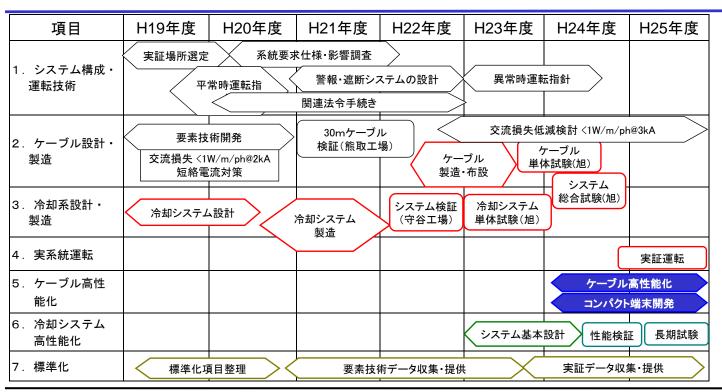
「6.1-5. ケーブルの高性能化」 (公開)

平成26年9月3日

住友電気工業株式会社 増田 孝人


高温超電導ケーブル実証プロジェクト事後評価

①重要要素技術の検証

年度展開

2 **Ⅲ** p.13-17 公開

開発目標

発電機引き出し部のような、大電流(12kA以上)が通電可能な 超電導ケーブルの開発を実施する。

項 目		開発目標	達成度
④ケーブルの高性能化	ケーブル	【1】大電流ケーブル開発の課題の抽出 【2】ケーブルの設計検討、基本設計の完了 【3】12kA通電特性の確認、他相通電の影響確認 【4】事故電流通電時の評価	0000
	端末	【5】コンパクト端末の設計検討、基本設計の完了 【6】端末部材の試作、評価 【7】ブッシングの試作、評価	000

達成度: ◎ 大幅達成、O達成、△達成見込み、 ×未達

高温超電導ケーブル実証プロジェクト事後評価

6.1-5 ケーブルの高性能化

III p.429

大電流ケーブル適用のターゲット

発電機引き出し線 (22kV/12kA級)

相分離密閉母線 (φ1000mm×3)

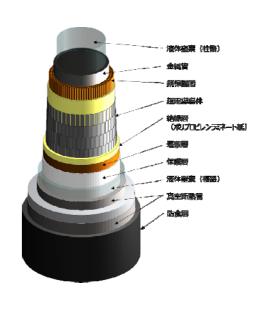
超電導ケーブル $(\phi 150 \text{mm} \times 3)$

- ・コンパクトな形状
- →水力、揚水発電所でのトンネル・岩盤掘削のコスト削減
- 大電流送電時の低損失化
- ・フレキシブルなケーブル適用で、発電機と変圧器の配置自由度増

主要成果【1】大電流ケーブルの課題

部位	項目	課題	今回検討内容
ケーブル	定格電流通電	12kA安定通電	・導体部冷却特性向上を目指して、 コア中心に冷却チャンネルを設ける。 ・短尺での12kA通電確認
	低損失化	<10W/m/ph	・シールドなし検討 ・短尺での損失測定 (従来設計適用性確認)
	事故電流対応	63kA/0.6 sec対応	・銅保護導体の検討 ・短尺での温度特性、線材への影響 確認
端末	コンパクト化	現地スペース対応	コンパクト化のための基本構造検討
	通電・低損失化	電流リード、接続 部の安定通電、低 損失化	・従来設計による電流リード試作、 評価。 ・低損失化のための指針確認

高温超電導ケーブル実証プロジェクト事後評価

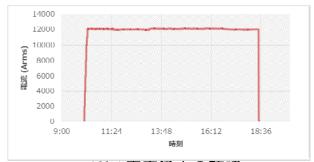


6.1-5 ケーブルの高性能化

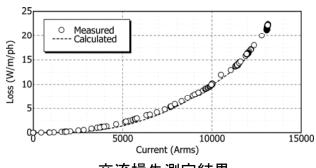
III p.431-432

主要成果【2】ケーブル基本構造の設計検討

部位	仕様	補足説明
構造	単心型	三心型ではケーブル外 径大で製造不可
フォーマ	中空金属パイプ(内部 冷却) +銅保護導体 (400 mm ²)	冷却能力の向上 60kA級短絡電流対応
超電導導体	4層(DI-BSCCO線材)	AC線材にて低損失化
電 気 絶縁	PPLP (t=3 mm)	22kV級の従来設計
遮蔽層	銅テープ	超電導層なし (低コスト化)
保護層	クラフト紙、布テープ	
断熱管	二重SUSコルゲート管 (SI & 真空断熱)	従来設計


主要成果【3】ケーブル通電特性の確認

12kA安定通電、交流損失評価



サンプルケーブル(3m)

