達成できたが、今年度はさらに貴金属の担 持方法等の改良により50%削減できる酸化触媒開発の目処を得た。
- ・DPF用触媒については、銀合金触媒をベースにしてコート方法の改良を行い、問題であった 圧損の低減効果が確認でき、圧損を市販と同等レベルまで低減することができた。
- ・上記で選定された触媒を大型トラックエンジン用のハニカムおよび DPF にコーティングし、 大型トラックエンジンにより評価を行った。その結果、触媒の初期活性については、良好な結果が得られたが、耐久後若干の触媒劣化が見られた。
- ⑦-1精密研磨向けセリウム使用量低減技術開発及び代替材料開発/代替砥粒及び革新的研磨技術 を活用した精密研磨向けセリウム低減技術の開発
- 1) テーマリーダー: 財団法人ファインセラミックスセンター 須田 聖一材料技術研究所エレ クトロ・マテリアル部長
- 2) 実施体制: 財団法人三重県産業支援センター、財団法人ファインセラミックスセンター、国立大学法人東北大学、国立大学法人九州大学、国立大学法人京都大学、秋田県産業技術総合研究センター、株式会社小林機械製作所、サイチ工業株式会社
- 3) 事業内容

平成21年度の実施事項

- ・使用するガラスのモデル化をおこなった。様々な種類、粒径、密度、硬度、格子欠陥を有する 砥粒を用いた時の研磨プロセス計算が可能になるよう、研磨プロセスシミュレータの開発を行った。
- ・既存砥粒の研磨メカニズムの解明を行うため砥粒特性の評価技術を構築するとともに、既存砥 粒の固溶元素と研磨特性との関係を明らかにした。
- ・代替砥粒の候補となる複合酸化物について、 $0.5\sim2.0~\mu$  mの範囲で粒径や粒度分布を合成できるプロセスを最適化し、モデル候補材についても化学研磨特性が発現することを明らかにした。
- ・既存砥粒等によるガラス基板の研磨条件の詳細を明らかにするとともに、ガラス表面の前処理 (レーザー等)による研磨特性に及ぼす効果を実証した。
- ・電界砥粒制御技術における研磨メカニズムを解明するために可視化実験装置を開発し、研磨中 の挙動を明らかにした。また、既存の研磨設備に導入が可能なシステムキットを開発した。

### 平成22年度の実施事項

- ・酸化セリウム砥粒による研磨シミュレーションを行うことで、原子拡散、電子状態、化学反応 を解明し、酸化セリウムがこれまでに有効な砥粒として利用されてきた理由を明らかにした。
- ・モデル材の組成および構造、特に欠陥構造が研磨特性に対する影響について、酸化セリウムを 中心に検討し、酸素欠損の局在が研磨特性に大きく影響することを明らかにした。
- ・カチオンを部分置換した $SrFeO_3$ の研磨特性について検討し、Bサイトへの置換が研磨特性向上に極めて有効であることを明らかにした。
- ・既存砥粒の改良により酸化セリウムに匹敵する代替砥粒を開発した。また、各種砥粒の化学反応性の程度を示す指標を発見した。ガラスの研磨機構メカニズムで重要となる、水のガラスに対する影響について調査する。高温高圧状態の水環境を実現できるチャンバーの中でガラスの処理を行い、表面状態の変化を確認した。
- ・密閉式ベルジャー型 CMP 装置を適用して、高圧空気環境下で通常の研磨の 2 倍以上の研磨レートが得られることを発見し、酸化セリウム砥粒の 5 0 %低減の可能性を見出した。
- ・酸化マンガン系砥粒によっても、通常研磨の1.5倍の研磨特性を確認した。
- ・新しいスラリーの流入/排出タイプのパッド溝パターンを設計・提案し、スラリー供給量が少なくても効果的な研磨特性が得られる可能性を明らかにした。
- ・片面高速研磨技術である電界制御トライボケミカル研磨技術を発明し、研磨レートが通常の2 倍にさらに砥粒使用量を80%削減可能な研磨技術を開発した。ここで、1wt%のスラリー 濃度においても良好な研磨特性が得られることを実験を通して明らかにし特許申請を行った。
- ・電界研磨技術の評価実験機である大型電界制御研磨評価装置を導入し、トライボケミカル研磨 技術の効果及び電界トライボケミカル研磨技術における電界効果を検証し、実用化に向けての 課題を抽出した。
- ・砥粒の使用量削減技術として、ラボベースにてスラリー濃度 10 w t %を用いて、両面研磨技術である電界スラリー制御 CMP 研磨技術にて研磨レートが 34% 向上することを明らかにした。
- ・電界研磨技術の評価実験機である大型電界制御研磨評価装置を用いて1wt%の低濃度スラリーを用いて研磨レートが20%向上することを確認した。

#### 平成23年度の実施事項

- ・研磨プロセスシミュレータを活用することで、砥粒の種類、構造、格子欠陥が原子拡散、電子 状態、化学反応ダイナミクスなどに与える影響を解明し、代替砥粒の設計に向けた指針を得た。
- ・前年度までに得られた知見を基に、化学的作用が大きい $SrZrO_3$ と機械的作用が大きい $ZrO_3$ と
- ・ナノ複合砥粒は市販セリア系砥粒の約8割の研磨速度を実現し、研磨表面平滑度では市販セリア系砥粒を上回ることが明らかとなった。
- ・セリア系砥粒を用いた循環式ガラス精密における研磨速度劣化挙動を定量的に評価可能な装置 の開発を行った。その結果、研磨速度劣化挙動にはスラリーの溶媒量と研磨されたガラス量に よって決まる研磨速度がほぼ一定の領域が存在することが明らかとなった。
- ・開発した既存砥粒の改良品であるCa含有ZrO2砥粒をさらに進化させ、ラボレベルで酸化セリウムと同品質、研磨レート1. 2倍を達成した。
- ・酸化セリウム表面にレーザーを照射することで表面の微細構造が変化することを確認した。
- ・酸化マンガン系スラリーにおける砥粒径増大、および添加剤適用により研磨能率が向上することを明らかにした。
- ・試作したスラリー流入/排出タイプの溝パターンパッドによる効果的な研磨特性を明らかにした。
- ・電界制御トライボケミカル研磨技術の研磨機序を明らかにするなかで、繰り返し用いられるスラリーの寿命について調査した結果、1wt%のスラリー濃度においても電界制御トライボ研磨技術を用いると無電界に比べ概ね4倍寿命が延命化することが明らかになった。
- ・平成22年度に導入した大型電界制御研磨評価装置を用いて最適な研磨条件を追求し、研磨レート向上のために印加電界電圧と周波数、パッド回転速度及び加圧条件により研磨レートが大きく変化することを確認した。
- ・電界トライボケミカル研磨装置の実用化に向けて片面大型電界トライボケミカル研磨装置の実 用テスト装置を作成しアドバイザリーボードの会社へ納入テスト加工を開始した。

