ITイノベーションプログラム・エネルギーイノベーションプログラム

「高速不揮発メモリ機能技術開発」

(2010年度~2012年度 3年間)

(事後評価)

プロジェクトの概要 (公開)

「実用化・事業化に向けての見通し及び取組み」

エルピーダメモリ

2013年 11月18日

29

目 次

公開

- Ⅰ. 事業の位置付け・必要性
- Ⅱ.研究開発マネジメント
- III. 研究開発成果
- IV. 実用化・事業化に向けての 見通し及び取り組み

(NEDO)

(NEDO)

(エルピーダメモリ)

(エルピーダメモリ)

ベンチマーク

- ・現在、製品化を目指して、各社開発中
- -2015年がReRAM元年となる見込み

	高速不揮発	NAND 代替					混載メモリ
プログラム方式・特徴		Bipolar			Unipolar	CMOx	Bipolar
企業	Elpida	A社		B社	C/D社	E/G社	H社
セルサイズ	4F ²	4F ²	4F ²	4F ²	4F ²	4F ²	4F ²
書き込み電圧 (SET/RESET)	+2.5V/-1.6V	4V/-5V	−5V/7V	-3V/+2.5V	2.5V<	-2.5V/+2.5V	-1.8V/+1.8V
書き込み電流	30uA∼	80uA	30uA(DC)	-	?	1uA	<100uA
書き込み時間	<10ns	1000ns	10ns	-	230us (With Verify)	1000ns	<30ns
書換え回数	10 ⁸	10 ⁶	10 ⁷	10 ¹⁰	?	10 ⁵	10 ⁷
データ保持特性	10years	10years	10years	10 ⁴ s<	?	> 1Year	10years

Good

Avarage

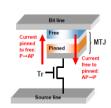
Not Good

他社開発状況より、特性面では優位な状況

事業原簿:53ページ 31

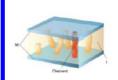
IV. 実用化·事業化に向けての見通し及び取組み

4.1 他社·市場状況


新不揮発メモリの比較1

公開

PRAM


- GeSbTe
- ・アモルファス/結晶 の相変化を利用
- •中~大規模容量
- •Unipolar書き込み

STT-RAM

- ·MTJ素子
- 電流印加によるSpin 反転。Spin依存の トンネル電流が変化
- ·小~中規模容量
- •Bipolar書き込み

ReRAM

- ·遷移金属酸化物
- ・電極間にフィラメント パスを形成
- •中~大規模容量
- ·Unipolar/Bipolar 書き込み

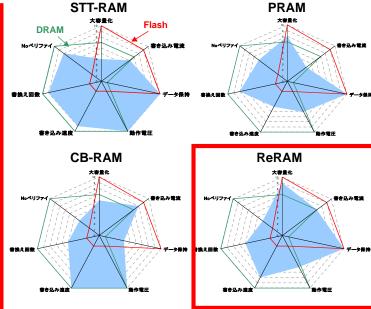
ReRAM

CB-RAM

- ·Cu·Ag/GeSなど
- 固体電解質中に 金属イオンのパス
- を形成 •中規模容量
- •Bipolar書き込み

Memristor

- •TiO2/TiO2-x
- 酸素空孔による 界面電位障壁変化
- •大規模容量
- •Bipolar書き込み


ReRAMの素子材料はDRAM工場への導入容易

事業原簿:53ページ 32

新不揮発メモリの比較2

	STT-RAM	PRAM	CB-RAM	ReRAM	
セルサイズ	6-14F ²	4F ²	4-8F ²	4F ²	
書き込み極性	Bipolar	Unipolar	Bipolar	Bipolar Unipolar	
書き込み電圧	1.0-1.5V	1.5-3V	1.0-1.5V	~3V	
書き込み電流	49uA	100uA	1−20uA	25uA	
抵抗比	<2x	100x<	100x<	10x<	
バラツキ	Narrow	Narrow	Wide	Wide(Rrst)	
ベリファイ	NO	Yes(MLC)	YES	YES	
ECC	YES	YES	YES	YES	
書き込み時間	<7ns	<100ns	<5ns	<10ns	
書換え回数	10 ¹⁵	10 ¹²	10 ¹⁰	10 ⁶	
保持特性	10years	10years	Hour/Day	10years	
積層	No	YES	YES	YES	
多値	No	YES	YES	YES	
アプリケーション	Cache/Main /SCM	SCM/Storage	Cache/Main	SCM/Storage	
構造	*	O TONG CAN			
	1T1R	1D1R-10TS1R	1T1R	1T1R-1D1R	

