バイオマスエネルギー地域自立システムの導入要件

（Ver.1 案）

平成28年5月

国立研究開発法人新エネルギー・産業技術総合開発機構
はじめに

2011年の東日本大震災を契機とした電力需給やエネルギー構成のあり方の見直し、2012年の再生可能エネルギーの固定価格買取制度（Feed in tariff: FIT）の施行などを経て、地域の特徴を踏まえた再生可能エネルギー活用への機運が高まっている。2014年4月に閣議決定された「エネルギー基本計画」においても、未利用木質バイオマスや、下水汚泥、食品廃棄物、耕作放棄地で生育させる燃料作物などを、電気および熱に変換利用する事業を進めることが明記され、バイオマスのエネルギー利用が一層推進されている。

バイオマスエネルギー供給事業は、所定の条件を満足してFIT制度を活用できれば、自立事業となり得るので、新規事業として取り組もうとする機運が高まっている。しかしながら、事業を将来にわたって長期的に継続するには、多くの知恵と工夫を要する。これは、事業を支える基盤が現状では脆弱なためである。バイオマスエネルギー供給事業展開のための基盤とは、事業を継続するために必要なバイオマスの調達、エネルギー利用、バイオマス変換に関わるインフラ、技術、設備、および人材等を意味し、これらは事業の自立、継続に不可欠である。

今日、我が国は世界水準から見て最も停電が少ない国であり、我々は全国津々浦々どこでも高品質な電力を利用できる。これは、1,000MWを超える規模の大型発電事業を維持するために長年にわたる投資や競争を続け、燃料調達、電力利用、発電を支える社会構造や技術、設備、人材などの基盤を整えた成果である。

このように長期的にハードウェアおよびソフトウェアの両面の基盤が整えられた既存の電力事業に比べ、バイオマスエネルギー供給事業の展開に必要な基盤ははるかに脆弱である。事業を継続的な事業として成功させるには、現時点では基盤を整えるための事業者自身の知恵と工夫に加えて、継続的な努力が必要である。

本書は、これからバイオマスエネルギー供給事業に取り組むことを計画する人達を主な読者と想定し、事業計画にあたって留意すべき点や参考にすべき情報を、事業者や有識者へのヒアリング調査ならびに関連する参考資料に基づいて、まとめたものである。本書が、バイオマスエネルギー供給事業の計画時に参考にされ、事業成功の一助となることを期待する。
目次

はじめに .. i
本書について ... 1
概要 ... 2

1. 木質系バイオマスを利用する事業 ... 4
 1.1. エネルギー事業の事業化規模の目安 ... 4
 1.2. 事業計画立案時に「環境」の観点から考慮すべきこと ... 4
 1.3. 事业計画立案時に「地域」の観点から考慮すべきこと ... 4
 1.4. バイオマスエネルギーの地域自立システムの方向性 ... 5

2. 湿潤系バイオマスを利用する事業 ... 6
 2.1. 湿潤系バイオマスへのメタン発酵技術適用の意義 ... 6
 2.2. 事業実施に重要な要件と可能性のある導入領域 ... 6
 2.3. 環境と地域の観点からみた期待できる効果と留意点 ... 7
 2.4. バイオマスエネルギーの地域自立システムの方向性 ... 7

I. バイオマスエネルギーの地域自立システム ... 8
 1. バイオマスエネルギーの地域自立システムとは ... 8
 1.1. バイオマスエネルギーとは ... 8
 1.2. 地域自立システムとは .. 8
 2. 地域自立システムに必要な視点 ... 9
 3. 地域自立システムにおいて検討すべき事項 ... 11
 3.1. バイオマス調達 .. 12
 3.2. エネルギー利用 ... 13
 3.3. エネルギー変換 ... 14
 3.4. システム ... 14

II. 導入要件 ... 15
 1. バイオマス調達 ... 15
 1.1. バイオマスに関する検討（木質・湿潤共通） ... 15
 1.1.1. 調達可能量 ... 15
 1.1.2. 調達先 ... 21
 1.1.3. 品質 ... 24
 1.1.4. 単価 ... 31
 1.2. バイオマスの輸送に関する検討（木質・湿潤共通） ... 33
 1.2.1. 輸送方法 ... 33
 1.2.2. バイオマスの輸送費 .. 36
 1.3. バイオマスの貯蔵・乾燥方法の検討（木質） ... 37
 1.3.1. 貯蔵・乾燥方法 ... 37
 1.3.2. 貯蔵・乾燥設備の初期費用 ... 38
4.1.1. 資金調達計画 ... 74
4.1.2. 事業期間... 75
4.1.3. 立地... 76
4.1.4. 事業実施スケジュール ... 77
4.1.5. 関連法規制等 ... 78
4.2. 事業性の検討（木質・湿潤共通） ... 82
 4.2.1. 事業性評価 ... 82
 4.2.2. 事業環境の長期変動リスク ... 84
本書について

本書は、バイオマスをエネルギー資源として持続的に利用する「地域自立システム」を構築するにあたり、留意すべき点を纏めたものである。ここで、「地域自立システム」とは以下のよう

に定義される。

● バイオマスエネルギー: バイオマス資源のエネルギー変換には、燃焼、ガス化、液体燃料化等、様々な技術を適用でき、これらに関する研究開発はこれまでにも広く実施されている。本書は、すでに商業利用が進んでいる「直接燃焼」と「メタン発酵」の2つの技術による電力および熱としての利用を対象としたものである。

● 地域（自立）システム: 単独の地方公共団体の範囲で完結する地産地消システムだけを指すのではなく、他の地方公共団体にまたがったり、海外とも連携したりするような広範囲で、かつ事業者もしくは複数の事業者からなる事業体が、事業を統括して遂行できるシステムである。

● 自立: 「事業として経済的に自立できる」状態、すなわち少なくなても運用費への補助がなくても事業を継続できる状態を表す。
概要

なぜバイオマスエネルギーが注目されるのか？

バイオマスは基本的に廃棄物であるため、FIT制度の導入以前はバイオマスエネルギー利用といえども、その主たる目的は廃棄物処理であった。

しかしながら、FIT制度により、再生可能エネルギーの一つとして間伐材等の未利用の森林資源や畜産廃棄物等を利用する発電事業が条件によっては成立するようになったため、バイオマスのエネルギー利用が注目されるようになった。

今、なぜ地域自立システムが必要なのか？

現在のバイオマスエネルギーへの注目がFIT制度のみに裏打ちされたものであるならば、制度が終了する20年後は誰も見向きもしなくなるであろう。

しかし、エネルギー資源のほとんどを輸入に依存する我が国で、日々発生する廃棄物を貴重なエネルギー資源として有効活用すべきことは論をまたない。

このような課題を解決するためのシステムが「地域自立システム」である。

バイオマスは農林水産業の産物に由来するため、我々の日常生活が続く限り無くなることはない。必ずしも日常生活に直接繋がらない森林も、水源涵養や土砂災害防止を含む複数の天然資源および国土の保全機能を担う我々の生活基盤の一つである。これを守るために適切な管理は必須で、それに伴う木質系バイオマスが発生する。このように、バイオマスは我々の生活と不可分であるため、その利用は持続的でなければならない。

さらには、持続的であるために地域産業との連携および連動が不可欠で、いわゆる地域経済における地域の生活を含む複数の天然資源および国土の保全機能を担う我々の生活基盤の一つである。これを守るために適切な管理は必須で、それに伴う木質系バイオマスが発生する。これが、バイオマスは我々の生活と不可分であるため、その利用は持続的でなければならない。

したがって、時限的なFIT制度のみに依存するエネルギー利用ではなく、日常的に発生するバイオマスを持続的かつ最大限有効的に活用することを目指す「地域自立システム」が、今、必要なのである。

多数の失敗事例の轍を踏まないために4つの要素で事業を検討

複数のバイオマスエネルギー事業の成功事例の隣に多数の失敗事例が存在する。これらの先行事業を例とすれば、事業の成功には、「バイオマス調達」、「エネルギー変換」、「エネルギー利用」のプロセス要素に、これらの統合と地域産業や社会との連携を含めた「システム」という要素を加えた4つの要素を十分に検討することが必要である。

保有する優位性を核に知恵と工夫で補完する事業計画の立案

事業実現には、バイオマスを安定的に調達するために供給してくれる供給者、安定的にエネルギー変換するために信頼性の高い設備を提供してくれるメーカー、安定的な運用をするための人材等が必要である。しかし、残念ながらバイオマスエネルギー事業の実現に必要なサービスやインフラは現在のところ発展していない。木質系バイオマスを利用する場合は特に、国際競争力の
低下による国内林業の衰退によって間伐材等の未利用木質バイオマスの供給体制は非常に脆弱である。そのため、事業者が有する優位性を核として、事業実現に不足する部分は事業者の知恵と工夫で補完しながら4つの要素を堅固にすることが事業計画立案には肝要である。

設備発注前の十分な技術的検討

事業の成立には、年間8,000時間の稼動を実現しうる信頼性が高い設備が必要である。導入設備が計画通りに稼動しない事業は成立しないため、設備発注前の十分な技術的検討は必須である。ただ、欧州等で稼動実績があっても国内では同様の稼動ができなかったり、稼動実績とは異なるバイオマスでは所定能力が出なかったりするため、十分に留意が必要である。

成功の鍵は、持続的に地域社会で必要とされる事業の追求

その事業は誰にとってどのように必要か。事業を検討する際、事業目的を明確にすることは必須である。地域自立システムでは事業目的が地域産業や社会で必要とされる機能と合致する。

バイオマスエネルギー事業でできることは、高々、電力あるいは熱の供給である。実施内容は至ってシンプルである。ただ、持続的で成功には、持続的な需給の関係者が描く「目指す地域の姿」を共有しながら、持続的に必要とされるエネルギー事業の役割を見出し、目指す地域の姿に融合可能な事業計画を立案する。また、木質系バイオマスを利用する場合は「目指す森林の姿」を考慮することが必要で、地域における森林管理計画の遂行と地域産業としての森林の持続可能性の状況を踏まえた事業計画を立案する。このような過程を経た事業計画は地域の発展を支える事業の一つとして将来にわたり必要とされるため、持続的な関係者の協力を得ることが可能であろう。

FIT制度の20年間は持続的な地域の産業づくりと廃棄物処理体制の整備のための期間

以上のように、バイオマスエネルギーの地域自立システムの実現には、地域戦略と事業計画を事業者と地域関係者との双方が共有し、その具現化に向けた協力を持続することが肝要である。

長きにわたり発展を目指す地域戦略であるならば、事業もFIT制度で定める20年を区切りとしない持続的な計画にすべきである。

したがって、この20年間を、木質系バイオマスの場合は地域戦略に則って森林管理と林業の国際競争力強化を含めた地域に必要な産業づくりを行うための期間、湿潤系バイオマスの場合は将来も必要な地域の廃棄物処理体制の整備を行うための期間と捉えることが肝要である。
1. 木質系バイオマスを利用する事業

1.1.エネルギー事業の事業化規模の目安

バイオマスエネルギー事業の候補は発電事業と熱供給事業の二つである。再生可能エネルギーの固定価格買取制度（FIT制度）が適用される現在は、発電事業が成立し易い。事業成立の重要な条件として、バイオマスの安定調達と年間8,000時間の稼働を実現しうる技術の採用と適切な運用が挙げられる。木質系バイオマスの直接燃焼発電事業は大規模ほど発電単価が低下し事業性が向上するが、バイオマスの安定調達が困難になるため発電事業規模の十分な検討が必要である。

小規模発電の事業性向上策として、バイオマス購入費の低減や排熱の有効利用が挙げられる。ただし、既存の熱需要に適合する排熱供給は容易でないため、地域や既存産業への熱供給に特化した事業とするか、新産業創出と連携した発電および熱供給事業とすることが重要である。

熱供給事業も大規模ほど事業性は向上するが発電ほどバイオマスを必要としない。産業向けの熱供給事業や極少量のバイオマスで公共性の高い地域熱供給事業等が候補となりうる。

各事業の事業化規模の目安を図1に示す。

1.2.事業計画立案時に「環境」の観点から考慮すべきこと

発電事業によるCO2排出量の低減効果は、バイオマス燃料の加工方法、事業規模、輸送距離等に依存する。バイオマス乾燥への天日活用と発電規模の大規模化はCO2低減効果が高い。

また、管理不足による森林の荒廃を防止するため、森林を有する地域は、目指す森林の姿を定義し、それを実現するために必要な森林施業に基づき伐採されるべき素材（丸太）量を検討すると共に、施業計画の確実な実行を実現する管理体制をFIT制度の20年間を活用して整備する。

1.3.事業計画立案時に「地域」の観点から考慮すべきこと

発電事業に注目して地域の観点から事業を捉えて地域経済効果を見ると、地域内のバイオマスを利用しうる規模に応じて小規模発電するように、規模が大きい発電事業の方が効果は大きい。ただし、発電事業は設備投資額が大きく、かつ、5MW程度の発電規模では発電効率がそれ程高くないため投資対効果は1を超えない。

20年間の発電事業による経済効果のうち最大部分は燃料供給の部分であるため、地域による事業としてバイオマス供給に特化することが考えられる。これを地域資源の商材化と捉えれば、より高価で購入可能性のある発電事業者を販売先にすることが重要である。具体的な供給先は地
域周辺のFIT制度を適用する発電所の立地に応じて検討することが重要である。たとえば、300km離れたFIT制度が適用される石炭混焼発電所へ供給する年産2万トンを超えるペレット製造事業の投資対効果は1を超えるなど、立地に応じて最適な燃料化方法の検討が必要である。

ただし、FIT制度を前提とした発電事業やバイオマス供給事業はFIT制度なくしては成立しない。したがって、FIT制度が終了する20年後、更にはその先も含めた計画が必要である。20年間を新産業創出の期間と捉え、たとえば素材（丸太）生産のコスト低減を図ったり、他の産業との連携により地域資源である素材（丸太）の付加価値を向上したりする継続的な工夫が必要である。

一方、バイオマス利用可能量が1万m³/年に満たない地域資源を利用した地域熱供給事業等は事業開始当初は事業として成立しない。ただし、将来の原油価格の上昇を想定する場合には、長期的な事業性の向上を期待することが可能である。

1.4.バイオマスエネルギーの地域自立システムの方向性

持続的事业の成立には、森林および地域の目指す姿に基づき、適切な森林管理および地域産業との連携を実現する体制への移行が必要であり、全関係者による工夫と協力が求められる。

図2 木質系バイオマスの地域自立システムの現在と将来のイメージ
2. 湿潤系バイオマスを利用する事業

2.1. 湿潤系バイオマスへのメタン発酵技術適用の意義

湿潤系バイオマスとは、畜産廃棄物、家庭系および事業系生ごみ、食品加工残さ、し尿、下水汚泥を指す。いずれも農畜産業、食品加工産業そして人々の生活による廃棄物であり、将来にあたり処理は不可欠である。しかし、湿潤系バイオマスは水分率が非常に高いため焼却処理するには補助燃料を必要とする。輸入エネルギーに依存する我が国は可能な限りの省エネルギーに努められるべきであるため、現在焼却している場合はメタン発酵技術の適用を検討することがある意義がある。