#### 平成24年度の実施事項

- ・研磨プロセスシミュレータによる計算科学手法と砥粒合成・評価解析実験をもとにした実験の連携により、砥粒の結晶構造を変化させることにより研磨特性を大きく改善できることを明らかにした。
- ・ガラスの研磨に適した材料を電子状態および結晶構造から明らかにし、汎用性の高いガラス研磨 用砥粒の設計指針を提案した。
- ・表面平滑性に優れた特徴をもつナノ複合代替砥粒の量産プロセスを確立した。
- ・開発したC a 含有ジルコニア系砥粒の低コスト化を検討し、2, 0 0 0 円台/k g での供給に目処をつけた。
- ・低スラリー濃度で高い研磨特性を示すマンガン系代替砥粒について、砥粒劣化挙動を明らかにし、 市販のセリア系砥粒と比較して遜色ないことを明らかにした。
- ・大型研磨装置(実用機)を用いて電界砥粒制御技術の有効性を実証した。ラボレベルでの結果と 同様に、本技術は研磨効率の改善およびスラリーの長寿命化に極めて有効であることを明らかに した。

- ⑦-2精密研磨向けセリウム使用量低減技術開発及び代替材料開発/4BODY研磨技術の概念を 活用したセリウム使用量低減技術の開発
- 1) テーマリーダー:立命館大学 谷泰弘 教授
- 2) 実施体制:立命館大学、株式会社アドマテックス、九重電気株式会社、株式会社クリスタル光学
- 3) 事業内容

#### 平成21年度の実施事項

- ・有機無機複合砥粒の母粒子としてウレタン素材が優れていることを確認した。従来多用されて いる多孔質ウレタン樹脂研磨パッドとの組合せで仕上げ面粗さが向上することを見い出した。
- ・メディア粒子として利用するポリマ微粒子の製造時に使用される界面活性剤が研磨能率を低下させることを突き止めた。無機メディア粒子の場合はその現象が生じず、添加率とともに研磨特性が向上する条件が存在することを明らかにした。
- ・酸化セリウムを砥粒に使用したガラス研磨のための研磨パッドとして、多孔質エポキシ樹脂研磨パッドが優れていることを確認した。多孔質エポキシ樹脂研磨パッドの場合には研磨パッド内にセリアを含有させない方が研磨能率が向上することを明らかにした。
- ・研磨パッドに0.1 mm以上の硬質粒子を含有させた隙間調整型研磨パッドを使用して、直径 100 mmのガラス質工作物を溝加工を施すことなく均一に加工できることを確認した。

### 平成22年度の実施事項

- ・多孔質エポキシ樹脂研磨パッドを使用すれば、研磨能率が2倍以上となり、仕上げにかかる時間を半減できることを見出した。また酸化ジルコニウムを代替砥粒として使用できることを明らかにした。これを受けて、有識者委員および実用化推進委員に前倒しでサンプル提供を開始した。
- ・多孔質エポキシ樹脂研磨パッドが優れる理由は砥粒のパッド上への滞留性であることを見出した。そのことから、砥粒の滞留性が悪化する高加工圧・高工具速度・低砥粒濃度の加工条件の時にその効果が顕著となることを確認した。また、硬質なガラス質工作物の研磨に対しては、砥粒の滞留性が向上する低硬度の多孔質エポキシ樹脂研磨パッドが優れていることを確認した。
- ・有機無機複合砥粒の滞留性を向上させるために、シリカを含有させて比重を高めた複合砥粒および異形粒子を母粒子とした複合砥粒を開発した。その結果研磨能率が4割以上向上することを見出した。これを受けて、有識者委員および実用化推進委員に前倒しでサンプル提供を開始した。
- ・上記の比重を向上させた有機粒子および異形の有機粒子を複合粒子研磨法の母粒子として採用 した結果、複合砥粒の場合と同様に研磨特性が向上することを確認した。
- ・化学研磨により遊離砥粒研磨と同等の研磨特性を実現するためには、エッチャントの選択および加工面へのエッチャントの効率的な供給が重要であることを見出した。

### 平成23年度の実施事項

- ・有機無機複合砥粒の遊離した酸化セリウム砥粒を気流分級により除去することにより、従来の酸化セリウムによる研磨と比較して75%の使用量低減が可能であることが確認された。
- ・有機メディア粒子として有機無機複合砥粒を採用した結果、研磨能率が4割程度向上することが確認された。板状アルミナを無機メディア粒子として採用した結果、研磨能率が3割以上向上することが確認された。

- ・多孔質エポキシ樹脂研磨パッドについて、平成24年度4月からの上市化に向け、生産体制を整備した。またエポキシパッドにウレタン樹脂を配合することにより柔軟性および環境温度安定性を高めたエポキシウレタンパッドを開発した。
- ・化学援用研磨のエッチャントとしてフッ酸、フッ化水素アンモニウム、酢酸(またはエチレング リコール)の3元系化学液が適していることを見出した。また、工具としてはエッチャントの流 動性が良い人工芝パッドが好ましいことが判明した。