・微細化・低消費電流・大容量化の可能性 •DRAM工場への材料親和性が高い

ReRAMを選択

事業原簿:53ページ

4.1 他社·市場状況

IV. 実用化·事業化に向けての見通し及び取組み NEDO事業で提案するシステム

公開

33

■PCメモリ・ストレージシステム全体像と提案するシステム

◆PCメモリ・ストレージシステムとアクセス時間 (注) Solid State Device(SSD): 最近のPCに使われ始めている配憶媒体で Flashメモリで構成されています。 **<現在のシステム>** On Chip Off Chip Flash **CPU DRAM** Tape Disk SSD L2Cache SSD 10us 10ms 1ns 10ns 1ms SSDにおいて内蔵DRAMとFlashの間にスピード のギャップが存在

・ マップを埋めてリソースを有効活用 マ低消費電力化+システム性能向上 <本研究提案のシステム> Off Chip On Chip **Flash CPU** Tape DRAM Disk SSD L2Cache SSD

1ns 10ns 10us 1ms 10ms DRAMを減らし、不揮発キャッシュとしてReRAMを採用

◆研究開発項目②での実仕様検討

- < 100ns Read/Erase Time</p>
- ·> 1GB/s 転送レート
- HDDの1/10消費電力
- ・低コスト
- ・書き換え回数

→本研究では更なる高性能化 を目指し、DRAM並みの10ns を視野に入れる。

(将来: DRAMレス)

【フラッシュメモリ】

総書き換えデータ量 512GBytex4000回書き換え=2Peta Byte [ReRAM]

- フラッシュメモリの書き換えに必要なRRAMの書き換え回数 2Peta Byte/ 1 GByte=2x10⁶回
- ・ウェアレベリングのために書き換え動作が3倍増加
- ReRAMに必要な書き換え回数=6 x 10⁶回

実質的な製品寿命と同等なReRAMに求められる 書き換え回数=6x10⁶回程度

公開

問い

答え

1)NANDの代替は?

NAND

2)DRAMの代替は?

DRAM

3)メモリシステムの問題は?

アクセスギャップ

4) 新規メモリはどう使われていく? 従来メモリと共存

既存メモリとのコンビネーションのなか 最適な場所に、 最適なメモリが採用されていく

事業原簿:53ページ

35

IV. 実用化・事業化に向けての見通し及び取組み 4.2 実用化、事業化の見通しについて 実用化、事業化の見通しについて

公開

- ◆ ReRAM実用化のためには、更なるスイッチング素子の 信頼性向上とばらつき低減が必要であり、中規模アレイ を使った改善を継続する。
- 大容量プロトチップは、回路設計を終わり、チップレベルでの 動作確認をシミュレーションレベルで完了した。 今後は、上記の素子改善結果を反映させた試作を行い、 早期にサンプル出荷を行うことを目指す。
- ・ 最終目標であるSCM実現へ向けて、社内関係部門と連携を とりながら仕様の策定・回路設計・試作を行う。

事業原簿:54ページ

①高速不揮発メモリの開発	H22	H23	H24	計
特許出願(うち外国出願)		10	25(12)	35(12)
新聞・雑誌等への掲載		6		6
展示会への出展		1		1

②不揮発アーキテクチャの研究開発	H22	H23	H24	計
特許出願(うち外国出願)	1	4(1)	4(2)	9(3)
研究発表•講演	3	11	12	26
新聞・雑誌等への掲載	17	23	15	55
展示会への出展		1		1

プレスリリース

※ : 平成25年度9月30日現在

事業原簿:添付資料8ページ

公開

NEWS RELEASE

ELPIDA

2012 年 1 月 24 日 エルピーダメモリ株式会社

新メモリ(高速不揮発性抵抗変化型メモリ、ReRAM)の 開発に成功

~64Mビット メモリセルアレイ動作を確認~

メモリヤルアレイ チップ写直

エルビーダメモリ株式会社 (本社:東次部中央区、代表取締役社長数 CEO: 坂本幸雄 以下、エルビーダ)は、このたび、次世代新メモリの一種である高速本平発性抵抗変化型 メモリ (BaBAM) の開発に初めて成功いた はとした。同談締組が 50ma (サノメートル、 接往 1) の製造技術プロセスを用いた試作品で、ReRAMでは世界最高レベルの大容量と なる 64M (メガ、奈往 2) ビットのメモリセルアレイ動作を確認したものです。 たお、本 開発は、NEDO (独立行政社人 新エネルギー・産業技術総合研発機構) との共同研究事 第であり、シャーブ株式会社、独立行政法人 意業技術総合研究研ガよび和次大学との共 同実施として進めているものです。

2012/1/24 プレスリリース

CEATEC2011 NEDOブースへ展示

37