もう一つの湿潤系バイオマスへのメタン発酵技術適用の意義は、食料および家畜飼料由来の肥料成分の循環を可能とすることである。農畜産業を主力産業とする地域を目指す場合、メタン発酵技術は有効な社会機能の一つになりうるため、メタン発酵技術の適用を検討する意義がある。

ただし、一定の要件を満たした場合のみ持続的な事業として成立可能であるため、計画立案時に十分な検討が必要である。

2.2. 事業実施に重要な要件と可能性のある導入領域

信頼性が高い技術の選択と適切な設備費および運転費での導入が重要である。

現在のメタン発酵技術は副産物として消化液を発生するため、消化液の利用あるいは処理が必要である。また、メタン発酵導入意義の一つが消化液の肥料利用による農畜産業と社会生活的循環形成であるため、消化液を肥料利用できる農地の有無は導入検討に重要な要件の一つである。

十分な消化液利用ができない場合の次善策は下水放流であるため、下水放流可能な場所への事業立地可否も重要な要件の一つである。更に、適切な事業規模と安定的なバイオマス調達体制の整備も重要である。図3にメタン発酵技術の導入可能性がある領域と事業規模の目安を示す。
2.3. 環境と地域の観点からみた期待できる効果と留意点

焼却処理のメタン発酵への切り替えは、補助燃料消費量が削減される上、バイオガス発電が可能になるため CO₂低減効果がある。また、畜産廃棄物への適用は悪臭低減策として有効であるため、地域住民や観光客の居住環境の質向上に効果がある。更には、消化液の農業利用により食料生産の自立性の向上や肥料コスト低減による農業の事業性向上も期待できる。農業の事業性向上も地域収入の増加と捉えれば、いずれも地域の視点から捉えるべき公共性が高い効果である。

そのため、地域が目指す姿が畜産業、農業、それらを活用した観光業を主力産業とする場合は、メタン発酵の適用は、地域で発生する畜産廃棄物、生ごみや食品廃棄物の処理という社会インフラの選択肢として意義が高い。また、地域の目指す姿に関わらず、地域にとって廃棄物処理コスト低減は今後重要である。メタン発酵を上手に適用することにより、焼却炉更新を経済的負担が少ない延命対策に代替できる可能性もあるため、地域の視点から導入を検討する意義がある。

ただし、実現のためには、住民による生ごみ分別への協力や畜産業および農業者による消化液の利用、消化液の安定的な供給体制の整備などに取り組む必要がある。

地域に不可欠な社会インフラであるため地方公共団体の関与は必須であるが、民間事業者の連携による相乗効果を模索するなど、地域資源を最大限活用する計画立案が重要である。

2.4. バイオマスエネルギーの地域自立システムの方向性

現在は FIT 制度による売電収入を期待できるが 20 年後は期待できない。畜産事業者が個別に導入する以外は、民間事業者が事業主体の廃棄物事業であっても地域産業等を支える廃棄物処理インフラとして重要であるため 20 年後も見据えた計画立案が重要である。

そのため、FIT 制度がなくても成立する事業内容で計画するか、20 年後のバイオガス利用方法を検討する必要がある。新産業での熱利用を考える場合には隣地の確保も考慮する必要がある。

図 4 潤湿系バイオマスの地域自立システムの将来イメージ
I. バイオマスエネルギーの地域自立システム

1. バイオマスエネルギーの地域自立システムとは

1.1. バイオマスエネルギーとは

本書は、バイオマス資源を電力および熱に変換する技術として、すでに商業利用が進んでいる「直接燃焼」と「メタン発酵」の2つの技術について主に記載している。「直接燃焼」技術は主として木質系バイオマスを、また「メタン発酵」技術は食品廃棄物、畜産廃棄物、下水汚泥等の湿潤系バイオマスを原料とする場合が多い。なお、バイオマス由来の液体燃料については、本書では記述していない。

1.2. 地域自立システムとは

「地域自立システム」とは、1つの自治体の中に収まる狭い範囲で完結する地産地消のようなシステムだけではなく、他市町村や他県、海外とも連携するようなシステムを指す。

地域自立システムでは、事業者もしくは複数の事業者からなる事業体は運用に対して補助が無くても経済的に自立して事業を継続的に運営し、事業を地域社会の一部として機能させるものとする。

【地域自立システムの境界】

地域自立システムの境界は事業者が実施する事業内容によって異なる。地域自立システムとしてバイオマス調達が入口境界となり、エネルギー利用が出口境界となる。

例えば、入口境界は、原木を購入してチップ化し、チップをエネルギー変換する事業者にとっては原木購入であり、チップを購入してエネルギー変換する事業者にとってはチップ購入である。

エネルギー利用についても、エネルギー変換によって得た温水を供給する事業者にとっては、温水の供給が、温水を利用してハウス栽培する事業者にとってはハウス栽培が出口境界となる。
2. 地域自立システムに必要な視点

これまでのヒアリング調査などから、事業性が見込まれ、地域で自立できるシステムに必要な要素は、以下の４つに集約される。

図 I.2-1 地域自立システム概念図

＜バイオマス調達＞
バイオマスエネルギー事業を計画通りに運営するには、事業者自身が原料を安定的に調達できる仕組みを作ることが必要である。事業者は、バイオマスの性状によって発熱量が変わることを十分考慮して、事業収支に影響が大きい購入価格を検討しなければならない。また、事業者はチップやペレット燃料の規格化や標準化等に関する動向にも十分に注意を払う必要がある。

＜エネルギー変換＞
所定の稼働率を達成するためには、エネルギー変換プロセスを構成する設備や機器が安定的に稼働する必要がある。たった１つの部品の不具合で稼働ができず事業収入が激減する場合もあるので、事業者自身も設備仕様やメンテナンス計画等に関する知識を十分持った上で検討することが重要である。

＜エネルギー利用＞
バイオマスのエネルギーは電力だけでなく熱としても利用できること、全体のエネルギー効率が向上し、事業性も向上する。熱の供給は、需要量や利用場所によっては周辺の既存事業で効果的に利用できない等の事情のため、困難な場合も多いが、このような場合には新たな需要を生む工夫が重要である。
バイオマスは、何らかの農林水産業やそれに関連する加工産業、廃棄物処理業等の「地域の産業」に付随して発生する。したがって、これらを燃料とするエネルギー事業にとっては、地域産業ひいては地域社会との連携が不可欠である。さらに、エネルギー事業は他の産業や生活を支えるインフラ事業でもあることから、エネルギー事業だけを継続的に維持することはきわめて難しく、地域とできるだけ密接に連携して運営することが肝要である。
3. 地域自立システムにおいて検討すべき事項

地域自立システムの検討にあたっては、「バイオマス調達」と「エネルギー利用」の二つの要素を把握した上で、エネルギー変換を検討する必要がある。例えば、ガス化発電システムを使いたい、メタン発酵システムを構築したいなどといったエネルギー変換技術ありきでの状態で検討すると、バイオマス調達やエネルギー利用との整合性が取れなくなることが多い。

とくに、熱利用においては、設備容量の決定に大きく影響する季節変化や日変動を高い精度で把握して検討する必要がある。検討にあたっては、下図の検討事項①〜③の順に、具体的な検討事項をまとめることが肝要である。本章に続く、第Ⅱ章：導入要件では、各項目の検討にあたって留意すべきことを解説する。

【検討事項】
①バイオマス調達（入口）とエネルギー利用（出口）の把握
②入口・出口との調和のとれたエネルギー変換技術等の検討
③システム全体（事業性評価等）の検討
→必要に応じてフィードバック

図 I.3-1 地域自立システム構築のために検討すべき事項
3.1.バイオマス調達

バイオマス調達について検討すべき事項は下表の通りである。表中、「共通」とあるのは調達するバイオマスの種類に依存しない事項を、「木質」とあるのは木質系バイオマスを直接燃焼する場合のみ当てはまる事項を、さらに「湿潤」とあるのは水分の多い湿潤系バイオマスを用いてメタン発酵を行う場合のみ当てはまる事項を意味する。これらの表記の使用は以下同じとする。

なお、草本系バイオマスや鶏糞は主に直接燃焼に使用できるが、これらの混合によって生ずる設備の不具合を回避する方策については、設備の設計段階からメーカーに相談する必要がある。

表 Ⅰ.3-1 原料調達について検討すべき事項

<table>
<thead>
<tr>
<th>検討事項</th>
<th>バイオマス区分</th>
<th>本書内参考箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料調達可能量の検討</td>
<td>共通</td>
<td>P.10</td>
</tr>
<tr>
<td>燃料調達先の検討</td>
<td>共通</td>
<td>P.16</td>
</tr>
<tr>
<td>調達する原料の品質の検討</td>
<td>共通</td>
<td>P.20</td>
</tr>
<tr>
<td>調達する原料の単価の検討</td>
<td>共通</td>
<td>P.28</td>
</tr>
<tr>
<td>原料の輸送方法の検討</td>
<td>共通</td>
<td>P.31</td>
</tr>
<tr>
<td>原料の輸送費の検討</td>
<td>共通</td>
<td>P.34</td>
</tr>
<tr>
<td>原料の貯蔵・乾燥方法の検討</td>
<td>木質</td>
<td>P.35</td>
</tr>
<tr>
<td>貯蔵・乾燥設備初期費用の検討</td>
<td>木質</td>
<td>P.36</td>
</tr>
<tr>
<td>貯蔵・乾燥設備運用費の検討</td>
<td>木質</td>
<td>P.37</td>
</tr>
<tr>
<td>原料の調達形態の検討</td>
<td>木質</td>
<td>P.38</td>
</tr>
<tr>
<td>固体燃料化設備（チッパー、ペレタイザー等）初期費用の検討</td>
<td>木質</td>
<td>P.39</td>
</tr>
<tr>
<td>固体燃料化設備（チッパー、ペレタイザー等）運用費の検討</td>
<td>木質</td>
<td>P.40</td>
</tr>
<tr>
<td>既存の原料（廃棄物）処理システムとの関係の検討</td>
<td>湿潤</td>
<td>P.41</td>
</tr>
<tr>
<td>廃棄物処理に関する法規制の確認と検討</td>
<td>湿潤</td>
<td>P.42</td>
</tr>
</tbody>
</table>
3.2.エネルギー利用

エネルギー利用について検討すべき事項は下表の通りである。

<table>
<thead>
<tr>
<th>検討事項</th>
<th>バイオマス区分</th>
<th>本書内参考箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ エネルギーの利用形態の検討</td>
<td>共通</td>
<td>P.43</td>
</tr>
<tr>
<td>（電気、熱（蒸気、温水）、固体燃料、気体燃料など）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ エネルギーの利用先の検討</td>
<td>共通</td>
<td>P.44</td>
</tr>
<tr>
<td>□ エネルギー需要量の検討</td>
<td>共通</td>
<td>P.45</td>
</tr>
<tr>
<td>□ 求められるエネルギーの条件の検討</td>
<td>共通</td>
<td>P.48</td>
</tr>
<tr>
<td>（圧力や温度、熱流量、不純物など）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ エネルギー販売単価/利用価値（定量的）の検討</td>
<td>共通</td>
<td>P.49</td>
</tr>
<tr>
<td>□ エネルギー利用設備初期費用の検討</td>
<td>共通</td>
<td>P.50</td>
</tr>
<tr>
<td>□ エネルギー利用設備運用費の検討</td>
<td>共通</td>
<td>P.50</td>
</tr>
<tr>
<td>（ユーティリティ費、その他変動費、人件費、メンテナンス費など）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ 副生物の処理/利用形態の検討</td>
<td>共通</td>
<td>P.51</td>
</tr>
<tr>
<td>□ 副生物発生量の検討</td>
<td>共通</td>
<td>P.53</td>
</tr>
<tr>
<td>□ 副生物需要量の検討</td>
<td>共通</td>
<td>P.55</td>
</tr>
<tr>
<td>□ 発生する副生物の性状の検討</td>
<td>共通</td>
<td>P.57</td>
</tr>
<tr>
<td>□ 副生物の処理単価/販売価格の検討</td>
<td>共通</td>
<td>P.59</td>
</tr>
<tr>
<td>□ 副生物貯蔵設備初期費用の検討</td>
<td>共通</td>
<td>P.61</td>
</tr>
<tr>
<td>□ 副生物貯蔵設備運用費の検討</td>
<td>共通</td>
<td>P.61</td>
</tr>
<tr>
<td>（ユーティリティ費、その他変動費、人件費、メンテナンス費など）</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.エネルギー変換

エネルギー変換について検討すべき事項は下表の通りである。

表 I.3-3 エネルギー変換について検討すべき事項

<table>
<thead>
<tr>
<th>検討事項</th>
<th>バイオマス区分</th>
<th>本書内参考箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 採用するエネルギー変換技術・設備の検討</td>
<td>共通</td>
<td>P.62</td>
</tr>
<tr>
<td>□ バックアップ設備の必要性の検討</td>
<td>共通</td>
<td>P.68</td>
</tr>
<tr>
<td>□ 設備運転体制（運転人員数、班数など）の検討</td>
<td>共通</td>
<td>P.69</td>
</tr>
<tr>
<td>□ 設備メンテナンス体制の検討</td>
<td>共通</td>
<td>P.69</td>
</tr>
<tr>
<td>□ エネルギー変換設備初期費用の検討</td>
<td>共通</td>
<td>P.70</td>
</tr>
<tr>
<td>□ エネルギー変換設備運用費の検討（ユーティリティ費、その他変動費、人件費、メンテナンス費など）</td>
<td>共通</td>
<td>P.71</td>
</tr>
</tbody>
</table>

3.4.システム

システム全体について検討すべき事項は下表の通りである。

表 I.3-4 システム全体について検討すべき事項

<table>
<thead>
<tr>
<th>検討事項</th>
<th>バイオマス区分</th>
<th>本書内参考箇所</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 資金調達計画の検討</td>
<td>共通</td>
<td>P.72</td>
</tr>
<tr>
<td>□ 事業期間の検討</td>
<td>共通</td>
<td>P.73</td>
</tr>
<tr>
<td>□ 立地の検討</td>
<td>共通</td>
<td>P.74</td>
</tr>
<tr>
<td>□ 事業実施スケジュールの検討</td>
<td>共通</td>
<td>P.75</td>
</tr>
<tr>
<td>□ バイオマスエネルギー事業に適用される法規制等の検討</td>
<td>共通</td>
<td>P.76</td>
</tr>
<tr>
<td>□ 事業性評価の実施</td>
<td>共通</td>
<td>P.80</td>
</tr>
<tr>
<td>□ 事業環境の長期変動リスクの検討</td>
<td>共通</td>
<td>P.82</td>
</tr>
</tbody>
</table>
II. 導入要件

1. バイオマス調達

1.1. バイオマスに関する検討（木質・湿潤共通）

事業者は、バイオマスを安定して調達可能な体制を確立することが大前提となる。

1.1.1. 調達可能量

安定調達には、まず周辺地域での年間調達可能量を把握し、続いてその変動を把握する必要がある。以下、木質系バイオマスおよび湿潤系バイオマスの調達可能量の検討のにあたって留意すべき点を整理する。

(1) 木質系

1) 年間調達可能量

木質系バイオマスの種類別に、周辺地域で木材資源の伐採や供給、利用、および廃棄をする主体とそれぞれの取扱量を把握した上で検討することが重要である。統計情報やそれに基づく試算結果も活用できるが、調達範囲は必ずしも行政界と一致しないため、独自の文献調査やヒアリング調査なども必要である。とくに、FIT制度開始後、木質系バイオマスの流通状況は大きく変化している可能性が高いので、この点には十分注意すべきである。