#### 平成24年度の実施事項

- ・分級処理した有機無機複合砥粒に対し、その動きを抑制し滞留性を高める粒子(移動抑制粒子) の添加を行うことで研磨特性が向上した。比重が大きく、複合砥粒よりも粒径の小さい粒子が、 研磨特性の向上に効果的であることを見出した。
- ・移動抑制粒子を添加し滞留性を高めた酸化ジルコニム砥粒の開発を行った。粒径が酸化ジルコニム砥粒よりも小さく、比重が7程度の酸化物粒子により、最も研磨特性が向上することを見出した。これにより、酸化セリウム砥粒と同等の研磨特性を達成した。
- ・平成24年4月に多孔質エポキシ樹脂研磨パッドの市販を開始した。仕上げ研磨用スエードパッドに砥粒の滞留性を向上させる樹脂の適用を検討し、エポキシやポリイミド膜を表面に塗布したパッドを開発した。これにより、市販パッドと比較して最大で3倍の研磨能率を達成した。
- ・化学援用研磨技術をジルコニア砥粒へ適用し、スラリーに金属塩を添加することより酸化ジルコニム砥粒の研磨特性が向上することを見出した。特に塩化鉄などの塩化物を添加した酸化ジルコニムスラリーにより酸化セリウムと同等の研磨特性を達成した。
- ・鏡面研磨の前工程で使用されるラッピング用砥粒の研磨特性向上を行った。移動抑制粒子を添加することで砥粒の滞留性が改善し、研磨特性が向上することを確認した。添加する粒子として、 砥粒よりも粒径が小さく、砥粒表面に吸着しない粒子が適していることを見出した。
- ⑧蛍光体向けテルビウム・ユウロピウム使用量低減技術開発及び代替材料開発/高速合成・評価法による蛍光ランプ用蛍光体向けTb、Eu低減技術の開発
- 1) テーマリーダー:独立行政法人産業技術総合研究所 赤井智子 高機能ガラスグループ長
- 2) 実施体制:独立大学法人産業技術総合研究所、国立大学法人新潟大学、国立大学法人東北大学、 三菱化学株式会社、パナソニック株式会社

# 3) 事業内容

### 平成21年度の実施事項

- ・試料溶融・合成炉を購入し、蛍光体の新規組成探索を行った。また、希土類量が削減できる可能性があると考えられる蛍光体組成が見出されたため、蛍光特性の評価や量産方法の検討を行った。
- ・X線構造シミュレータを用いて実際に得られた新規蛍光体の構造とX線パターンの検討を行った。また、発光メカニズムや温度特性を検討するための計算手法の検討を行った。
- ・発光シリカを作製するためにCuの発光に適切なポーラスシリカの種類、添加組成を検討した 結果、適切な孔径、添加剤を見出した。また、ゾルゲル法を用いてガラス上に皮膜を形成する 手法について検討した。

- ・蛍光体を塗布したガラスからの可視光の外部への取り出し効率を評価する装置を設計・購入し、 実際のランプの試料で比較した。また、放電下での加速劣化装置について、実際のランプ条件 を模倣した予備的な試験を行い、装置を設計・試作した。
- ・電磁石型の低磁場タイプの磁石でR, G, Bの混合した蛍光体の分離性能を予備検討し、その 結果、蛍光体が種別分離できる可能性を見出した。

#### 平成22年度の実施事項

- ・イメージ炉、及び、高速昇温炉を導入し、蛍光体試料の大量合成法を確立し、特に赤色蛍光体をターゲットとしてMn系代替組成、Eu3+系の組成を探索した。
- ・蛍光体の発光波長と量子化学計算から求められる構造因子との関連を明らかにした。その結果、 Eu2+の発光波長と構造因子の間の相関パラメーターが明らかになった。
- ・T b を含む既存組成の緑色蛍光体の希土類濃度依存性を検証した。その結果から、青、赤、緑、青の蛍光体を混合した場合には、単体の緑色蛍光体の輝度低下率ほど粉体輝度が低下しないことが予測されたため、低減型蛍光体を用いてランプ試作を行い、初期光束、光速維持率の評価を行った。
- ・発光シリカの高輝度化を行った。CuにAl、Gaを添加すると蛍光強度が著しく増大することを見出した。またMnをドープしても高効率な蛍光体が得られることを見出した。
- ・市販の高磁場勾配磁選法を用いて、ハロリン酸カルシウム、青色、赤色、緑色の各色の蛍光体 を分離することのできる分散媒組成の組み合わせを見出した。
- ・蛍光体の高速評価装置の作製と基本性能の検証を行った。

### 平成23年度の実施事項

- ・E u 励起蛍光体について量子化学計算によるエネルギー準位と高輝度発光の原理について検討を行った。また、迅速に高効率で可視光発光する可能性のある3種類の蛍光体を予測した。
- ・高速合成炉の導入・コンビケム開発を進めることで、Tb, Eu使用量を低減した3種類の 新規蛍光体を得た。
- ・既存蛍光体の改良により 20%以上、Tb+Eu 低減できる可能性のある蛍光体の組み合わせを見出した。
- ・市販の緑色蛍光体の60%の輝度をもつ内部量子効率0.2-0.7の発光シリカを開発し、これを保護膜として用いたランプの試作を行った。また、無機パターンを設計どおりに精密にガラス上に転写する技術の開発に成功した。
- ・低コストで分離が可能な高磁場勾配磁選を用いて各蛍光体の分離が可能な分散媒・プロセスを 見出した。また、分離効率の高い操作方法について検討を行い、一定の指針を得た。
- ・ランプ製造時の工程条件の見直しを行い、今後の検討方針の策定を行った。
- ・開発した発光シリカおよびTb50%減LAPのランプ試作を行い初期光束評価を実施した。 平成24年度の実施事項
  - ・構造探索を加速するために構造データベースから発光効率が高いと考えられる酸素配位数を 有する構造をとりだすプログラムを開発した。
  - ・溶融炉で作製した試料のLED用途の検証を実施したところ、リン酸系の酸化物で青色光(4 6 0 n m)の励起で赤色発光を示すことを見出した。
  - ・市中回収品から緑色蛍光体(LAP)を磁気力分離によって $95\sim98\%$ まで濃縮でき、蛍光スペクトルのピーク強度は新蛍光体の $96\sim100\%$ の値を得ることができた。
  - 連続分離のシミュレーションに基づき蛍光体の分離に適するマトリックスの設計を実施した。

また連続分離用の装置を設計、試作した。

- ・E u を含有する蛍光シリカの近紫外励起での性能検証を行ったところ、近紫外域で 0.6以上の内部量子効率を有することを見出した。
- ⑨-1 Nd-Fe-B系磁石を代替する新規永久磁石及びイットリウム系複合材料の開発/Nd-Fe-B系磁石

を代替する新規永久磁石の研究

- 1) テーマリーダー: 東北大学未来科学技術共同研究センター 高橋研教授
- 2) 実施体制:東北大学、京都大学、倉敷芸術科学大学、千葉工業大学、戸田工業、帝人、 トヨタ自動車、物質・材料研究機構、
- 3) 事業内容