15W/m@12kA →さらなる低減が必要

12kA安定通電の確認

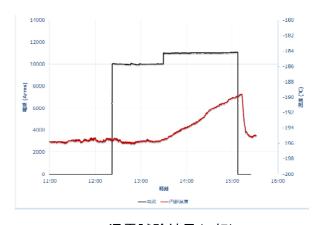
交流損失測定結果

高温超電導ケーブル実証プロジェクト事後評価

6.1-5 ケーブルの高性能化

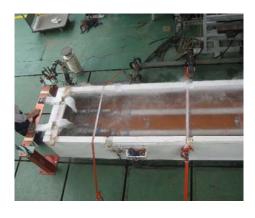
III p.435-437

主要成果【3】ケーブル通電特性(他相の影響


通電特性(2相通電)

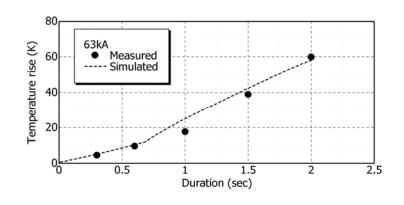
サンプルケーブル(3m)

通電結果


単相通電では12kA安定通電可能であったが、 2相通電では、他相の磁場の影響により11kA通電時で温度上昇 →他相磁場考慮したIcマージンを設計に考慮

通電試験結果(2相)

主要成果 【4】事故電流通電時の評価


短絡試験(63kA, 2sec)

サンプルケーブル(3m) フォーマCuサイズ(400mm2)

試験結果

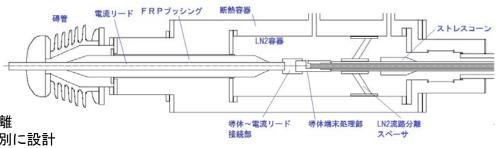
63kA/2secでの温度上昇は、約60Kと計算通りの値。 試験前後でのIc特性に変化なし。

通電試験結果(2相)

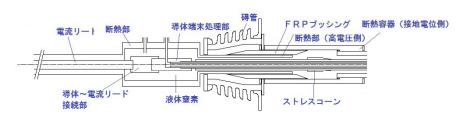
高温超電導ケーブル実証プロジェクト事後評価

◆ 住友電工

₩ 東京電力 **MAYEKAWA**

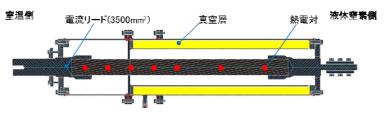

6.1-5 ケーブルの高性能化

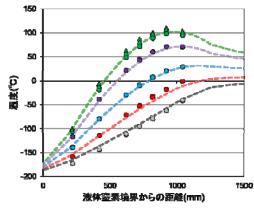
III p.443-444 10


主要成果【5】端末のコンパクト化検討

設計の特徴

- ●電流リードとブッシングを分離 →ブッシングと電流リードを個別に設計
- 従来設計では、電流リードとブッシング が一体化しているため、ブッシングが大 きくなる方向
- 本設計では、ブッシングサイズを小さく し、電流リードの設計に自由度あり。
- ●電流リードとケーブルの接続部を高 電圧部に設置
- →容器側と同電位であるため、大きな 離隔は不要


従来設計



考案した設計

主要成果【6】電流リードの設計検討

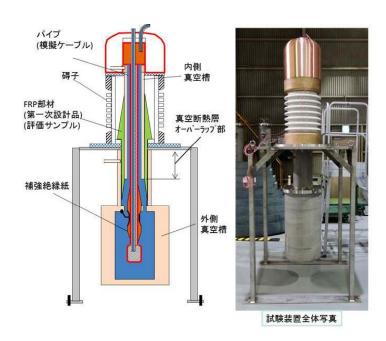
従来設計での電流リード試作、評価 (撚り線、3500mm2)

12kA安定通電の確認 損失820W@12kA →従来設計通り

低損失化の指針

- 導体の交直比の低減 3500SQ(交直比3)
- →3次撚線等、交直比を1に近づけ
- 通電に寄与しない断面積の低減
- ・常温部での熱交換量の増加
- →熱交換面積の増加等

高温超電導ケーブル実証プロジェクト事後評価



6.1-5 ケーブルの高性能化

III p.448

12

主要成果【7】ブッシングの試作・評価

電圧が印加するブッシング部を FRPにて試作し、課電試験を実施。

試験条件

AC45 kV×10分間、 IMP±165 kV各3回 (電力用規格A-257「22 kV CVケーブル用がい管」による)

→良好に課電できることを確認

成果のまとめと今後の課題

大電流超電導ケーブルと端末の設計検討および要素技術開発を行った。

- ケーブル構造→単心型(空芯コア、超電導シールド無し)を選択。
- •12kA安定通電、交流損失は15W/m/ph →今後、低交流損失線材の使用等で低損失化を計る。
- 他相の磁場の影響を調査→設計に反映する。
- ・電流63kA/2secの短絡試験を実施→ケーブルにダメージがないことを確認。
- ・短絡時の電磁力は1300kg/m
- 端末については、大電流通電可能なコンパクトな構造の基本設計を行った。
- ・従来設計での電流リードで12kA通電を実施。損失820W/本。 →電流リード導体の交直比を低減させ、低損失化を計る。
- FRPブッシングを試作→課電試験良好

大電流ケーブル、端末の基本設計を完了

高温超電導ケーブル実証プロジェクト事後評価