これまで、木材資源は複数の用途に利用されてきた。木材資源の部位や種類ごとに既存の市場がある。したがって、事業者が市場に参入する場合は、既存の市場を奪うのではなく、周辺地域の流通量の拡大や新たな流通経路の開拓も考慮に入れる必要がある。

木質系バイオマスは発生場所に応じて以下の5種類に大別される。

- 建設発生木材
- 工場残材
- 末木枝条
- (切捨) 間伐材
- 短伐期のエネルギー用材

表 II.1-1 に、各木質系バイオマスについて、発生場所と発生量の概算方法を示す。
表 Ⅱ.1-1 燃料向け木材資源の発生場所と発生量の概算方法

<table>
<thead>
<tr>
<th>種類</th>
<th>発生場所</th>
<th>発生量の概算方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設発生木材</td>
<td>建築・解体現場</td>
<td>建築・解体面積×40~100kg/m²<sup>1</sup></td>
</tr>
<tr>
<td>工場残材</td>
<td>木材加工関連工場</td>
<td>製材工場:製品量×30%程度<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>合板工場:製品量×30~50%程度<sup>2</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ラミナ工場:製品量×50~70%程度<sup>2</sup></td>
</tr>
<tr>
<td>林木枝条</td>
<td>林内あるいは土場</td>
<td>林木枝条:製品量×15~35%程度<sup>3</sup></td>
</tr>
<tr>
<td>(切捨)間伐材</td>
<td>林内</td>
<td>間伐実施前に林地に賦存する蓄積×10~40%程度(30%程度が一般的とされる)<sup>3</sup></td>
</tr>
<tr>
<td>短伐期のエネルギー用材</td>
<td>短伐期林</td>
<td>100%を燃料向けにできる前提</td>
</tr>
</tbody>
</table>

¹: 一般社団法人日本建設業連合会ウェブサイト（http://www.nikkenren.com/kankyou/haiki_hijyu.html）参照

²: 林野庁統計資料に基づき弊社試算

³: NEDO バイオマス賦存量・有効利用可能量の推計（http://app1.infoc.nedo.go.jp/biomass/about/index.html）の推計方法参照

（出所）一般社団法人日本建設業連合会ウェブサイト、林野庁各種統計、NEDO バイオマス賦存量・有効利用可能量の推計より

上記の発生量の概算方法を参考にして、調達可能量の空間的な分布についてもおよその目安をつけておけば、輸送費概算の参考にできる。

2) 季節変動

木質系バイオマスの調達可能量は、関連産業である林業や木材関連産業、建築業、解体業等の繁忙度合いをはじめとする様々な要素によって季節変動する可能性がある。このため、変動を十分に考慮したうえで、貯蔵設備の規模や調達契約等を考える必要がある。たとえば、図 Ⅱ.1-1 にあるように、国産材製材業は 3 月や 10~11 月に繁忙期を迎え、閑散期である 8 月には工場への入荷量が 8 割近く、端材の発生量も 2 割近く落ち込むので、対策が必要である。

図 Ⅱ.1-1 製材業における国産材入荷量の推移（2014 年）
（出所）木材統計調査（林野庁）2015 年
（2）湿潤系

湿潤系バイオマスは、種類や発生主体が多岐にわたり、収集し易さやガス発生量等の原料性質が千差万別である。地域自立システムでは、主原料の他に地域において発生する複数の種類のバイオマスを組み合わせ、経済性を確保できる事業形態でメタン発酵事業を行うことが重要となる。湿潤系バイオマスの種別のメタン発酵事業の形態（個別型または集約型）を表 Ⅱ.1-2 に示す。

表 Ⅱ.1-2 湿潤系バイオマスの種別の事業形態（個別型/集約型）

<table>
<thead>
<tr>
<th>バイオマス種 1</th>
<th>排出主体</th>
<th>メタン発酵事業の形態</th>
<th>排出主体が事業を行う場合</th>
<th>外部主体が事業を行う場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>畜産廃棄物</td>
<td>畜産農家</td>
<td>個別型</td>
<td>集約型</td>
<td></td>
</tr>
<tr>
<td>畜産農業法人</td>
<td>個別型・集約型</td>
<td>集約型</td>
<td></td>
<td></td>
</tr>
<tr>
<td>家庭系生ごみ</td>
<td>地域住民</td>
<td>-</td>
<td>集約型</td>
<td></td>
</tr>
<tr>
<td>事業系生ごみ</td>
<td>食品流通業</td>
<td>集約型</td>
<td>集約型</td>
<td></td>
</tr>
<tr>
<td>宿泊業</td>
<td>-</td>
<td>集約型</td>
<td></td>
<td></td>
</tr>
<tr>
<td>外食産業</td>
<td>集約型</td>
<td>集約型</td>
<td></td>
<td></td>
</tr>
<tr>
<td>食品加工残渣</td>
<td>食品製造業 (食品工場)</td>
<td>個別型</td>
<td>集約型</td>
<td></td>
</tr>
<tr>
<td>下水汚泥</td>
<td>下水処理場</td>
<td>-</td>
<td>集約型</td>
<td></td>
</tr>
</tbody>
</table>

※個別型：排出主体の敷地内で発生するバイオマスのみを利用したメタン発酵事業
※集約型：複数の排出事業者からバイオマスを回収するメタン発酵事業

1) 畜産廃棄物

１）調達可能量

畜産廃棄物の調達可能量は、地域における家畜頭数と表 Ⅱ.1-3 に示すような発生量原単位から推計する。図 Ⅱ.1-2 に都道府県別の主要家畜の頭数を示す。ただし、畜産廃棄物は飼育方法等によってスラリー状や固形状等の性状が異なることに留意する必要がある。

見積の際には、既存の処理状況について十分な調査が必要である。すなわち、各家畜種について廃棄物の堆肥化処理および浄化処理の状況を把握し、メタン発酵処理に振り分けられる量を見積もる必要がある。とくに、堆肥化処理が主流の地域の場合は、過剰生産により余剰となってい る堆肥の有無およびその理由を詳細に把握することが重要である。現在、畜産廃棄物の約 9 割が堆肥化処理されているが、地域によっては焼却処理されているケースもある。水分量が多い畜産廃棄物の場合は未熟堆肥となり、堆肥としての質の低下を招いているケースもある。

また、地域の畜産農家の年齢や経営状況についても調べ、地域の畜産農業の将来動向も把握することが望ましい。

1 本資料では、家庭系生ごみ、事業系生ごみ、食品加工残渣を総合して「食品廃棄物」と呼ぶこととする。
表Ⅱ.1-3 畜産廃棄物の発生原単位

<table>
<thead>
<tr>
<th></th>
<th>発生原単位(kg/頭/日)</th>
<th>発生原単位(t/頭/年)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ふん</td>
<td>尿</td>
</tr>
<tr>
<td>乳用牛</td>
<td></td>
<td></td>
</tr>
<tr>
<td>搾乳牛</td>
<td>45.5</td>
<td>13.4</td>
</tr>
<tr>
<td>乾乳牛</td>
<td>29.7</td>
<td>6.1</td>
</tr>
<tr>
<td>育成牛</td>
<td>17.9</td>
<td>6.7</td>
</tr>
<tr>
<td>肉用牛</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2才未満</td>
<td>17.8</td>
<td>6.5</td>
</tr>
<tr>
<td>2才以上</td>
<td>20.0</td>
<td>6.7</td>
</tr>
<tr>
<td>乳用種</td>
<td>18.0</td>
<td>7.2</td>
</tr>
<tr>
<td>豚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>肉豚</td>
<td>2.1</td>
<td>3.8</td>
</tr>
<tr>
<td>繁殖豚</td>
<td>3.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

（出所）バイオマスタウン構想策定マニュアル（農林水産省）2008年

図Ⅱ.1-2 都道府県別の家畜頭数（2013年）
（出所）平成26年度畜産統計（農林水産省）

② 季節変動
北海道等では夏季（7月〜10月）になると、牛舎で飼育していた肉牛や乳牛（主に育成牛）を別の放牧場まで移動させ、放牧飼育するケースがあるため、その間のバイオマス量の減少に対応を取る必要があります。これに対策としては、その期間のみ食品廃棄物を受け入れたり、メタン発酵設備の運用を抑えたり、夏季以外の収集量のピーク時は近隣の堆肥化設備で処理したりする等の方法が考えられる。

2) 家庭系ごみ
① 調達可能量
家庭系ごみの発生量は、地域（市町村）の一般廃棄物発生量に関する統計情報および既存の処理施設における実際の処理状況を基に把握する。利用可能量の見積もりにあたっては、多くの事例が示すように、分別によってごみ回収量が20〜30程度減少する点に注意する必要がある。
家庭系生ごみを調達する場合は、地域の人口増減や環境意識などに加え、生ごみを別途収集することによる廃棄物輸送費を考慮する必要がある。また、地域住民の分別意識を高めるためには、数年間かけて啓発活動を行う必要があり、相応の行政コストが発生することも留意する。

近年、一般廃棄物を分別せずに回収し、前処理設備で生ごみと紙ごみを別分し、乾式メタン発酵設備で処理を行う例も見られる。この場合、収集費および行政コストを最小限に抑えることが可能となる。ただし、本来メタン発酵処理対象となる生ごみまで焼却に振り分けられてしまうこともあり、計画値よりもメタン発酵処理量が減少する可能性があることに注意する必要がある。

② 季節変動

家庭系生ごみの発生量は年間を通して大きく変動することは少ないが、盆明けや年初めには増加する傾向がある。一般廃棄物全体は、年始や年度の開始時期に増加することが多いため、施設の前処理設備で生ごみとその他のごみを別分する場合は、処理量の増加に注意が必要である。

3) 事業系生ごみ

① 調達可能量

食品小売業や外食産業等の排出事業者が実施主体となる場合、店舗で発生する食品廃棄物発生量を超中に利用可能量を把握する。ただし、全ての廃棄物処理をメタン発酵に振り分けることは、設備トラブルが発生し処理が不可能になった際のリスクが大きいため、外部の廃棄物処理事業者と連携しておくことが望ましい。

表Ⅱ.1-4に示す通り、1ヶ所あたりの事業系統ごみの発生量は少量であるため、多店舗からの収集が必要となり、収集コストが増大する傾向がある。そのため、調達可能量は輸送コストを考慮した上で決定することが望ましい。

排出主体以外の事業者が事業系生ごみを新たに調達する場合、飼料化や肥料化等のためのサプライチェーンが既に確立している地域では、競争力のある処理価格やサービス等の付加価値を提供することによりインセンティブを与える必要がある。統計情報に頼るばかりでなく、実際の排出事業者へのヒアリング等を実施し、地域の事業系生ごみ処理に関わる現状と課題を十分に把握することが必要である。

表Ⅱ.1-4 食品卸売業、食品小売業、外食産業における事業所あたりの食品廃棄物発生量

<table>
<thead>
<tr>
<th>区分</th>
<th>事業所数×1</th>
<th>事業所あたりの食品廃棄物発生量(t/y)×2</th>
</tr>
</thead>
<tbody>
<tr>
<td>食品卸売業</td>
<td>76,000</td>
<td>3</td>
</tr>
<tr>
<td>食品小売業</td>
<td>378,000</td>
<td>3</td>
</tr>
<tr>
<td>外食産業(中食含む)</td>
<td>471,983</td>
<td>4</td>
</tr>
</tbody>
</table>

*1 農林水産省「平成24年度 食料・農業・農村白書」
*2 農林水産省「平成25年度食品循環資源の再生利用等実態調査報告」
記載の業種別の食品廃棄物発生量および*1より算出
(出所)「平成24年度 食料・農業・農村白書」、「平成25年度食品循環資源の再生利用等実態調査報告」
② 季節変動

事業系生ごみは、他のバイオマスに比較して季節変動が大きい。特に盆明けや年始め、観光地であれば観光シーズン後に増加する。

また、夏季は腐敗しやすく、悪臭や害虫が発生するため、調達後速やかに発酵槽に投入する必要がある。そのためには、地域の季節変動を踏まえてある程度余裕を持たせた設備規模を設定しなければならない。

4) 食品加工残渣

① 調達可能量

食品工場等からバイオマスを調達する場合は、食品製造業の業種と廃棄物発生量、処理状況を把握することが必要である。食品加工残渣はエネルギー密度が高く、事業所あたり発生する廃棄物量は 306t/y（農林水産省「平成25年度食品循環資源の再生利用等実態調査報告」記載の業種別食品廃棄物発生量および*1より算出）と食品小売業等と比べて多いため、比較的遠方の食品工場から調達することも検討する価値がある。

食品製造業では飼料化や堆肥化等の食品リサイクル利用が進んでいるため、食品工場が周辺地域に複数存在するかっていって、それらを全て調達可能と想定してはならない。調達の際は、既存の食品リサイクル処理に手数料や手続き等の改善を望む排出者や、廃棄物を焼却処理している排出者が主な対象となる。このような需要を把握するために、周辺地域の食品工場の製品の種類や処理業者の分布、処理手数料等について、排出者へのヒアリングを行う。

表 Ⅱ.1-5 食品製造業における事業所あたりの食品廃棄物発生量

<table>
<thead>
<tr>
<th>区分</th>
<th>事業所数</th>
<th>事業所あたりの食品廃棄物発生量(t/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>食品製造業</td>
<td>52,073</td>
<td>306</td>
</tr>
</tbody>
</table>

*1 農林水産省「平成24年度食料・農業・農村白書」
*2 農林水産省「平成25年度食品循環資源の再生利用等実態調査報告」記載の業種別食品廃棄物発生量および*1より算出（出所）「平成24年度食料・農業・農村白書」、「平成25年度食品循環資源の再生利用等実態調査報告」

② 季節変動

一般的に、食品工場から発生する廃棄物の量および質の変動は比較的小さい。しかし、観光業に関連のある特産品などの食品製造業においては、季節変動が生じることがある。
1.1.2. 調達先

事業者は、総調達可能量と季節変動に関する検討結果に基づいて、調達先を選定する。変動の平準化、あるいはリスク分散のためには、複数の調達先との契約が望ましい。

（1）木質系

表 II.1-6に、調達先候補を示す。それぞれが保有する木質系バイオマスの種類、調達可能量、燃料の形態（チップ、ペレット）等が異なるため、それを十分に理解したうえで調達先を選定する必要がある。

<table>
<thead>
<tr>
<th>林業関連事業者</th>
<th>木材産業関連事業者</th>
<th>木材需要関連・その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ 森林所有者</td>
<td>■ チップ生産業者</td>
<td>■ 木質ボード工場</td>
</tr>
<tr>
<td>■ 森林組合</td>
<td>■ ペレット製造業者</td>
<td>■ 家具・その他木製品メーカー</td>
</tr>
<tr>
<td>■ 素材生産業者</td>
<td>■ 製材工場</td>
<td>■ 製紙メーカー</td>
</tr>
<tr>
<td></td>
<td>■ 合板・単板工場</td>
<td>■ 廃棄物処理業者</td>
</tr>
</tbody>
</table>