平成21年度~平成22年度の実施事項

#### Fe-N系:

- ・直接合成法/間接合成法において、多岐の合成プロセスを検討しFe-N系を実現し得る新たな合成手法の獲得ならびに最適な合成条件を探索する。
- ・材料計算化学的手法として、第一原理計算を用いて、新たなFe-N系高直異方性材料の探索を行う。
- ・既存の希土類磁石を用いたモータと比較・検討することで、モータ応用の観点から見た新規磁石 (Fe-N) の特徴と位置づけを明らかにする。

#### R-Fe-N系:

- ・バインダ技術、複合場焼結技術、冷間圧縮せん断法、超高圧法などの固化方法-磁気特性-組織に関係する情報を得る。
- ・微細構造をミクロスケールから原子レベルまでのマルチスケール解析を行い、微細構造と保磁 力の因果関係を解明し、磁石特性を最適化するための微細構造因子を検討する。
- ⑨-2 Nd-Fe-B系磁石を代替する新規永久磁石及びイットリウム系複合材料の開発/超軽 量高性能モータ等向けイットリウム系複合材料の開発
- 1)テーマリーダー:産業用超電導線材・機器技術研究組合 和泉輝郎 特別研究員
- 2) 実施体制:産業用超電導線材・機器技術研究組合、東北大学、名古屋大学、九州大学 早稲田大学
- 3) 事業内容

平成21年度~平成22年度の実施事項

- ・超長尺イットリウム系複合材料における希少金属使用量低減技術開発として、エキシマレーザPLD法及びTFA-MOD法に対し、超長尺成膜時の課題を抽出し、対策を施した装置の開発を行った。具体的には、エキシマレーザPLD法では高速移動対応加熱システムなどの機能を、TFA-MOD法ではガス流及び温度シミュレーションよる制御構造などを取り入れた装置を開発し、これらを用いて、超長尺イットリウム系複合材料作製のプロセス条件の適正化を実施し、目標を達成した。
- ・イットリウム系複合材料の製造工程における希少金属利用率等の効率向上技術開発として、 レーザーCVD法及びYAGレーザーPLD法の連続成膜装置を導入し、高収率プロセス の開発を行った。レーザーCVD法による効率向上技術開発においては、液体原料供給装

置を具備した成膜装置を設計・製作し、成膜条件の適正化を行ない、YAGV-ザーPL D法では、プルーム内での成膜条件の検討を行なうことで、いずれの手法においても約2  $MA/cm^2$  (@ 7 7 K, 自己磁場) の特性を得ると共に収率40%を見通す技術を開発した。

- ・イットリウム系複合材料を用いた回転機要素技術開発における、回転機適正構造の概念設計においては、下突型コイル形状を採用した500kW級モータの粗設計を行い、同規模の永久磁石モータに比して使用する希土類重量が1/10以下になることが明らかになった。また、磁場、応力及び温度の解析が可能な連成評価シミュレータを開発し、上記粗設計モータの成立性を示した。
- ・界磁巻線及び冷却要素技術においては、上記の粗設計に基づいて、小型下突型コイルを試作 し、通電評価により30~50 KにおいてIcの70%以上の通電特性を確認した。また、 液体ネオンを用いたサーモサイフォン型冷却装置の設計及び製作を行い、冷却能力評価試 験を実施した。
- ⑨-3 Nd-Fe-B系磁石を代替する新規永久磁石の実用化に向けた技術開発/窒化鉄ナノ粒子の大量合成技術およびバルク化技術の構築
- 1) テーマリーダー:国立大学法人 東北大学 高橋研 教授
- 2) 実施体制:国立大学法人東北大学、国立大学法人京都大学、国立大学法人広島大学、国立大学 法人秋田大学、学校法人家計学園倉敷芸術科学大学、戸田工業株式会社、株式会社T & Tイノベーションズ

# 3) 事業内容

平成23年度の実施事項

- ・ Fe  $_{16}$  N  $_2$  単相の窒化鉄ナノ粒子を 5-10 g / バッチでの合成技術に向けて、設備の改造と 窒化条件の最適化、試料の酸化防止策を行い、合成を開始した。
- ・Fe $_{16}$ N $_2$ 単相の窒化鉄ナノ粒子の分散・表面修飾の基礎技術開発設備の導入を完了し、分散・表面修飾の研究を開始した。
- ・ Fe $_{16}$  N $_2$  単相の窒化鉄ナノ粒子擬似材料としてフェライト系粒子による表面修飾と低温焼結の評価を開始した。
- ・第一原理計算を用い、窒化鉄粒表面の磁気モーメントや磁気異方性などの磁気特性の定量評価 を開始した。
- ・窒化鉄系材料の高分解能磁区観察と局所磁化過程計測用の設備導入を完了した。

### 平成24年度の実施事項

- ・窒化鉄ナノ粒子の50%以上の単分散化を達成した。
- ・窒化鉄ナノ粒子を10g/バッチで合成することに成功した。
- ・窒化鉄ナノ粒子を用いてバルクに匹敵する試料サイズで成型体・焼結体の試作に成功した。
- ・酸化鉄ナノ粒子を用いて、体積充填率67vol%の成型体の試作に成功した。
- ・窒化鉄粒子表面は数ナノメートルの酸化層で覆われていることを明らかにした。
- ⑨-3 Nd-Fe-B系磁石を代替する新規永久磁石の実用化に向けた技術開発/非平衡状態相の形成を利用したNd系磁石代替実用永久磁石の研究開発
  - 1) テーマリーダー: 国立大学法人 大阪大学 井藤幹夫 準教授

- 2) 実施体制:国立大学法人大阪大学、国立大学法人長崎大学、国立大学法人九州大学、 日産自動車株式会社
- 3) 事業内容

平成23年度の実施事項

- ・Sm2Fe17の窒化炭化で一軸異方性の発現が確認され、新磁石作製に目処がついた。
- ・SmC o  $5/\alpha$  F e 超多周期積層型ナノコンポジットの作製に成功し、今後の研究の目処がついた。
- ・CoZr合金急冷薄帯については保磁力向上、SmFe合金急冷薄帯については残留磁化の向上が達成できる条件がわかった。また、それ以外の希土類レス磁石でも保磁力を有する急冷薄帯を見出した。
- ・急冷薄帯CoZrB合金は微細粒組織が、SmCo/Fe積層膜はナノレベル膜厚で多層組織が形成しており、高性能化に向けた組織制御の指針が得られた。