（2）湿潤系

表 II.1-7に、湿潤系バイオマスの調達先として考えられる事業者を示す。

表 II.1-7 湿潤系バイオマス調達先となりうる事業者

<table>
<thead>
<tr>
<th>畜産廃棄物</th>
<th>生ごみ</th>
<th>食品加工残渣</th>
<th>下水汚泥</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ 肉牛農家/農業法人</td>
<td>一般家庭</td>
<td>食品製造業（食品工場）</td>
<td>下水処理場</td>
</tr>
<tr>
<td>■ 乳牛農家/農業法人</td>
<td>食品小売業</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ 養豚農家/農業法人</td>
<td>食品流通業</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ 養鶏農家/農業法人</td>
<td>宿泊施設</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>外食産業等</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

以下に、湿潤系バイオマスを原料として調達するときに重要となる条件について述べる。

1) 畜産廃棄物

畜産廃棄物の調達先を検討する上で重要となる項目は以下の通りである。

① 既存の処理方法における問題の有無

既存の畜産農家では、畜産廃棄物は堆肥化処理することが一般的となっている。しかしながら、需要量を越えた余剰堆肥の発生、原料の水分率を原因とする未熟堆肥の発生、製造過程における悪臭の発生等の問題を抱えているケースも多いのが現状である。このような問題を抱える畜産農家には、メタン発酵処理技術を導入する価値がある。

表 II.1-8 畜産業に起因する苦情の内容別発生状況(平成26年)
② 畜産農家の規模

乳牛の場合、図 Ⅱ.1-3 に示す通り、全国的には 100 頭未満の農家が多数を占めているが、これまでメタン発酵技術を導入している事業者は、集約的あるいは単一農家に限らず、乳牛を数百頭以上保有する場合が多い。設備コスト等によって導入条件が変わるため、まずは所定量のバイオガスを得るために必要なバイオマス量を確保することが重要である。たとえば、保有乳牛が 300 頭の場合は年間約 240,000m^3 のバイオガスを得ることができ、その熱量の 30%を電力に変換すると、459MWh の電力となる。なお、収集対象とする小規模農家の数を増やすことにより原料規模を確保する場合は、輸送コストや処理コスト等を十分考慮して設定する必要がある。

<table>
<thead>
<tr>
<th>タイプ</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>乳牛</td>
<td>332</td>
</tr>
<tr>
<td>肉用牛</td>
<td>167</td>
</tr>
<tr>
<td>豚</td>
<td>345</td>
</tr>
<tr>
<td>鶏</td>
<td>195</td>
</tr>
<tr>
<td>その他</td>
<td>33</td>
</tr>
<tr>
<td>計</td>
<td>1,072</td>
</tr>
<tr>
<td>構成</td>
<td>56.6%</td>
</tr>
</tbody>
</table>

(出所)「畜産統計」 (農林水産省) 2015 年

<table>
<thead>
<tr>
<th>項目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>乳牛</td>
<td>108</td>
</tr>
<tr>
<td>肉用牛</td>
<td>87</td>
</tr>
<tr>
<td>豚</td>
<td>194</td>
</tr>
<tr>
<td>鶏</td>
<td>45</td>
</tr>
<tr>
<td>その他</td>
<td>19</td>
</tr>
<tr>
<td>計</td>
<td>453</td>
</tr>
<tr>
<td>構成</td>
<td>23.9%</td>
</tr>
</tbody>
</table>

(出所)「畜産経営に起因する苦情発生状況」 (農林水産省) 2015 年

図 Ⅱ.1-3 全国の乳用牛飼育農家数の規模別割合
（出所）「畜産統計」 (農林水産省) 2015 年

表 Ⅱ.1-9 乳牛 100 頭の家畜ふん尿を利用する発電

<table>
<thead>
<tr>
<th>条件項目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>乳牛 1 頭あたりのふん尿発生量 (A)</td>
<td>73kg/日</td>
</tr>
<tr>
<td>バイオガス発生量 (B)</td>
<td>30m^3/t</td>
</tr>
<tr>
<td>牛の頭数 (C)</td>
<td>300 頭</td>
</tr>
<tr>
<td>推定発生バイオガス量 (D=A365/1000B*C)</td>
<td>239,805 m^3/年</td>
</tr>
<tr>
<td>バイオガス熱量 (E)</td>
<td>23 MJ/m^2</td>
</tr>
<tr>
<td>熱量変換割合 (F)</td>
<td>30%</td>
</tr>
<tr>
<td>発電量 (DE0.278°F)</td>
<td>459 MWh</td>
</tr>
</tbody>
</table>

(出所)「バイオマスエネルギー導入ガイドブック（第 4 版）」(NEDO) 2015 年
③ フリーストール方式の農家

乳牛を100頭以上保有する場合に主流となっているフリーストール（牛舎内での放し飼い）方式では、糞と尿が混合したスラリー状態で蓄積されるため、悪臭等の問題を抱えるケースが多い。

④ 堆肥化センター等の有無

集約化処理が堆肥化センターで行われている地域でメタン発酵事業を行う場合は、同センターの運営主体である自治体や農業協同組合と事前に協議する必要がある。また、堆肥供給先である農家にとっては、それまで使用していた堆肥の供給量や価格の変動に繋がるため、調整が必要となる。

2) 生ごみ（家庭系および事業系）

事業系生ごみを調達するためには、食品リサイクル需要のある排出者もしくは、高い価格で焼却処理を行っている排出者が対象となる。

現在、食品小売業や外食産業では、食品リサイクルを望むにもかかわらず、分別が困難なため焼却処理を行っている事業者も存在する。近年、CSR効果を目的に消化液を利用した循環型農業やエネルギー利用を望む事業者も増加しつつある。

また、事業系生ごみは一般廃棄物として、自治体の保有する焼却施設において処理されていることが多いが、地域によっては20,000 円/トンを上回る処理手数料が設定されている市町村も存在するため、このような地域ではメタン発酵処理需要が存在する可能性がある。

なお、家庭系生ごみの調達については、事業規模および輸送費等の経済性の観点から収集する範囲（地区）を設定する。その上で、住民に対し分別のための啓発活動や実証試験を行う必要がある。

3) 食品加工残渣

食品加工残渣の調達についても、事業系生ごみと同様、食品リサイクル需要のある排出者もしくは、高い価格で焼却処理を行っている排出者が対象となる。なお、大規模な食品製造業では食品リサイクルが既に進められているため、中小規模の食品工場が主な調達対象となる。

食品加工残渣のうち、パック製品等の分別が困難な廃棄物や飲料工場の液体残渣はメタン発酵処理の需要が大きい。また、民間の処理事業者が保有する焼却施設で処理している場合は、30,000 円/トンを超える高い手数料が掛かれている場合があるため、メタン発酵需要が存在する可能性がある。

4) 下水汚泥

下水汚泥を調達する場合は、下水処理場を所有する自治体と調整を図る必要がある。ただし、下水汚泥は他のバイオマスと比較してガス発生量が小さいので、エネルギー事業の経済性の観点からは下水の混合は有効とは言いがたい。また、下水汚泥内には重金属が含まれていることが多く、消化液の農業利用には適していない。
1.1.3. 品質
(1) 木質系
1) 一般的な特性
表 II.1-10 に各木質系バイオマスについて、燃料利用をする際に重要な特性を示す。

<table>
<thead>
<tr>
<th>水分(率)*1(％)</th>
<th>建設発生木材</th>
<th>工場残材</th>
<th>末木枝条</th>
<th>切捨伐材（小径木等）</th>
<th>短伐期のエネルギー用材</th>
</tr>
</thead>
<tbody>
<tr>
<td>25~40</td>
<td>3040(合板)、4555(製材)</td>
<td>50~60</td>
<td>50~60</td>
<td>樹種に依存</td>
<td></td>
</tr>
<tr>
<td>水分の変動要因*1</td>
<td>季節や天候、収集条件</td>
<td>季節や天候、収集条件</td>
<td>季節や天候、収集条件</td>
<td>樹種に依存</td>
<td></td>
</tr>
<tr>
<td>密度(t/m³)*2</td>
<td>0.14-0.23程度</td>
<td>0.5-0.6程度</td>
<td>0.4-0.5程度</td>
<td>0.45程度</td>
<td></td>
</tr>
<tr>
<td>低位発熱量目安(MJ/kg-wet)*1</td>
<td>10~13(水分等により)</td>
<td>8~12(水分等により)</td>
<td>6-10(樹種・水分等により)</td>
<td>6-10(樹種・水分等により)</td>
<td></td>
</tr>
<tr>
<td>灰分</td>
<td>1~2%程度</td>
<td>~2%程度</td>
<td>~5%程度</td>
<td>~1%程度</td>
<td></td>
</tr>
<tr>
<td>不純物*1</td>
<td>多い(金属、土砂、接着剤、塗料等)</td>
<td>少ない</td>
<td>多い(土砂や小石、草本など)</td>
<td>少ない</td>
<td>少ない(幹のみ使う場合)、多い(全木使う場合)</td>
</tr>
<tr>
<td>有害物質*1</td>
<td>多い(塩素、CCA(クロム、銅、ヒ素)、接着剤、塗料)</td>
<td>少ない</td>
<td>少ない</td>
<td>少ない</td>
<td>少ない</td>
</tr>
<tr>
<td>形状*1</td>
<td>破砕チップ</td>
<td>木粉、のこ屑、プレーナー屑、背板や心材(由来のチップ)、樹皮</td>
<td>たんころ(伐根)、梢端、枝葉など(幹以外)</td>
<td>小径木(皮付き丸太材)、傾斜が急など悪条件のため搬出できない材</td>
<td>皮付きの丸太材、あるいは末木枝条を含む全木</td>
</tr>
<tr>
<td>主要発生地</td>
<td>住宅地、土木・建築現場</td>
<td>製材工場、合板工場、集材工場等</td>
<td>林内、林道や山土場(施業方法等により発生地が異なる)</td>
<td>林内</td>
<td>皆伐施業しやすい林地</td>
</tr>
<tr>
<td>エネルギー以外の用途</td>
<td>パーティクルボード原料</td>
<td>製紙用チップ、敷料(木粉)など</td>
<td>未利用</td>
<td>未利用</td>
<td>日本：ほとんど取り組まれず、海外：製紙向け</td>
</tr>
<tr>
<td>FITでの分類</td>
<td>建設資材廃棄物</td>
<td>一般木質バイオマス・農作物残さ</td>
<td>間伐材等由来の木質バイオマス</td>
<td>間伐材等由来の木質バイオマス</td>
<td>森林経営計画立看状況に依存</td>
</tr>
</tbody>
</table>

*1: 「バイオマスエネルギー導入ガイドブック」（第4版）（2015）より引用
*2: 一般社団法人日本建設業連合会ウェブサイト

2) 燃料としての品質の確保
木材資源のうち、用材等の用途に適さないものが燃料用に回されることが少なくない。しかし、このことは木質系バイオマスの品質を考慮しなくてよいということを意味するのではなく、燃料としての品質を確保することは、事業を持続的に運営するために非常に重要である。燃料としての品質を考えるうえで重要な項目に関する、留意すべき事項や品質が不安定な場合の対策は以下の通りである。
水分

木質系バイオマスに関する最も重要で、安定化が難しい特性は水分である。これは、水分が発熱量と直接関係するためである。

水分には、図Ⅱ.1-4に示すように「湿量基準で示す『水分（率）』」と「乾量基準で示す『含水率』」の2種の表記法があるので、資料を読む際や関係者と会話する際には、どちらの表記法であるかを確認する必要がある。特に、水分（率）のことを含水率と表現している場合もあるため、注意しなくてはならない。湿量基準の水分（率）は、水を含む木材全量を100%とした場合の水の比率を示しており、エネルギー事業で一般的に用いられる用語である。一方、乾量基準の含水率は、水を除く木材重量を100%とした場合の水の比率を示しており（したがって、100%を超える可能性もある）、林業や木材産業で用いられる用語である。

図Ⅱ.1-4 水分（率）と含水率の違い

エネルギー業界で使われる用語 林業・木材産業で使われる用語

全体重量（100）

湿量基準水分（率）

乾量基準含水率

左：水分（率）＝水の量/全体重量×100
右：含水率＝水の量/絶乾重量×100

発熱量
発熱量とは、単位質量（重量）あるいは体積の燃料を完全燃焼させた時に発生する熱量であり、発熱量には高位発熱量と低位発熱量がある。高位発熱量は熱量計で計測された値で、水蒸気の蒸発熱を含んだ発熱量であり、高位発熱量から水蒸気の蒸発潜熱を減じた量が低位発熱量である。エネルギーとして実際に用いることができるのは低位発熱量である。乾燥により水分（率）が下がったときに増加する単位重量あたりの発熱量は、低位発熱量の方が高位発熱量よりも大きい。したがって、燃料として利用する場合には、なるべく水分（率）の低い状態で調達する方が、蒸
発に奪われる熱量を減らせるので、エネルギー効率が高くなる。なお、わが国では熱量表記に高
位発熱量が一般的に用いられるが、欧州では低位発熱量が一般的に用いられているため、海外の
情報を入手した際には日本との差に注意しなくてはならない。

表 II.1-11 および図 II.1-5 に、含水率および水分（率）と重量あたりの高位および低位発熱量
の関係を示す。木材の種類が同じ場合、水分（率）や含水率が高くなると発熱量は低くなる。

表 II.1-11 木材の水分（率）や含水率と発熱量の関係（針葉樹木部）
<table>
<thead>
<tr>
<th>含水率</th>
<th>水分率</th>
<th>高位発熱量</th>
<th>低位発熱量</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry%</td>
<td>wet%</td>
<td>MJ/kg</td>
<td>MJ/kg</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>20.8</td>
<td>19.4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>19.7</td>
<td>18.3</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>18.7</td>
<td>17.2</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>17.6</td>
<td>16.1</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>16.6</td>
<td>15</td>
</tr>
<tr>
<td>33</td>
<td>25</td>
<td>15.6</td>
<td>13.9</td>
</tr>
<tr>
<td>43</td>
<td>30</td>
<td>14.5</td>
<td>12.8</td>
</tr>
<tr>
<td>54</td>
<td>35 1</td>
<td>13.5</td>
<td>11.7</td>
</tr>
<tr>
<td>67</td>
<td>40</td>
<td>12.4</td>
<td>10.6</td>
</tr>
<tr>
<td>82</td>
<td>45</td>
<td>11.4</td>
<td>9.5</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>10.4</td>
<td>8.4</td>
</tr>
<tr>
<td>122</td>
<td>55</td>
<td>9.3</td>
<td>7.4</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
<td>8.3</td>
<td>6.3</td>
</tr>
<tr>
<td>186</td>
<td>65</td>
<td>7.3</td>
<td>5.2</td>
</tr>
</tbody>
</table>

*1: ドイツでは燃料チップの基準水分（率）が35%と定められている。
（出所）「木材工業便覧」（日本木材加工技術協会）1952年

図 II.1-5 木材水分（率）と含水率に対する高位および低位発熱量の関係（針葉樹木部の例）
（出所）「木質バイオマスバイオレンジ入門指針」（株式会社森のエネルギー研究所）2012年

さらに、木材資源は樹種や部位によって乾燥重量あたりの発熱量が異なる。たとえば、わが国
の人工林で一般的なスギは、乾燥重量あたりの発熱量がマツ類に比べて小さい。林野庁の助成を
受けて株式会社森のエネルギー研究所が作成した「木質バイオマスポイラー導入指針」（2012）には、針葉樹の木部と樹皮、広葉樹の木部と樹皮の発熱量がまとめられている。また、樹種別の発熱量は、「炭素循環と環境保全を実現する森林バイオマス・畜産廃棄物発電による地域振興」（2002）などにも一覧が示されているので参考にされたい。

③ 密度

林業の木材資源の取引では、「体積（m³）」を基準にするのに対し、木材資源を加工したチップやペレットの取引は「重量（t）」を基準にする。これらの基準は、密度（t/m³）を用いて換算して変えられる。密度は温度や湿度、水分（率）によって変化するため、精確を期すには、事業者は納入の都度密度を測定するのが望ましいが、現場では一定の数値を仮定して換算することが多い。表II.1-10に、木質系バイオマス別の密度を示す。

また、調達に向けた調整段階では、各自が想定する密度が異なれば取引価格に関する認識のずれが生じるので、注意が必要である。たとえば、0.5t/m³として概算する事業者もいれば、1.0t/m³として概算する事業者もいるため、重量に換算したときに価格差が非常に大きくなることに十分に注意して調整してはならない。さらに、取り扱う樹種が複数の場合には、樹種ごとに密度が異なる点にも留意する必要がある。表II.1-12に、主要な樹種の気乾密度を示す。

表II.1-12 主要な樹種の気乾密度

<table>
<thead>
<tr>
<th>樹種</th>
<th>スギ</th>
<th>ヒノキ</th>
<th>アカマツ</th>
<th>ブナ</th>
<th>ナラ</th>
<th>ペイマツ</th>
<th>レッドウッド</th>
</tr>
</thead>
<tbody>
<tr>
<td>気乾密度（t/m³）</td>
<td>0.38</td>
<td>0.41</td>
<td>0.53</td>
<td>0.5~0.7</td>
<td>0.67</td>
<td>0.53</td>
<td>0.45</td>
</tr>
</tbody>
</table>

（出所）木材工業ハンドブック（森林総合研究所）2004年

④ 形態

変換設備で用いる木質系バイオマスの形態には、薪、切断チップ、破砕チップ、ペレットなどがあり、利用する設備ごとに適する形態が異なる。薪用設備としては薪専用ストーブや暖炉があり、ペレット用設備としては専用のストーブやボイラがある。チップはチップ用ボイラであれば基本的には問題なく燃焼できる。しかしながら、形状や粒度に大きなからつきがあったり、十分に細かくなかったりすると、燃料投入口でつまるリスクが高くなる。投入口でのトラブルは頻繁に起こるので、チップに限らずいずれの形態の燃料についても、形状や粒度が均一になるよう注意しなくてはならない。

⑤ 不純物

不純物の種類や含有量も燃料の品質を考える上で重要である。たとえば、接着剤が付着した木質系バイオマスを利用すると、燃焼時の有害ガスの発生、焼却灰への有害物質の混入、有害物質による炉の腐食などの問題が出る可能性が高い。また、土石や砂利、釘や楔、プラスチックや塩化ビニールなどの異物もチッパー（破砕機）や燃料供給系の損傷をもたらすので、除去することが

2気乾密度：気乾状態（木材を乾燥させ、材の中に液体の水が存在しない状態）における重量と体積を用いて算出した密度（t/m³）
望ましい。特に土石や砂利にガラス成分が含まれる場合には、炉内の損傷にもつながるため十分に注意が必要である。以上の理由から、できる限り不純物の少ない燃料を用いることが望ましいが、不純物を含む燃料を用いなければならない場合はそれを考慮した設備面での対策をとることが必要である。

6 灰分
燃料の品質として、灰の発生率も忘れてはならない。灰の発生量は産業廃棄物処理費用として事業性に直接効いてくるため、灰分が過多にならないよう、事前に調査先ごとに木質系バイオマスの灰分を把握しておく必要がある。なお、樹皮（バーク）は他の部位に比べて灰分が多いため、灰分発生量および処理費は増加する傾向にある。

7 品質規格
燃料の品質を確実に担保するためには、燃料チップやペレットの規格化が重要と考えられる。チップについては、平成22年12月には「木質リサイクルチップの品質規格（全国木材資源リサイクル協会連合会）」、平成24年5月には「木材チップ規格原案（全国木質チップ工業連合会）」が発表されているが、いずれも自主規格という位置付けであった。これらの内容を包含し、より統合的な規格として、「燃料用木質チップの品質規格（木質バイオマスエネルギー利用推進協議会）」が平成26年11月に作成された。一方、日本木質ペレット協会は、「木質ペレット品質規格」を発行している。
こうした自主規格が、JIS規格等の国の規格として整えられることで、よりその効果が増すと期待される。また、全国的な規格ではなく、地域独自の基準を定めるのも一案である。欧米でもそれぞれ木質ペレットの規格があるため、海外からの輸入品は基本的に輸入元の国や地域の規格に沿った品質となっている点には留意が必要である。なお、上述のチップやペレットの規格の具体的な内容は、Ⅲ編の技術指針に記載しているので参照されたい。
（2）湿潤系

湿潤系バイオマス事業において、主要なバイオマス種は以下の3つに分類される。

- 畜産廃棄物
- 食品廃棄物（生ごみ、食品加工残渣）
- 下水汚泥

1）湿潤系バイオマスの一般的な特徴

各バイオマスをエネルギー利用に重要になる特性を表 I.1-13 にまとめる。

<table>
<thead>
<tr>
<th>表 I.1-13 各種湿潤系バイオマスの特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>水分(率)%</td>
</tr>
<tr>
<td>バイオガス発生量(1m³/バイオガス-wet)</td>
</tr>
<tr>
<td>メタン濃度%</td>
</tr>
<tr>
<td>発酵不適物</td>
</tr>
<tr>
<td>性状の均一性</td>
</tr>
<tr>
<td>発生地域</td>
</tr>
<tr>
<td>主要発生地</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>メタン発酵以外の処理方法</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

（出所）*1「バイオガス化マニュアル」（有機資源協会）2006年
*2「バイオマス発電の技術動向と事業性評価」（シーエムシー出版）2014年
*3ヒアリング結果

2）安定稼動のために必要な品質の確保

メタン発酵設備ではメタン発酵菌という「生物」によって発酵を促進するため、調達するバイオマス原料を選定する際、含有成分には十分留意する必要がある。

既存の事例によれば、混合系バイオマスを処理するメタン発酵施設よりも単一で性状の均一なバイオマスを処理する場合の方が、発酵槽内のトラブルが少ない傾向がある。他方、事業規模の確保の観点からは、複数種のバイオマスを混合処理した方がメリットは大きい。多くの場合、メタン発酵菌に関するトラブルの原因は、投入するバイオマス原料の量または質の変動に伴う発酵不適物の混入によって、菌が活動し易い環境域から外れることにある。こうした問題は、処理規模の大規模化を図ることにより緩和できるが、中小規模のメタン発酵施設では、それぞれのバイオマスの量と質の変動を十分把握し、不具合を予防できる体制を構築することが重要である。ま
た、メタン発酵の特微や不具合への対処方法について、メーカーと予め十分相談しておくことも重要である。

3) エネルギー利用の際に必要な品質（ガス発生量）の確保

湿潤系バイオマスを利用したエネルギー事業では、メタン発酵により所定量のガスを生産できるか否かが鍵となる。メタン発酵では水分の高いバイオマスを処理できることが、堆肥化等他の処理技術と比較して大きな利点であるが、同時に事業性の観点からはガス発生およびその利用といった「出口」にも留意した処理が必要である。

たとえば、畜産廃棄物や下水汚泥はガスの発生量が少ないため、高い設備稼働率を維持しない限り、単一のバイオマスだけで事業を維持することは難しい。このような場合、ガス発生量が比較的大きい食品廃棄物等を添加してガス発生量を増加させる等の工夫が考えられるが、これらのバイオマスを過剰に添加するとメタン発酵状態の安定性を損なうので、発生ガスの品質維持も考慮して添加する必要がある。国内における集約型畜産廃棄物のメタン発酵処理施設では、総処理量の概ね数%～10%程度生ごみ等を添加している。
1.1.4. 単価

（1） 木質系

これまで木材は、基本的に容積単位の価格で取引されてきた。また、製紙用チップの場合は、係数を定めて絶乾重量を推定し、絶乾重量あたりの価格で取引する例があった。

これに対し、木質系バイオマスの価値は「発熱量」にあるため、熱量単位の価格で取引することが合理的であり、実際に欧州では変換時の発生熱量を取引単位としている例もあるが、わが国では重量単位の価格で取引されることが多く、木質系バイオマスの実際の価値単位と取引単位とは必ずしも一致しない。事業者が重量単位の価格で取引する場合、水分（率）の高い丸太やチップを燃料として利用すると収益は悪化する。これを避けるには、契約の際に受入可能な水分（率）の上限を設けたり、丸太やチップの搬入の都度水分（率）を計測し、低位発熱量を推計して熱量単位で取引したりする必要がある。

図 II.1-6 は、木質系バイオマスと化石燃料の価格が熱量あたりで等しくなる価格を示すものである。

図 II.1-6 熱量単位の価値が等しくなるチップやペレットと化石燃料価格

（注）木質チップ（未乾燥）の単位あたり低位発熱量を 8.2MJ/kg（水分（率）50%）、ペレットの単位あたり低位発熱量を 16.7MJ/kg（水分（率）10%）、灯油の単位あたり低位発熱量を 34.9MJ/L、重油の単位あたり低位発熱量を 37.1MJ/L、石炭の単位あたり低位発熱量を 25.7MJ/kg と想定して分析
（出所）日本木質ペレット協会ウェブサイト情報など

図 II.1-6 から、ペレット価格やチップ価格が灯油や重油、石炭それぞれの価格を下回る上限価格を決定できる。たとえば、木質チップ（未乾燥）が 15 円/kg のとき、これと等価な価格はおおよそペレット価格が 30 円/kg、灯油は 67 円/L、重油は 72 円/L、石炭約 50 円/kg であり、化石燃料の市場価格がこれらの価格より高い場合は、木質チップを燃料とする経費は安くなる
（なお、全国木材チップ工業連合会の調査によると、2015 年 9 月時点の燃料用チップ価格は、高価で 12 円/kg である）。ただし、一般的に木質バイオマスボイラは化石燃料ボイラに比べて設
備費が高いため、設備費等の初期費用を含めて事業性を検討する場合は、燃料の熱量あたりの価格だけで比較することができないことに注意を要する。

表 II.1-14 に、木材資源を用材あるいは紙パルプに利用する際の取引価格を例示する。燃料向けに用いる場合の方がマテリアル利用の場合に比べてこれまで安い傾向にあったが、FIT制度の開始によって逆転することも予想されている。

<table>
<thead>
<tr>
<th>品目</th>
<th>区分</th>
<th>価格</th>
</tr>
</thead>
<tbody>
<tr>
<td>原木 (製材用)</td>
<td>すぎ丸太</td>
<td>11,000~14,500 円/m³</td>
</tr>
<tr>
<td>原木 (合单板用)</td>
<td>すぎ丸太</td>
<td>11,000 円/m³</td>
</tr>
<tr>
<td>原木 (チップ用)</td>
<td>針葉樹丸太</td>
<td>4,500~5,000 円/m³</td>
</tr>
<tr>
<td></td>
<td>広葉樹丸太</td>
<td>8,000~9,000 円/m³</td>
</tr>
<tr>
<td>製材品</td>
<td>正角 (すぎ)</td>
<td>55,000~60,000 円/m³</td>
</tr>
<tr>
<td></td>
<td>正角 (すぎ乾燥材)</td>
<td>65,000~70,000 円/m³</td>
</tr>
<tr>
<td>合板</td>
<td>針葉樹合板 (0.012m0.9m1.8m)</td>
<td>1,000~1,500 円/枚</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78,000~52,000 円/m³</td>
</tr>
<tr>
<td>集成材</td>
<td>ホワイトウッド集成管柱 (0.105m²23m)</td>
<td>2,000~3,000 円/本</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91,000~60,000 円/m³</td>
</tr>
<tr>
<td>木材チップ</td>
<td>針葉樹 (パルプ向け)</td>
<td>12,00013,000 円/t (5,0006,000 円/m³)</td>
</tr>
<tr>
<td></td>
<td>広葉樹 (パルプ向け)</td>
<td>16,00018,000 円/t (8,5009,500 円/m³)</td>
</tr>
</tbody>
</table>

(出所) 木材価格統計調査（林野庁）2015年

（2）湿潤系

排出業者から逆有償で畜産廃棄物や生ごみ等のバイオマスを調達する集中型メタン発酵事業では、事業者の運営と排出者の利益の双方を考慮した適切な価格設定が求められる。

畜産廃棄物の集中型メタン発酵施設では、各畜産農家の労働削減効果、消化液の農地利用における化学肥料削減効果、敷料購入費削減効果等を精査し、経営全体としてプラスになる範囲で処理手数料を設定することが重要である。

食品廃棄物については、排出者の既存の処理費をヒアリング等で把握し、それよりも低い手数料を設定することが望ましい。食品廃棄物は主に、食品リサイクル処理、または自治体や民間の所有する処理施設において焼却処理されているが、民間の処理業者による焼却処理は1tあたり30,000円を超える手数料を払っているケースもあり、比較的高い手数料を設定してもメタン発酵処理需要が存在する可能性がある。一方で、自治体の焼却処理については市町村によって処理手数料が大きく異なるため、周辺の自治体の手数料を把握の上、収集範囲を設定する。なお、一般廃棄物処理委託を受ける場合は、基本的に処理手数料を自由に設定することができないことにも注意する。
1.2.バイオマスの輸送に関する検討（木質・湿潤共通）

1.2.1. 輸送方法

（1）木質系

木質系バイオマスの調達に最適な輸送方法は立地場所や設備仕様に依存する。そのため、個々の事例の状況や計画内容を考慮して輸送方法を検討することが重要である。

図 II.1-7 は、林地残材が発生する山元からエネルギー利用場所までの輸送方法を例示したものである。林内、山土場、チップ化やペレット化等の固体燃料化工場、エネルギー変換設備、利用設備のそれぞれの間の距離に応じて、丸太、ペレット、チップのいずれの形態で輸送するのが最も効率的かは変わるが、一般的にはまずエネルギー密度の高い丸太、チップ、ペレットの順に輸送形態を検討するのが妥当である。

<table>
<thead>
<tr>
<th>流通システム例</th>
</tr>
</thead>
<tbody>
<tr>
<td>ペレット工場経由</td>
</tr>
<tr>
<td>山土場 → ペレット工場 → 利用場所</td>
</tr>
<tr>
<td>丸太として輸送 → ペレットとして輸送</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ペレタイザー</th>
</tr>
</thead>
<tbody>
<tr>
<td>山土場 → ペレタイザー → 利用場所</td>
</tr>
<tr>
<td>ペレットとして輸送</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>チップ化工場経由</th>
</tr>
</thead>
<tbody>
<tr>
<td>山土場 → チップ化工場 → 利用場所</td>
</tr>
<tr>
<td>丸太として輸送 → チップとして輸送</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>利用場所での燃料化</th>
</tr>
</thead>
<tbody>
<tr>
<td>山土場 → 利用場所</td>
</tr>
<tr>
<td>チップとして輸送 → チップ化</td>
</tr>
</tbody>
</table>