#### 平成24年度の実施事項

- ・SmC o  $5/\alpha$  Fe 人工積層構造磁石は比較的高温で使用されるNd 磁石を代替できる可能性が得られた。
- ・飽和磁化の高いFe-Ni磁石と保磁力の大きいSm-Fe系磁石はNd磁石に匹敵することが期待でき、MnBi系磁石は高温特性が優れているため高温用に限定すればNd磁石に匹敵することが期待できることわかった。
- ・ $MnBi/\alpha-Fe$  系複合磁石は、180  $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$   $^{\circ}$  もた。
- ・人工積層構造、急冷凝固合金の微細組織と磁気特性の関係を明らかにした。
- ⑩-1A 排ガス浄化向けセリウム使用量低減技術及び代替材料開発、透明電極向けインジウムを代替するグラフェンの開発/排ガス浄化向けセリウム使用量低減技術及び代替材料開発/ 排ガス浄化用触媒のセリウム量低減代替技術の開発
- 1) テーマリーダー: 国立大学法人 名古屋工業大学 小澤正邦 教授
- 2) 実施体制:国立大学法人名古屋工業大学、株式会社 ノリタケカンパニーリミテド 株式会社 アドマテックス
- 3) 事業内容

平成23年度の実施事項

- ・セリア・ジルコニア系助触媒について、セリア使用量を30%以上低減した新規な助触媒材料 を開発した。
- ・開発したセリア・ジルコニア系助触媒材料の調製プロセスを検討し、大量合成工程を確立した。
- ・非セリア系助触媒についても検討を行った。
- ・開発した助触媒材料を用いてガソリンエンジン自動車用ハニカムを試作し、模擬ガス試験および実車エンジン排気による性能試験を行い、性能を確認した。
- ⑩-1B 排ガス浄化向けセリウム使用量低減技術及び代替材料開発、透明電極向けインジウムを代替するグラフェンの開発/排ガス浄化向けセリウム使用量低減技術及び代替材料開発/ 高次構造制御による酸化セリウム機能向上技術および代替材料技術を活用したセリウム 使用量低減技術開発

- 1) テーマリーダー: 国立大学法人 東北大学 宮本明 教授
- 2) 実施体制:国立大学法人東北大学、国立大学法人熊本大学、国立大学法人名古屋大学 国立大学法人北海道大学、宮城県産業技術総合センター、株式会社本田技術研究所 第一稀元素化学工業株式会社、株式会社ルネッサンス・エナジー・リサーチ
- 3) 事業内容

平成23年度の実施事項

- ・第一原理計算法により、セリア助触媒のシンタリングシミュレーションを行い、シンタリング 機構を解明した。
- ・セリア系および非セリア系助触媒について、組成を変えた新規触媒を検討した。一部の触媒について、酸素吸放出能が大幅に向上することを見いだした。
- ・本事業で試作した助触媒について、大量合成法を検討した。
- ・酸素吸放能が高い助触媒について、ガソリン車用ハニカムに加工し、性能評価を実施した。
- ⑩-2排ガス浄化向けセリウム使用量低減技術及び代替材料開発、透明電極向けインジウムを代替するグラフェンの開発/透明電極向けインジウムを代替するグラフェンの開発/グラフェンの高 品質大量合成と応用技術を活用した透明電極向けインジウム代替技術の開発
- 1) テーマリーダー:技術研究組合 単層CNT融合新材料研究開発機構 長谷川雅考 プロジェクト本部長
- 2) 実施体制:技術研究組合 単層CNT融合新材料研究開発機構
- 3) 事業内容

平成23年度の実施事項

- ・ 表面波プラズマCVD装置を用い、成膜温度、ガス組成等種々の条件を変えることで最適な 成膜条件を探索した。その結果、シート抵抗500Ω/□、透過率87%のグラフェン透明 導電膜を製作した。
- ・ ロール製膜装置を設計し、600 mm幅、合成速度0.6 m/分でグラフェンが製膜できることを確認した。
- ・ レーザーパターンニングに必要なレーザの波長や強度の最適値を検討し、グラフェンを線幅 0.3 mmで加工出来ることを確認した。
- グラフェンを用いた抵抗膜式タッチパネルを試作し、動作可能であることを確認した。

# 4. 2 実績推移

|           | 平成19   | 平成 2 0 | 平成21  | 平成 2 2 | 平成 2 3 | 平成 2 4 |
|-----------|--------|--------|-------|--------|--------|--------|
|           | 年度*    | 年度     | 年度    | 年度     | 年度     | 年度     |
| 一般勘定(百万円) | 1, 100 | 1, 349 | 6,069 | 1, 240 | 5, 645 | 6 1 6  |
| 特許出願件数(件) | 6      | 1 1    | 1 3   | 3 7    | 5 6    | 3 0    |
| 論文発表数 (報) | 1 0    | 4 6    | 5 0   | 7 7    | 1 3 3  | 6 9    |
| 学会発表等 (件) | 2 4    | 5 5    | 165   | 2 7 6  | 4 9 6  | 2 1 6  |

※平成19年度は経済産業省で実施。

### 5. 事業内容

上記の目的を達成するため、各研究開発項目毎に研究開発責任者(テーマリーダー)を設置し、以下 の研究開発を実施する。実施体制については、別紙を参照のこと。

### 5. 1 平成25年度(委託事業)事業内容

- ⑥-1排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/遷移元素による白金族代替技術及び白金族の凝集抑制技術を活用した白金族低減技術の開発
  - ・代替触媒の開発では、代替の候補として決定した遷移元素活性触媒(少白金族および白金族 代替材料)について、DOC (酸化触媒)、LNT (リーンNOxトラップ触媒)、DPF (ディーゼルパティキュレートフィルター)の触媒性能評価と耐久性能評価を行う。
  - ・フィルターの開発では、シミュレーションから得られた知見をもとに、H24年度に引き続き実際の触媒効果の確認を行う。
  - ・プラズマを使った反応促進手法の開発では、プラズマを用いたときに最適な触媒材料および プラズマ触媒システムを示す。
  - ・DOCとDPFの機能一体化では、機能統合した時の課題を明らかにし、触媒性能評価と耐 久性能評価を行う。