図 II.1-7 流通システム例
（出所）「国内におけるバイオマスエネルギー利用状況調査」（NEDO）2014年に基づき作成

輸送方法を検討する際の検討項目には、乾燥および固体燃料化を行う場所、輸送に用いる車両の積載量と台数、輸送距離と往復回数などがある。表 II.1-15 に、木質系バイオマスの運搬車両の事例を示す。
<table>
<thead>
<tr>
<th>運搬車両の例</th>
<th>車両イメージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>丸太</td>
<td>ローダークレーン付</td>
</tr>
<tr>
<td>チップ</td>
<td>ファームダンプ</td>
</tr>
<tr>
<td>脱着式ダンプ</td>
<td></td>
</tr>
</tbody>
</table>

（出所）岩手県林業技術センター 研究報 No.14（2006年）
（2） 湿潤系

湿潤系バイオマスの輸送方法は、バイオマス種や事業形態によって異なる。個別型メタン発酵事業では、大抵の場合原料は事業所敷地内で発生するため、既存の処理システムにおける輸送方法が活用できる。

他方、集中型の畜産廃棄物および食品系廃棄物処理事業では、事業者または委託運搬業者が廃棄物を回収する。これらの廃棄物は「広く、薄く」存在するため、原料調達の効率化と低コスト化が事業性の確保に重要である。

効率的かつ低コストの輸送のためには、大規模な食品工場のように1ヶ所に集積する飼料化や堆肥化など、既存の廃棄物処理に係る輸送システムを活用してバイオマスを調達する方法が考えられる。また、家庭やスーパー等の店舗において、脱水や自然乾燥などにより廃棄物を減量することは、効率的な輸送のために重要である。

輸送方法を検討する際の具体的な事項としては、木質系の場合と同様に、輸送に用いる車両の積載量と台数、輸送距離と往復回数などがある。表Ⅱ.1-16に、湿潤系バイオマスの運搬車両を示す。

表 Ⅱ.1-16 湿潤系バイオマスの運搬車両の事例

<table>
<thead>
<tr>
<th>運搬車両の例</th>
<th>車両イメージ</th>
</tr>
</thead>
<tbody>
<tr>
<td>家庭系生ごみ</td>
<td></td>
</tr>
<tr>
<td>事業系生ごみ</td>
<td></td>
</tr>
<tr>
<td>バッカー車</td>
<td></td>
</tr>
<tr>
<td>畜産廃棄物</td>
<td></td>
</tr>
<tr>
<td>フックロール車</td>
<td></td>
</tr>
<tr>
<td>犬</td>
<td></td>
</tr>
<tr>
<td>吸引車</td>
<td></td>
</tr>
</tbody>
</table>

（出所）関東経済産業局「3R システム化可能性調査事業 再生利用困難な食品廃棄物のバイオマス燃料化」（2007年）
1.2.2. バイオマスの輸送費

原料の輸送費は、利用する車両の燃費、車両積載量、1日の全車両走行距離、1日に輸送可能なバイオマス量などを基に算出することができる。総輸送距離が長くなるほど、エネルギー変換場所における輸送費込み価格も輸送による二酸化炭素排出量も高くなる。したがって、1台あたりの積載量が多い車両を用いることが望ましい。他方、燃費は積載量の多い車両ほど悪化するから、両者を考慮に入れて適切な輸送方法を選定する必要がある。さらに、道路幅によって進入可能な車両の大きさが制限されることもあるので、現地の道路状況の調査もしなくてはならない。

表 II.1-17 に、代表的な運搬車両の積載可能量と燃費を示す。

<table>
<thead>
<tr>
<th>積載可能量(t)</th>
<th>積載可能量(m³)</th>
<th>燃費(km/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>トントラック(丸太)</td>
<td>2.8</td>
<td>3.4</td>
</tr>
<tr>
<td>トントラック(チップ)</td>
<td>2.9</td>
<td>8.8</td>
</tr>
<tr>
<td>10トントラック(丸太)</td>
<td>10.0</td>
<td>12.5</td>
</tr>
<tr>
<td>10トントラック(チップ)</td>
<td>7.3</td>
<td>22.0</td>
</tr>
<tr>
<td>12トントラック(チップ)</td>
<td>9.1</td>
<td>27.6</td>
</tr>
</tbody>
</table>

（出所）岩手県林業技術センター 研究成績速報 No/176 チップ材・土場残材・梢端材の運搬コスト、岩手県林業技術センター 研究成績速報 No/189 チップ工場からの燃料用チップ運搬コスト
1.3.バイオマスの貯蔵・乾燥方法の検討（木質）

1.3.1.貯蔵・乾燥方法

ペレット以外の形態の木質系バイオマス原料を調達する場合、水分（率）が50%を越えることも少なくない。そのような場合は、高水分の原料に対応するボイラが必要である。通常のボイラで高水分原料を水分（率）を低くせずに用いると、ボイラ本来の効率を達成できない。表II.1-18に、丸太およびチップの水分（率）の概略値を示す。これらの水分（率）は天候や輸送等様々な条件で変動するので、注意が必要である。

表II.1-18段階別木材とチップの水分（率）の概略値

<table>
<thead>
<tr>
<th>段階</th>
<th>水分（率）目安</th>
</tr>
</thead>
<tbody>
<tr>
<td>集材直後（山土場）</td>
<td>50～60%</td>
</tr>
<tr>
<td>木材・チップ販売段階</td>
<td>40%</td>
</tr>
<tr>
<td>チップ利用段階</td>
<td>30%</td>
</tr>
</tbody>
</table>

（出所）光珠内季報No.167（2013）
（注）天候や流通等様々な条件で水分（率）は変動する。

乾燥方法には、大別すると天日乾燥と人工乾燥がある。また、乾燥の対象は、丸太とチップでの2通りである。それぞれのメリットとデメリットは、表II.1-19にまとめたとおりである。なお、状況によっては、天日乾燥と人工乾燥を組み合わせたり、丸太とチップの状態の乾燥を組み合わせて水分（率）を落とすのが有効な場合もある。他方、水分（率）が異なる複数の原料を混合することにより原料全体の水分（率）を調整する方法もある。

表II.1-19乾燥方法や乾燥対象別のメリットとデメリット

<table>
<thead>
<tr>
<th>乾燥方法</th>
<th>乾燥対象</th>
<th>メリット</th>
<th>デメリット</th>
</tr>
</thead>
<tbody>
<tr>
<td>天日乾燥</td>
<td>丸太</td>
<td>太陽エネルギーを利用するためエネルギー効率が良い</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>樹皮が自然にはがれる</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>初期費用低（屋外あるいは簡易な屋根のみ）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>乾燥に時間要する</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>乾燥に時間要する</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>積み上げると発火の危険がある</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>積み上げると乾燥しないが、平積みでは丸太での乾燥以上に</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>場所を必要とする</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>乾燥に時間を要する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>天日乾燥</td>
<td>チップ</td>
<td>太陽エネルギーを利用するためエネルギー効率が良い</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>初期費用低（チップヤードのみ）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>積み上げると発火の危険がある</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>積み上げると乾燥しないが、平積みでは丸太での乾燥以上に</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>場所を必要とする</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>乾燥に時間を要する</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

人工乾燥	丸太	天日乾燥に比べ時間がかからない
		省スペース
		エネルギー収支の悪化
		初期費用高（乾燥設備）
		エネルギー収支の悪化
		初期費用高（乾燥設備）

上のどちらがエネルギー変換に適しているかは、ボイラの性能やの種類に応じて検討する必要がある。
1.3.2. 貯蔵・乾燥設備の初期費用

1.3.1.で述べたように、木質系バイオマスは乾燥を目的に一定期間貯蔵する場合が多い。また、貯蔵設備はバイオマス調達が滞るような事態に対処する目的にも有効である。

貯蔵設備の検討の際は、どの程度の規模であれば十分か、どの程度の規模であれば設置可能かを考慮する必要がある。さらに、人工乾燥も行う場合には、人工乾燥設備の規模も検討した上で、それぞれの設備の初期費用を検討しなければならない。

既存の貯蔵設備の事例には、1日分のみ貯蔵する小規模設備から広大なエリアを使って丸太を天日乾燥する大規模設備まで、様々ある。たとえば、チップの場合、必要貯蔵量は立地条件や山からの距離、気象条件等により変わるが、施設の安定稼動や固体燃料の受入および投入作業を考え、最低でも1～3日分である。なお、貯蔵設備の容量が小さ過ぎるとトラックの搬入頻度が増すため、近隣住民から苦情が出ることもあるので、この点にも留意が必要である。さらに、FIT制度を利用した昨今の事例では、木質系バイオマスを半年～1年分も貯蔵するものがあり、調達先との関係などに応じた貯蔵量の検討も重要となる。

変換設備の設置場所と同じ場所に十分に貯蔵できない場合には、下図に示したように、できるだけ近隣に貯蔵場所を複数ヶ所用意しなければならない。このとき、これらの保管場所と結ぶ動線や搬送方法の検討が重要となる。

図Ⅱ.1-8 貯蔵場所と設備設置場所を結ぶ動線および搬送システムの検討

事例にある主な貯蔵場所とおおよその貯蔵量を表Ⅱ.1-20に示す。

表Ⅱ.1-20 主な貯蔵場所および貯蔵量の参考例

<table>
<thead>
<tr>
<th>貯蔵場所</th>
<th>貯蔵量目安</th>
</tr>
</thead>
<tbody>
<tr>
<td>チップヤード、サイロ等</td>
<td>1～3日程度の必要量（最低限）</td>
</tr>
<tr>
<td>丸太貯蔵場所</td>
<td>半年～1年分</td>
</tr>
</tbody>
</table>

（出所）各種事例へのヒアリング等より

また、主要な貯蔵および乾燥設備に関連する初期費用項目を表Ⅱ.1-21に示す。
表 Ⅱ.1-21 主な貯蔵および乾燥設備への初期費用項目

<table>
<thead>
<tr>
<th>種類</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>丸太貯蔵場所</td>
<td>土地</td>
</tr>
<tr>
<td>チップ貯蔵</td>
<td>土地・建屋</td>
</tr>
<tr>
<td></td>
<td>チップヤード</td>
</tr>
<tr>
<td></td>
<td>チップサイロ</td>
</tr>
<tr>
<td></td>
<td>※チップ供給用重機</td>
</tr>
<tr>
<td>丸太乾燥設備</td>
<td>土地・建屋</td>
</tr>
<tr>
<td>チップ乾燥設備</td>
<td>土地・建屋</td>
</tr>
</tbody>
</table>

注）貯蔵場所と利用場所を運ぶ場合の輸送費は 1.2 で検討
（出所）各種事例へのヒアリング等より

1.3.3. 貯蔵・乾燥設備の運用費

初期費用が明らかになったところで、メンテナンス費を含む運用費を検討する必要がある。一般的に、メンテナンス費は設備機器費用の 3~5%と見込まれるが、正確には、初期費用の検討結果や部品の交換頻度なども考慮して精査する必要がある。

なお、貯蔵設備には、建屋だけのケースや建屋のないケースもあるが、人工乾燥設備については、部品交換や動力（ユーティリティー）が必要となることを忘れてはならない。
1.4.バイオマスの固体燃料化に関する検討（木質）

1.4.1. 調達形態

木質系バイオマスの燃料としての利用形態には、薪や切削および破砕チップ、ペレットなどが存在する。輸送効率や利用設備には形態によって違いが出てくるため、内容によって、有利な形態は異なる。ここでは、一般家庭等でごく少量利用することが主になる薪を除く、チップとペレットについて、選定の際の留意事項を述べる。

原料の調達においては、ポイラでの直接燃焼を考えると原料の水分（率）が、輸送を考えるとエネルギー密度が最重要因子となる。チップは嵩張るので、一般に運搬コストがかかる。また、木質系バイオマスは、エネルギー密度が化石燃料等に比べて低い。このようなことから、木質系バイオマスを、エネルギー密度が未乾燥チップの3~5倍のペレットに加工して輸送し、利用することが一つのコスト低減策となっている。ペレットに加工すると水分（率）も10%程度にまで落ちるため、燃焼の際にもペレット化によって得られるメリットは大きい。ただし、ペレットのエネルギー密度は樹皮を含むか否かなどの違いによって変わることや、チップに比べて水や湿気に対し弱いこと、ペレット化にエネルギーを要するのでエネルギー収支の面では不利なことに留意が必要である。

表Ⅱ.1-22に、形態により変わる特性を灯油と比較して示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>関 数</th>
<th>ペレット</th>
<th>チップ（未乾燥）</th>
<th>灯油</th>
</tr>
</thead>
<tbody>
<tr>
<td>水分（率）</td>
<td>%</td>
<td>10</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>低位発熱量*1</td>
<td>MJ/kg</td>
<td>16.7</td>
<td>8.2</td>
<td>43.5</td>
</tr>
<tr>
<td>かさ密度*2</td>
<td>kg/m³</td>
<td>600〜750</td>
<td>250〜350</td>
<td>780〜800</td>
</tr>
<tr>
<td>エネルギー密度</td>
<td>MJ/m³</td>
<td>10.017〜12.522</td>
<td>2,041〜2,858</td>
<td>30,450〜34,800</td>
</tr>
</tbody>
</table>

*1: 木質系バイオマスの無水ベースでの高位発熱量を18.8MJ/kg-dryとして水分率（湿量基準の含水率）に応じた低位発熱量を算出
*2: 日本木質ペレット協会ウェブサイト（http://www.w-pellet.org/susume/2_02.html）より（出所）日本木質ペレット協会ウェブサイトなど

このように、木質系バイオマスの原料形態の検討においては、個々の事業における輸送経路や運搬距離、原料加工設備、エネルギー変換設備などを考慮することが重要である。

日本木質ペレット協会ウェブサイトより
1.4.2. 設備の初期費用

木質系バイオマスの固体燃料化設備は、用いる固体燃料と輸送方法によって異なるので、これらに応じた初期費用等の検討が必要である。図 II.1-9 に、チップあるいはペレットとする場合の代表的な流通システムを例示する。

固体燃料化の主要な設備は破砕機（チッパー）とペレタイザーである。輸送方法に応じて設備種類を選定し、エネルギー変換設備の規模に応じて設備規模を選定する。蒸気タービンやボイラの規模と原料、固体燃料形態が決まると、メーカーに見積を依頼して初期費用を検討することができる。
1.4.3. 設備の運用費

固体燃料化設備の運用費とは、燃料化設備の運転開始以降にかかる費用全体を指す。主要な項目としては、設備稼働のための動力にかかる費用を含むユーティリティ費やメンテナンス費、人件費が、また、その他の諸経費を指す一般管理費がある。表 II.1-23 に、これらの主要費用項目と内容の概略をまとめる。

<table>
<thead>
<tr>
<th>費用項目</th>
<th>内容説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユーティリティ費</td>
<td>動力費も本項に含む。メーカー見積から積算する。概算数値でよい場合は、たとえば建設費の10％などとして設定する。</td>
</tr>
<tr>
<td>メンテナンス費</td>
<td>消耗品費も本項に含む。固体燃料化設備建設費の2～4％ほどを見込む。</td>
</tr>
<tr>
<td>人件費</td>
<td>人件費単価×人数（班数×班員数+管理部門人数）などにより算出する。地域の森林組合等に外部委託するケースもある。</td>
</tr>
<tr>
<td>一般管理費</td>
<td>人件費の8～25％程度。実態に応じて設定する。</td>
</tr>
</tbody>
</table>