(触媒特性や耐久性能評価は多くの知見があるガソリンエンジン排ガスを模擬したモデルガスで それぞれの効果確認を行い、特性の優れていた触媒・システムについて引き続きディーゼルエン ジン排ガスでの評価を行うことで効率的に進める、)

- ⑥-2排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/ディーゼル排ガス浄化触 媒の白金族使用量低減化技術の開発
  - ・優れた排ガス浄化性能を示す事を見出したメソ孔拡大シリカ添加アルミナ担体について、メソ 孔径が大きく、かつシリカ添加率が安定したアルミナの量産化生産技術を確立させる。さらに、 これにミスト燃焼性能の向上に有効なマクロ孔を付加する技術を検討する。
  - ・これまでの知見で得られた有効な活性種の添加による触媒活性・耐久性の向上を図るとともに、 前処理や調製条件の最適化を試み、パイロットプラントでの大量合成が可能な白金族使用量を 低減した高活性酸化触媒を開発する。
  - ・白金ーパラジウム構造化複合ナノ粒子担持触媒については、白金ーパラジウム構造化複合ナノ 粒子触媒の調製量のスケールアップを図り、大型ハニカム触媒を作製し評価に供する。
  - ・前年度開発した触媒金属をルイス酸点上に配置する新規技術を用いて、実用触媒の高性能化を 図る。
  - ・開発した材料を基に触媒コート方法の更なる最適化を行い、酸化触媒およびDPFの製造方法 を実用化の観点から検討する。
  - ・上述の各触媒を大型トラックエンジン用のハニカムおよびDPFにコーティングし、大型トラックエンジンにより評価を行う。また、評価した触媒の解析によって耐久劣化の原因を追究し、解決策を見出す。その後改良された触媒をハニカム及びDPFにコーティングし、大型トラックエンジンにより評価を行い、最終目標を達成するとともに実用化の目処を立てる。

⑧蛍光体向けテルビウム・ユウロピウム使用量低減技術開発及び代替材料開発/高速合成・評価法

による蛍光ランプ用蛍光体向けTb、Eu低減技術の開発

- ・平成24年度までに開発されたランプ用部材作製技術、蛍光材料を改良し、ランプとしての性能 向上を図る。また、その組み合わせによって達成される目標値を目指す。上記の回収技術とあわ せて最終目標値の達成を目指す。
- ・ガラス等の混合した市中回収用廃蛍光体を有効に分離処理するためのプロセスを開発する。
- ・平成24年度に試作された連続分離装置を用いて工程品、市中品等、目的にあった最適な装置を 提示する。
- ・計算によって予測された構造を作製し、また蛍光シリカにLED用蛍光体を内包させ、希土類削減率を向上させる。これらを総合して近紫外から青色励起でEuの含有率が6mol%以下、量子効率が0.5以上という目標を達成する。
- ・近紫外から青色領域で高効率を示す蛍光体組成については、LEDに用いた際の特性を評価し、 組成改良へのフィードバックを行う。

その他、総合的な情報収集・分析として、上記研究開発項目に関する技術動向の情報収集・分析等を行 う。

### 5. 2 平成25年度(助成事業)事業内容

### <助成要件>

# (1) 助成対象事業者

日本に登記されていて、日本国内に本申請に係る主たる技術開発のための拠点を有し、 単独ないし複数で助成を希望する事業者。なお、助成対象事業者は、助成事業終了後、実 用化を主体的に実施すること。

### (2) 助成対象技術開発テーマ

希少金属の使用量低減を加速するため、研究開発項目①~⑩の早期実用化、産業界で取り組まれている希少金属代替・低減技術の実用化開発で、事業終了後数年に実用化することが期待される優れた提案に対し、助成金を交付する。

### (3)審查項目

# ①助成事業者

| 項目    | 審查基準                           |
|-------|--------------------------------|
| 助成事業者 | ・助成対象事業を的確に遂行するに足る技術的能力を有すること。 |
|       | ・自己負担分の調達に関し充分な経理的基礎を有すること。    |
|       | ・経理その他の事務について的確な管理体制及び処理能力を有する |
|       | こと。                            |

# ② リスク低減効果

| 項目      | 審査基準                        |
|---------|-----------------------------|
| 対象鉱種・用途 | 鉱種または製品について予想される供給リスクが高いこと。 |
| 使用量削減効果 | 当該技術の事業化による削減量(回収量)が大きいこと。  |

| 開発製品の競争力 | 開発した製品・技術による産業競争力の維持・強化の効果が大きい |
|----------|--------------------------------|
|          | こと。                            |

# ③ 事業化評価

| 項目        | 審査基準                           |
|-----------|--------------------------------|
| 開発体制      | 単なる研究開発体制ではなく、早期事業化を目指した開発体制であ |
|           | ること。                           |
| 製造・販売能力   | 製品の製造・販売手段が確保(自社内外を問わない)できること。 |
| 事業化計画の信頼性 | 助成事業終了後数年以内に実用化が達成される可能性が高いこと。 |

# ④ 技術評価

| 項目        | 審査基準                           |
|-----------|--------------------------------|
| 基となる研究開発の | 提案の実用化開発の基となる研究開発の成果(実験データ等)が明 |
| 有無        | 確に示されていること。                    |
| 保有特許等による  | 開発商品に関する優位性のある特許及びノウハウを保有している  |
| 優位性       | こと。                            |
| 技術課題を解決する | 予定期間内に技術的課題が解決される可能性が高いこと。     |
| 可能性       |                                |

### <助成条件>

(1) 実施期間

平成25年度から平成26年度までの2年間とする。

- (2) 規模·助成率
  - i ) 助成率

2/3以下

(3) 採択予定件数

採択予定件数は定めず、予算に応じ、提案内容の優れているものを採択する。

- (4) 総事業規模
  - 一般勘定 約2.25億円(NEDO負担額 約1.5億円) ※総事業規模については、変動があり得る。
- 5. 3 平成25年度事業規模

一般勘定

505 百万円(継続)

事業規模については、変動があり得る。

6. 事業の実施方式

平成25年度は、助成事業の公募を行う。

- 6.1 助成事業の実施スキーム (別紙4参照)
- 6.2 助成事業の公募

### (1) 掲載する媒体

「NEDOホームページ」及び「e-Radポータルサイト」等で実施する。

(2) 公募開始前の事前周知

公募開始の1ヶ月前にNEDOホームページで行う。本事業は、e-R a d 対象事業であり、e-R a d 参加の案内も併せて行う。

(3) 公募時期・公募回数

平成25年6月頃に行う。

(4) 公募期間

30日以上とする。

(5) 公募説明会

公募開始後速やかに行う。

### 6.3 助成事業の採択方法

### (1)審査方法

e-Rad システムへの応募基本情報の登録は必須とする。

外部有識者による事前書面審査・採択審査委員会を経て、契約・助成審査委員会により決定する。事前書面審査の実施者ならびに採択審査委員は採択結果公表時に公表する。

(2) 公募締切から採択決定までの審査等の期間 70日以内とする。

(3) 採択結果の通知

採択結果については、NEDOから申請者に通知する。なお不採択の場合は、その明確な理由を添えて通知する。

(4) 採択結果の公表

採択案件については、申請者の名称、技術開発テーマの名称・概要を公表する。

### 6. 4 助成事業におけるテーマ評価に関する事項

#### (1) テーマ評価項目・基準

| 評価項目            | 評価基準                 |
|-----------------|----------------------|
| 助成期間に予定していた技術開発 | 目標達成度                |
| 助成期間後の技術課題と対策   | 量産化技術 等              |
| 事業化のためのマーケティング  | 市場調査、販売チャネル 等        |
| 事業化計画           | スケジュール、生産インフラ整備、法規制等 |

### (2) テーマ評価実施時期

事業終了年度の翌年度にテーマ評価を実施する。

# 7. その他重要事項

### (1) 評価の方法

NEDOは、技術的及び政策的観点から、研究開発の意義、目標達成度、成果の技術的意義並びに将来の産業への波及効果等について、外部有識者による研究開発の評価を行う。

### (2) 運営·管理

研究開発全体の管理・執行に責任を有するNEDOは、経済産業省及び研究開発責任者と密接な関係を維持しつつ、プログラムの目的及び目標並びに本研究開発の目的及び目標に照らして適切な運営管理を実施する。具体的には、必要に応じて設置される技術検討委員会等における外部有識者の意見を運営管理に反映させるほか、四半期に一回程度、研究開発責任者等を通じてプロジェクトの進捗について報告を受けること等を行う。

# (3) 複数年度契約・交付決定の実施

| 研究開発項目                                   | 契約期間             |
|------------------------------------------|------------------|
| ①透明電極向けインジウム使用量低減技術開発                    | 複数年度契約:平成20~23年度 |
| ②透明電極向けインジウム代替材料開発                       | 複数年度契約:平成21~23年度 |
| ③希土類磁石向けジスプロシウム使用量低減技術開発                 |                  |
| <ul><li>④超硬工具向けタングステン使用量低減技術開発</li></ul> | 複数年度契約:平成20~23年度 |
| ⑤超硬工具向けタングステン代替材料開発                      |                  |
| ⑥排ガス浄化向け白金族使用量低減技術開発及び代替材料開発             | 複数年度契約:平成21~25年度 |
| ⑦精密研磨向けセリウム使用量低減技術開発及び代替材料開発             | 複数年度契約:平成21~24年度 |
| ⑧蛍光体向けテルビウム・ユウロピウム使用量低減技術開発及             | 複数年度契約:平成21~25年度 |
| び代替材料開発                                  |                  |
| ⑨-1 Nd-Fe-B系磁石を代替する新規永久磁石の研究             | 平成21~22年度        |
| ⑨-2 超軽量高性能モータ等向けイットリウム系複合材料の             | 平成21~22年度        |
| 開発                                       |                  |
| ⑨-3 Nd-Fe-B 系磁石を代替する新規永久磁石の実用            | 複数年度契約:平成23~24年度 |
| 化に向けた技術開発                                |                  |
| ⑩排ガス浄化向けセリウム使用量低減技術及び代替材料開発、             | 平成22~23年度        |
| 透明電極向けインジウムを代替するグラフェンの開発                 |                  |
| 助成事業                                     | 平成24~25年度        |
| ・超硬工具のタングステン使用量を削減する代替サーメット              |                  |
| 材料の実用化                                   |                  |
| ・耐摩耗工具用新規開発サーメットの改良と実用化                  | _                |

# (4) その他

本研究によって得られたあらゆる知的財産、また本研究の過程又は成果に基づき開発したプログラム、サンプル若しくは装置などの成果物について、本プロジェクト外(国内外)への供試・開示については、事前に研究開発責任者とNEDOに連絡する。その際に、NEDOが申請書の提出を求めた場合は、これに応じ速やかに提出する。