（出所）「バイオマスエネルギー導入ガイドブック（第4版）」（NEDO）2015年
1.5.その他の事項に関する検討（湿潤）

1.5.1. 既存の廃棄物処理システムとの関係

メタン発酵設備は、既存の堆肥化、焼却、飼料化等の廃棄物処理システムの一部の機能を代替する形で導入されるので、既存の処理方法の特徴を考慮した計画が必要である。表 II.1-24 に、メタン発酵と既存の処理方法の特徴を比較する。

表 II.1-24 湿潤系バイオマス処理方法の比較

<table>
<thead>
<tr>
<th>適用規模</th>
<th>メタン発酵</th>
<th>堆肥化</th>
<th>焼却</th>
<th>飼料化</th>
</tr>
</thead>
<tbody>
<tr>
<td>適用規模</td>
<td>大・中規模</td>
<td>中・小規模</td>
<td>大規模</td>
<td>中・小規模</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>長所</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>悪臭低減効果が高い</td>
<td>機械が少ない</td>
<td>減量化率が非常に高い</td>
<td>比較的高い価格でバイオマスを販売できる。</td>
<td></td>
</tr>
<tr>
<td>エネルギーを生産できる</td>
<td>運転が容易</td>
<td>熱利用が可能</td>
<td></td>
<td></td>
</tr>
<tr>
<td>液肥を生産できる</td>
<td>維持管理費が安い</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>短所</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>建設費と維持管理費が高い</td>
<td>製品量が多い</td>
<td>燃料費がかさむ</td>
<td>厳密な分別が要求される</td>
<td></td>
</tr>
<tr>
<td>消化液の水処理が必要</td>
<td>日数がかかる</td>
<td>灰の処分が必要</td>
<td>腐敗などの衛生管理が必要</td>
<td></td>
</tr>
<tr>
<td>消化液の処理が必要</td>
<td>スペースが必要</td>
<td>補修費が必要</td>
<td></td>
<td></td>
</tr>
<tr>
<td>臭気対策が必要</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>二次公害対策</th>
<th>消化液の農地還元の場合窒素過多に留意が必要</th>
<th>アンモニア対策必要</th>
<th>排ガス対策必要</th>
<th>特になし</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>建設費</th>
<th>大</th>
<th>小</th>
<th>大</th>
<th>小</th>
</tr>
</thead>
<tbody>
<tr>
<td>維持管理費</td>
<td>小（排水処理有の場合は中）</td>
<td>小</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>運転者資格</td>
<td>不要</td>
<td>不要</td>
<td>必要</td>
<td>不要</td>
</tr>
</tbody>
</table>
1.5.2. 廃棄物処理に関する法規制

（1） 廃棄物の処理及び清掃に関する法律

廃棄物の処理及び清掃に関する法律（以下、廃掃法）は、廃棄物を一般廃棄物と産業廃棄物に二分し、それぞれの処理と管理について定めている。事業者が廃棄物を外部から収集して処理する場合は、一般廃棄物もしくは産業廃棄物の処理資格が必要となるため、集約型のメタン発酵施設を建設する場合は、事業者が該当する廃棄物の処理資格を有することが必要である。

また、食品廃棄物の場合、食品製造段階で発生する動植物性残渣は産業廃棄物として扱われ、輸送段階および消費段階（小売、外食および家庭）で発生する調理くずや食品廃棄物は一般廃棄物として扱われるため、これらを調達する際は両方の資格を必要とする。

処理資格の取得は、既に廃棄物処理をビジネスとして資格を有する産業廃棄物処理事業者にとっては問題にはならないが、その他の事業者にとっては、大きなハードルとなることがある。これは、処理事業者認定が自治体に委ねられており、担当者によって取得し易さが異なるためである。手続き期間は一般的には1年程度であるが、事業者によっては2年以上も要したケースがあるので、構想段階で他の廃棄物処理事業者等から情報を収集する必要がある。
2. エネルギー利用

2.1. エネルギー需要に関する検討（木質・湿潤共通）

2.1.1. 利用形態

現在、国内で商業利用されているバイオマスエネルギー技術は、主に熱利用および発電利用を目的とする技術である。エネルギーの利用形態は、需要に応じて決める必要があるが、バイオマスをエネルギー源として最も有効に使うためには、発電利用のみではなく、熱利用も積極的にすることが望ましい。なお、エネルギー変換設備の設置場所と利用先の目処が立った段階で、両方を接続する方法として最も適切なものを、後述の初期費用や運用費も考慮した上で選定することが必要である。

たとえば、エネルギー変換設備から熱の需要先までの距離が長い場合には、温水を需要先まで管を敷設して輸送して利用するよりも、需要先にボイラを設置してチップやペレットの形態で輸送し、熱に変換して利用する方が、トータルコストが安くなる可能性がある。これは、前者の場合、配管敷設コストが高かったり、輸送中の熱ロスが大きかったりすることが多いためである。なお、需要先に電気として送る場合は、自家利用か系統接続のいずれかを選択しなければならない。

表 II.2-1 に、熱エネルギー輸送および利用形態の長所と短所を簡単にまとめる。

<table>
<thead>
<tr>
<th>輸送・利用形態</th>
<th>長 所</th>
<th>短 所</th>
</tr>
</thead>
<tbody>
<tr>
<td>温水配管</td>
<td>需要先が独自に持つべき設備が少ない</td>
<td>長距離の場合熱ロスが発生する配管の敷設工事に制約がある</td>
</tr>
<tr>
<td>蒸気配管</td>
<td>需要先が独自に持つべき設備が少ない</td>
<td>長距離の場合熱ロスが発生する配管の敷設工事に制約がある</td>
</tr>
<tr>
<td>チップ輸送</td>
<td>熱ロスがない法規制上の制約がない</td>
<td>輸送にあたってのエネルギー密度が低い</td>
</tr>
<tr>
<td>ペレット輸送</td>
<td>熱ロスなし法規制上の制約がない</td>
<td>水に弱い</td>
</tr>
</tbody>
</table>
2.1.2. 需要先

地域自立システムの成立のためには、エネルギー利用方法と需要先について十分に検討し、これらの中から地域に合ったものを選定することが重要である。このとき、事業者や地域のエネルギー需要だけでなく、周辺のインフラの状況、事業所の立地条件等を考慮することが必要となる。表 II.2-2 に、主要な利用方法と需要先を示す。

<table>
<thead>
<tr>
<th>電気</th>
<th>自家消費</th>
</tr>
</thead>
<tbody>
<tr>
<td>売電-FIT</td>
<td>売電-他</td>
</tr>
<tr>
<td>熱(温水)</td>
<td>自家消費</td>
</tr>
<tr>
<td>近隣工場・公共施設への供給</td>
<td></td>
</tr>
<tr>
<td>民生部門需要家(チップやベレットでの供給)</td>
<td></td>
</tr>
<tr>
<td>地域熱供給(温水での供給)</td>
<td></td>
</tr>
<tr>
<td>温室ハウス</td>
<td></td>
</tr>
<tr>
<td>消化液の滅菌</td>
<td></td>
</tr>
<tr>
<td>熱(蒸気)</td>
<td>自家消費</td>
</tr>
<tr>
<td>近隣工場への供給</td>
<td></td>
</tr>
<tr>
<td>ガス(気体燃料)</td>
<td>自家消費等</td>
</tr>
</tbody>
</table>

バイオマスエネルギーを持続的に利用するためには、需要の変動が比較的小さい需要先を見つけることが重要である。そのような需要先の候補としては、熱需要を持つ事業者や、電力需要が大きく、バイオマスによる自家発電の導入を考える事業者など、エネルギー消費量の比較的大きい施設や工場が考えられる。

資源エネルギー庁は、「エネルギーの使用の合理化等に関する法律に基づく特定事業者等指定状況」として「エネルギー管理指定工場名簿 4」を公表し主要なエネルギー消費施設をリストアップしている。エネルギー事業者はまず地域のこれに該当する工場を抽出することにより、ある程度まで需要先を絞り込むことができる。特に、ポイラを保有する工場は熱需要先として有力な候補になり、これらがバイオマスエネルギーを必要とするか否かを調査する。

熱利用を考える場合には、中規模の需要家の把握も必要となる。そのためには、たとえば工業団地に立地する事業者や公共施設、病院、老健施設などの調査も重要である。さらに、小規模の需要先としては、温室や一般家庭などが主であるが、これを需要先に加える余裕があるかどうか、大規模および中規模需要先における需要量を優先した上で考える。なお、施設の種類ごとに床面積あたりの需要量などが異なる点には注意が必要である。

4 資源エネルギーア行 エネルギーの使用の合理化等に関する法律に基づく特定事業者等指定状況（http://www.enecho.meti.go.jp/category/saving_and_new/saving/004/001/）
2.1.3. 需要量

（1）地域の需要の把握

地域のエネルギー需要量を検討する際には、まず、統計資料等を用いて産業部門別の整理をする。これにより、需要量の概略値を把握することができる。たとえば、「都道府県別エネルギー消費統計調査」を用いれば、各都道府県の輸送部門や民生部門を含む産業部門別エネルギー消費量を把握することができる。さらに、石油やガスなどのエネルギー資源別、あるいは電気および熱のエネルギー利用形態別の情報も掲載されているので、事業を通じて地域の概況を知る参考資料にできる。なお、同種の情報は、各都道府県の統計資料としても公表されていることが多く、より詳細化された需要量を把握できる場合もある。都道府県単位では広範囲すぎるという場合には、「市町村別エネルギー消費統計作成のためのガイドライン」なども参考にできる。

統計資料で調査したエネルギー需要量から、周辺地域にバイオマス由来エネルギーの需要があるか見積もることが重要である。すでにエネルギー需要施設が決まっている場合には、まず、その施設におけるエネルギー需要を把握する必要がある。把握の方法は、施設が新設であるか既存施設の更新かによって異なる。新設の場合は、設計士から熱負荷計算データを取得することができる。一方、既存施設の場合は、石油、ガスおよび電気の利用実績のデータを用い、熱量を実測したりして、熱の用途別内訳や熱ロス等を推計できれば、より精度の高い設備設計ができる。

図 II.2-1 に、参考として各業種の事業所あたりの熱需要量の概略値を示す。

図 II.2-1 事業所あたりの熱需要量

注）バイオマスバイオル導入に適さない重工業（石油製品・石炭製品製造業、鉄鋼業）を除いた。
（出所）「石油等消費構造統計調査」資源エネルギー庁（2001年）

5 資源エネルギー庁 都道府県別エネルギー消費統計調査（http://www.enecho.meti.go.jp/statistics/energy_consumption/ec002/results.html#headline2）
6 環境省 「市町村別エネルギー消費統計作成のためのガイドライン」（2006）
（2）需要変動の把握

需要先候補の中から有望な需要先を絞り込んだ段階で、需要先における需要変動を把握すれば、エネルギー需要が安定しているか否かを判定できる。すなわち、需要変動の大小は、直接燃焼の熱利用設備や発電設備においては定格出力にできるだけ近い運転の継続が望ましいので、重要な判定基準となる。

工場のように、生産量に応じて熱や電気の需要が変わる場合には、景気変動や業界動向による需要変動はあるものの、外気温の変化によって起こる季節変動は小さい。一方、公共施設や一般家庭のように、暖房需要が大半である場合には、季節によって需要量が大きく変動する。

1日の需要変動は、工場の稼働時間や家庭の生活パターンによって大きく異なる。夜間稼動しない工場や一般家庭などでは、図Ⅱ.2-2の病院の場合と同様に、夜中から朝方にかけての需要が大幅に減少するので、設備の運転方法が、重要な検討事項となる。木質バイオマスボイラは、立ち上げや停止に時間がかかり、急速な出力調整が難しいため、毎朝起動し、毎晩停止するような運転方式には基本的に適さず、出力変動が小さく稼働時間が長い運転方式に適している。また、設備規模は需要の最大量ではなく、ベース需要量に合わせ、小さく抑えることにより設備費を低減し、設備の利用率を向上でき、事業性の向上に大きく寄与する。また、温水ボイラの場合には、貯湯槽を設けて蓄熱することにより、ボイラの稼働率を向上させることもできる。

なお、複数の需要先にエネルギーを供給できる場合は、年間あるいは1日を通じて、需要量が大きく変動しないよう、需要先を複数組み合わせるのも1つの考え方である。
図 II.2-2 病院（建屋面積 4,000m²、敷地面積 8,630m²）における熱負荷変動
（出所）事例調査結果より作成
2.1.4 形態と品質

電力や熱、ガスを普段の生活で使う際、品質に深く注意を払うことはあまりない。しかし、バイオマスをエネルギーに変換する事業を検討する際は、エネルギーの品質、特に熱の品質は、設備仕様とも関係するから、よく把握した上で計画を進めなくてはならない。

熱の利用形態は温水と蒸気に大別される。需要先が必要とする形態がこれらのいずれか、必要な品質はどのようなものかを把握することが重要である。表 II.2-3 に、熱の把握すべき代表的な特性をまとめられる。

<table>
<thead>
<tr>
<th>主要需要家</th>
<th>把握すべき特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>溫水（・冷水）</td>
<td>入口温度・出口温度（℃）</td>
</tr>
<tr>
<td>露温施設</td>
<td>入口流量（MJ/h）</td>
</tr>
<tr>
<td>病院・老人施設</td>
<td>入口圧力・出口圧力（MPa）</td>
</tr>
<tr>
<td>一般家庭</td>
<td>熱需要変動</td>
</tr>
<tr>
<td>蒸気</td>
<td>入口温度・出口温度（℃）</td>
</tr>
<tr>
<td>製造業（食品、木材関連、製紙、など）クリーニング業</td>
<td>入口熱流量（MJ/年、MJ/月）</td>
</tr>
<tr>
<td></td>
<td>入口圧力・出口圧力（MPa）</td>
</tr>
<tr>
<td></td>
<td>熱需要変動</td>
</tr>
<tr>
<td></td>
<td>不純物</td>
</tr>
<tr>
<td></td>
<td>乾燥度</td>
</tr>
<tr>
<td></td>
<td>不凝縮ガス（空気等）の混入</td>
</tr>
</tbody>
</table>

熱需要に関する主要な特性は温度と圧力である。製造業の中でも、業種やプロセスによって、必要な熱の温度と圧力が異なるため、一般的な情報を得るための文献調査の他、現地調査やヒアリングによって、確実な情報を収集する必要がある。また、熱の供給量は需要量よりある程度多いことが望ましい。さらに、蒸気を利用した後の排熱を回収して補給用水の余熱に充てるなど、熱効率を高める工夫をすることも、エネルギー利用効率を高めるためには重要である。

図 II.2-3 に、参考として、産業におけるボイラの蒸気温度帯別設置数を示す。いずれの業界においても 150~200℃の温度帯のボイラが最も多く設置されている。
図 Ⅱ.2-3 産業の温度帯別のボイラ設置数
注）バイオマスボイラ導入に適さない重工業（石油製品・石炭製品製造業、鉄鋼業）を除いた。
（出所）「石油等消費構造統計調査」資源エネルギー庁（2001年）

湿潤系の場合、ガス利用形態としては自家消費用の工業燃料代替が主であり、表 Ⅱ.2-4 のようなボイラや発電機が要求する特性についてはあらかじめ把握する必要がある。