### 8. スケジュール

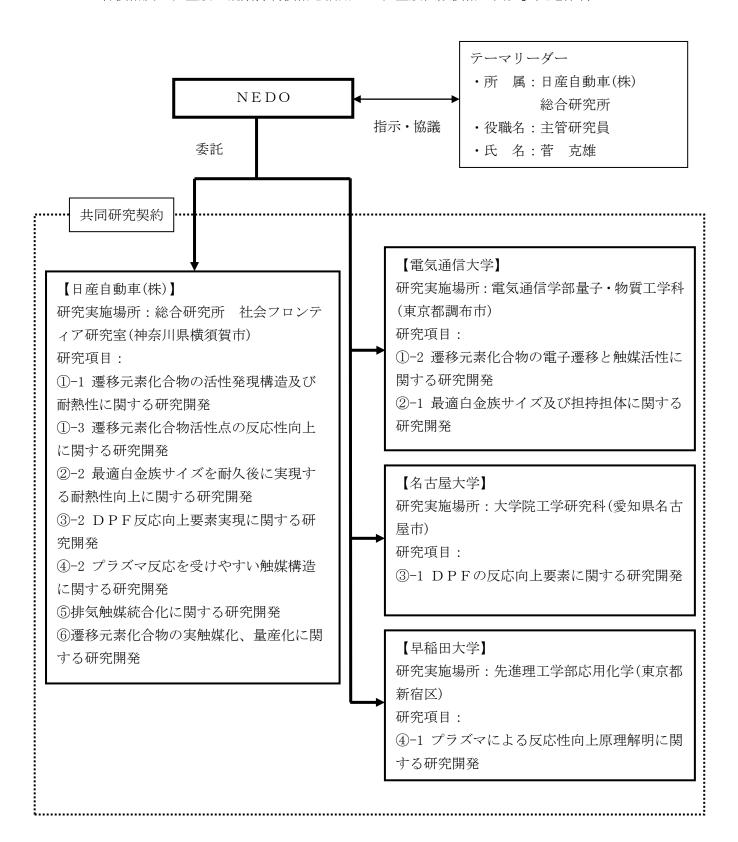
助成事業に係る公募スケジュール予定

平成25年6月 公募開始

平成25年6~7月 公募説明会の開催

平成25年7月 公募締切り

平成 2 5 年 9 月 契約 · 助成審查委員会


平成25年9月 採択決定

# 9. 実施方針の改定履歴

(1) 平成25年3月 制定

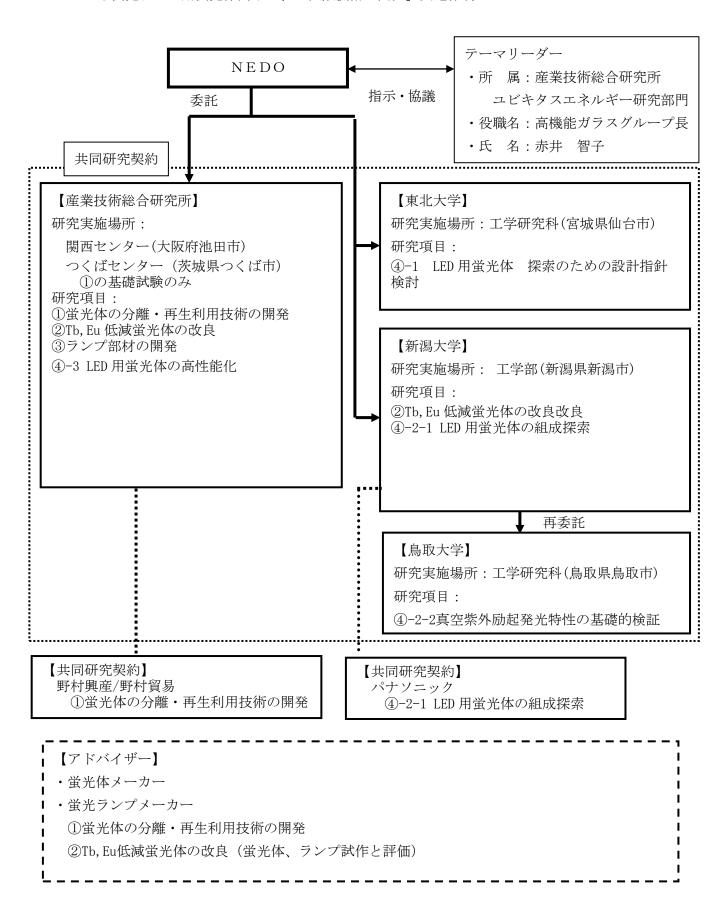
### (別紙1)

「⑥-1 排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/遷移元素による白金族代替技術及び白金族の凝集抑制技術を活用した白金族低減技術の開発」実施体制

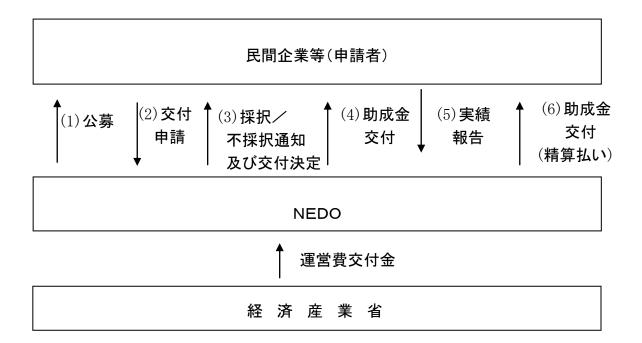


### (別紙2)

「⑥-2 排ガス浄化向け白金族使用量低減技術開発及び代替材料開発/ディーゼル排ガス浄化触 媒の白金族使用量低減化技術の開発」実施体制 テーマリーダー • 所 属:產業技術総合研究所 NEDO 新燃料自動車技術研究 指示·協議 センター 委託 ・役職名:副研究センター長 •氏 名:浜田 秀昭 共同研究契約 【產業技術総合研究所】 研究実施場所:新燃料自動車技術研究セン ター(茨城県つくば市) 【名古屋工業大学】 環境化学技術研究部門(茨城県つくば市) 研究実施場所: 先進セラミックス研究センター サステナブルマテリアル研究部門(愛知県 (岐阜県多治見市) 研究項目: 名古屋市) ①-1-2 触媒機能発現の基礎的解析 研究項目: ①-1-1 最適な触媒活性種組成と構造の探 ①-4-3 触媒機能高度化技術の抽出 索 ④-1-2 触媒機能改良のための触媒設計指針の ①-2-2 粒子固定技術の開発 提供 ①-3-2 最適担体構造の検討 【九州大学】 ①-4-1 活性種・複合化・担体高度化技術の 研究実施場所:工学部(福岡県福岡市) 抽出 研究項目: ②-2 DPF用新規触媒の機能発現要素の解明 ①-2-1 触媒調製技術の開発 ④-1-1 酸化触媒およびDPF用触媒の改良と ①-4-4 触媒調製技術の抽出 高度化実用性改良 ④-1-3 触媒実用性能向上のための触媒調製技 ④-1-4 ナノ粒子固定化技術の開発 術の開発 【三井金属鉱業㈱】 研究実施場所: 触媒事業部(埼玉県上尾市) 【水澤化学工業㈱】 研究項目: 研究実施場所:研究開発部(新潟県胎内市) ①-4-5 実用候補触媒の抽出 研究項目: ②-1-1 非白金族元素触媒の耐熱性向上 ①-3-1 新規担体の開発 ②-1-2 非白金族元素触媒の浄化性能改良 ①-4-2 担体設計実用化技術の抽出 ③-1 コート技術 ④-2-1 触媒担体製造技術の開発 ③-2 触媒のシステム構築 ④-2-2 ハニカム触媒製造技術の開発と性 能評価 ④-3 触媒商品化技術の開発 【UDトラックス㈱】


研究実施場所: PT開発室(埼玉県上尾市)

研究項目:


- ③-2 触媒のシステム構築
- ④-3 触媒商品化技術の開発

### (別紙3)

「⑧ 蛍光体向けテルビウム・ユウロピウム使用量低減技術開発及び代替材料開発/高速合成・評価法による蛍光ランプ用蛍光体向けTb、Eu低減技術の開発」実施体制



# 助成事業実施スキーム