表 Ⅱ.2-4 ガス利用時に把握すべき特性

<table>
<thead>
<tr>
<th>主要需要業</th>
<th>抱握すべき特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>工業燃料代替</td>
<td>製造業</td>
</tr>
<tr>
<td>流量</td>
<td></td>
</tr>
<tr>
<td>熱量（変動含む）</td>
<td></td>
</tr>
<tr>
<td>燃焼性</td>
<td></td>
</tr>
<tr>
<td>濃度</td>
<td></td>
</tr>
<tr>
<td>不純物（硫化水素、シロキサン等）</td>
<td></td>
</tr>
<tr>
<td>圧力</td>
<td></td>
</tr>
</tbody>
</table>

2.1.5. エネルギー販売単価/利用価値（定量的）
事業者がエネルギーを自家利用する場合は、利用分だけエネルギー購入が不要になることが利益である。
一方、エネルギー変換を行う事業者が需要先に販売する場合には、実際の発電コストや熱生成コスト、従来電力や化石燃料の価格などを考慮して販売価格を決め、需要先と契約を結ぶ必要がある。
2.2.エネルギー利用設備に関する検討（木質・湿潤共通）

2.2.1. 設備の初期費用

利用設備の初期費用は導入するエネルギーの利用形態による。すなわち、事業として熱や電力の供給を主にするか、チップやペレット等の固体燃料や気体燃料の供給を主にするかによって、必要な設備とコストが大きく変わる。このため、エネルギー利用形態を決定した段階で、関連する設備について実績のあるメーカーあるいは施工者の中から対象地域で対応できる候補会社を選び、見積を取得することが肝要である。見積では事業者が計画する全ての範囲を網羅できず、実施時に問題が発生することも多いので、注意を要する。特に見積範囲外になり易い事前調査、整地、土木建築工事の共通部、官庁申請、予備品等は十分精査して、費用を計上することが重要である。下表に、初期コストとして検討すべき項目と設定方法の概略を示す。

なお、利用設備は、実際には変換設備メーカーや施工者が受け持つ場合も多く、その場合には利用設備の見積は変換設備の見積に含まれることとなる。

<table>
<thead>
<tr>
<th>項目</th>
<th>設定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械一式</td>
<td>設備メーカーと協議を行い、計画諸条件や予備機の有無、最低限最初の1年の消耗品等を定めて設備費用の見積を依頼する。比較のために、複数のメーカーから見積をとるのが望ましい。</td>
</tr>
<tr>
<td>土木・建築工事一式</td>
<td>設備と分離して発注を予定する場合、一級建築設計事務所又は建設会社等に積算を依頼する。配管を敷設する場合には、法规制の確認も重要となる。</td>
</tr>
<tr>
<td>系統連系費用</td>
<td>電力会社へのアクセス検討の申し込みをして、電力会社からの回答に基づき概算費用を把握する。アクセス検討の申し込みから回答までには、数ヶ月を要する。概算費用は、電圧や連系地点までの距離に応じて、数百万円から数億円かかるケースまで様々である。</td>
</tr>
<tr>
<td>土地購入費用</td>
<td>用地所有者と確認する。</td>
</tr>
<tr>
<td>重機・車両購入費</td>
<td>重機・車両販売店等から見積をもらう。</td>
</tr>
<tr>
<td>開業前経費</td>
<td>開業前までの必要経費を見込み、予算を組む。主な開業前経費としては以下が考えられる。</td>
</tr>
<tr>
<td></td>
<td>・地質調査費・測量費・燃料分析費・水質分析費。</td>
</tr>
<tr>
<td></td>
<td>・建築設計費・開発申請費用等。</td>
</tr>
<tr>
<td></td>
<td>・許認可申請費（外部委託の場合は）</td>
</tr>
<tr>
<td></td>
<td>・溶接安全管理審査費用（第三者機関）</td>
</tr>
<tr>
<td></td>
<td>・試運転中費用。</td>
</tr>
<tr>
<td></td>
<td>・建設中事業者人件費。</td>
</tr>
<tr>
<td></td>
<td>・建設中金利。</td>
</tr>
</tbody>
</table>

2.2.2. 設備の運用費

利用設備に関わる主要な項目と費用の概算方法については事業性検討の項で詳述する。
2.3.1. 副生物の処理/利用形態

エネルギー利用の際には、必ず副生物が発生する。エネルギー変換技術により発生する副生物は異なるが、それらを処理あるいは有効利用する点は共通する。さらに言えば、有価物の利用は事業性向上につながる。以下では、副生物の利用形態を整理した。

(1) 木質系 ※主に焼却灰

1) 産業廃棄物としての処理

焼却灰の処理形態として最も一般的なのは産業廃棄物として処理業者に引き渡すケースである。処理費用を支払えば、大半の事例でこの方法を選択することができる。なお、焼却灰に重金属等が含まれる場合には、焼却灰を利用することが難しくなるため、産業廃棄物としての処理が必要である。

2) 製品原料としての利用

既存のバイオマスエネルギー事業では、セメントへの混合や建築用ブロックの原料、肥料の中間処理剤等に利用されているケースがある。有価物として買い取られる事例もあるものの、通常より安価で処理業者に引き取ってもらうケースも少なくない。また、これらの製品原料として利用する場合、エネルギー事業の規模によっては一事業者で引き取るのが困難になるため、複数の事業者と連携する必要がある。

3) 肥料としての散布

木質系バイオマスの直接燃焼によって発生した焼却灰は肥料として林地や農地に還元することも可能である。ただし、焼却灰を産業廃棄物として取り扱うと、容易に散布することはできない状況があった。しかし、平成25年6月に環境省から各都道府県・政令市の廃棄物行政主管部局に対して、焼却灰の取扱に関する通知が出された。それによると、木質ペレットまたは木質チップを専焼ボイラで燃焼させて生じた焼却灰のうち、有効活用が確実で、かつ不要物とは判断されない焼却灰は、産業廃棄物に該当しないものとすることがある。ただし、塗料や薬剤を含むおそれのある廃木材由来のチップやペレットを混焼した場合は、これに当てはまらないため、引き続き産業廃棄物として取り扱われる。

(2) 湿潤系 ※主に消化液

1) 消化液の液肥利用

消化液を液肥として農地還元する利用方法である。消化液は肥料成分が豊富に含まれているため、化学肥料に代替でき、欧州諸国では多数の液肥利用実績が存在する。ただし、日本では消化液の利用基準が十分確立しているとは言えないため、利用の際は消化液成分について十分調査し、環廃産発第1306282号(https://www.env.go.jp/recycle/waste/reg_ref/no_1306282.pdf)
栽培実験を実施する必要がある。なお、散布には散布車等の特殊な機材を要するため、規模によっては数千万円程度の投資が必要となることにも留意すべきである。

事業者が消化液を保有農地に還元することができない場合は、周辺の農家に利用してもらうことが望ましい。その場合、事業者が農家に対して散布サービスを提供する等の利用価値を高める工夫が重要となる。

なお、消化液利用のデメリットとしては、発酵前の原料と比較すると悪臭は減少しているものの、一定の臭気が残存すること、並びに消化液を全量消費すること等を目的とした過剰施肥による地下水汚染が挙げられる。事業主体はこのようなリスクを十分認識し、計画的に消化液を農地還元することが肝要である。

2) 排水処理の外部化

施設外で排水処理を行う処理方法である。下水処理場やし尿処理場等の処理設備に隣接する形でメタン発酵施設を建設した場合、消化液の排水処理を既存の設備で行うことができる。

3) 公共水域への放流

消化液をメタン発酵施設内の排水処理設備で処理し、河川等に放流する方法である。一般的に窒素濃度を低減化等のために高度な処理が必要となり、運営コストが増大する。事業性の観点からは採用は望ましくない。

4) 下水への放流

消化液を排水処理後、下水に放流する処理方法である。公共水域への放流に比べて簡易な排水処理で済むため、農地還元が困難な土地では下水への放流を選択することが望ましい。ただし、農村地域等では下水道が存在しない場所もあるため、消化液を農地還元できない場合は、立地選定の段階で下水道がある場所を選先に考慮することが望ましい。また、下水処理場の運転状況等の理由で消化液の受入できない場合があるため、立地選定を行う段階で、行政にヒアリングを行う必要がある。

5) 焼却処分

敷地内または近隣に焼却処理施設が存在する場合に、焼却炉排ガスの温度冷却水として消化液を利用する処理方法である。このシステムでは、消化液を固液分離後、液体分は脱窒素、硝化処理等の簡単な排水処理を行った後、隣接する焼却施設の排ガス冷却水として使用し、施設外へ放流することなく消化液を処理することができる。焼却設備を有する産業廃棄物処理事業者等が実施主体となる場合、検討すべき方法である。
2.3.2. 副生物発生量
(1) 木質系
　焼却灰の発生量は、木質系バイオマスの種類（発生源）や樹種によって異なる。詳細は1.1.3.で述べたような灰分含有率を参照されたいが、概ね1～5%程度である。したがって、年間にボイラに投入するバイオマス量の1～5%程度が焼却灰として発生する計算となる。ただし、樹皮（バーディ）のみを燃料とする場合の灰分含有率は5～10%に達することもあるため注意が必要である8。また、土砂等が多く含まれるバイオマスをボイラに投入した場合も、土砂と灰が混合して副生物として発生することで、副生物発生総量は増加する傾向にある。このように、木質系バイオマスの種類や状態によって、副生物発生量は大きく変動するため、バイオマス調達先を検討する際に、併せてバイオマスの性状を十分に調査し、副生物発生量を正確に見積もっておく必要がある。正確に見積もるためには、灰の発生率が一定であることが望ましく、ここでも燃料の品質規格が重要であることが示唆される。

以下に、5MWクラスの規模の発電所で年間約6万トンの木質系バイオマスを利用する場合に、灰の発生率を3%とすると、1,800t/年、すなわち5t/もの量が発生する計算になる。これだけの量が発生すると、産業廃棄物処理単価を2.5万円とした場合、その処理費用も45百万円/年という無視できない値となるため、灰発生量の検討は非常に重要となる。

＜年間6万トンの木質系バイオマスを利用するエネルギー設備の場合＞
60,000t/年×3%(平均灰発生率)=1,800t/年（※毎日約5トン発生）
1,800t/年×2.5万円/t（灰処理費用）=45百万円/年

(2) 湿潤系
　発生する消化液の量は処理対象物の性状や含水率、処理技術によって異なる。一般的に、湿式の場合は投入原料に対して100～200%発生する。たとえば処理量50t/日、稼働日数330日/年とした場合、16,500～33,000t/年の消化液が発生する。このうち、固体濃度を5%とすると、固液分離後825～1,650t/年の脱水ケーキが発生する。
　乾式の場合は、一般的に投入原料に対して70～90%発生するが、紙ごみ等の処理量によって異なる。図II.2-4に示す通り、生ごみは有機物の80%程度が分解されるが、元々の含水率が高いため投入原料全体の体積に大きな変化は生じない9。一方で、紙ごみは含水率が低いため、有機物の分解によって体積が大きく減少する。

8 新潟県森林研究所 平成21年度レポート「木質バイオマスの燃料特性」（http://www.pref.niigata.lg.jp/HTML_Article/nenryoutokusei.pdf）
9 湿式の場合は原料に水を混合するため、投入原料よりも消化液発生量が大きくなる。
図 II.2-4 生ごみおよび紙ごみの有機物分解率

（出所）メーカーへのヒアリングを基に作成

発酵後の残渣は液肥として農地還元することが望ましいが、それが困難な場合は下水道に放流する必要がある。また、固体分については産業廃棄物としての処理が必要となる。残渣処理または利用方法は事業性に大きく影響するため、事業者は原料の性状を十分把握し、実現可能な残渣の処理または利用方法を検討することが重要である。
2.3.3. 副生物需要量

(1) 木質系

焼却灰を製品利用する場合や肥料として散布する場合は年間どの程度の需要があるかをまず把握する必要がある。製品利用の場合は、引き取り先の事業者の製品の年間生産量等を目安に考えることができる。また、肥料として散布する場合には、林地に植栽されている樹種や作付けしている作物の種類によって、適切な散布量が異なるため、十分に確認する必要がある。

なお、特に肥料として散布する場合には、季節や気候、農作業等の面から散布に適したタイミングがあるため、季節による散布可能性（需要量）の変動も事前に把握しておくかなくてはならない。肥料として利用する際の留意点は後述の湿潤系バイオマスの項も併せて参照されたい。

(2) 湿潤系

1) 液肥の需要量

事業性の観点から消化液は液肥として農地還元することが望ましい。液肥利用を行うには、計画段階から地域の需要を確認する必要がある。

周辺の農家から消化液利用に関する理解と協力を得るために、事業者は計画段階から3〜5年かけて栽培試験を行い、必要がある。

消化液需要の見積もりにあたっては、施設周辺の利用可能な作物（耕種作物、飼料作物、豆、イモ類等）の農地面積から消化液散布ポテンシャルを推計する。その次に、農家に対して利用の意義を周知しながら、需要に関するヒアリングを行う。この時、自治体の協力のもと各農家への説明を行うことが望ましい。そのためには、メタン発酵事業および消化液利用が、自治体の農業および環境政策と合致していることが条件となる。

消化液利用に関心のある農家に対しては、栽培試験を行い安全性や効果を実証する。試験にあたっては消化液の農地還元を実施しているメタン発酵施設や大学や公的な研究機関と協力関係を結ぶことが望ましい。利用について合意が得られた段階で、求められる量や品質（成分調整の要不要）、価格、提供時期等の具体的な項目を調整する。この時点で、実際の利用可能量を把握することが可能となる。一般的に消化液の農業利用の合意形成のプロセスには3〜5年の期間を要するため、計画の初期段階から液肥利用の計画を策定することが重要である。

我が国は欧州と異なり、消化液による作物栽培が限定的であるため、農家の間で十分な理解が進んでいない。したがって、メタン発酵施設周辺に十分な農地が存在したとしても、消化液を農地還元することは容易ではないことを、事業者は認識する必要がある。

2) 需要量の季節変動

消化液を液肥として農地還元する場合、一般的に1つの作物につき年間1〜2回散布が行われる。比較的温暖である西日本に多い二毛作または二期作地域では農地面積あたりのより大きな利用量が見込まれる。なお、耕種作物の場合、半月〜1ヶ月の短期間に農家の需要が集中するため、散布サービスを行う場合は需要に見合った十分な供給体制（人件および散布インフラ）を整備する必要がある。
2.3.4. 発生する副生物の性状

（1）木質系 ※主に焼却灰

焼却灰の性状として注意すべき主なものは、重金属類の含有量や塗料・薬剤由来の有害物質の含有量である。バイオマス調達先を決めた際には、焼却灰にこれらがどの程度含まれているかをあらかじめ調べておく必要がある。また、その含有量に応じて適切な処理/利用方法を検討する。

なお、焼却灰は、投入する燃料の発生元（建設廃棄物由来か、間伐材由来か等）が変わらない限りは、副生物の性状は季節によって変動しない可能性が高い。ただし、季節によって建設廃棄物由来のバイオマス量等が増減するような場合は、重金属類や塗料・薬剤系の不純物量が変動する可能性が高い。そのような性状の変動が想定され、さらに焼却灰を製品利用するようなケースでは、引き取り先の事業者と受入可能な変動幅についてあらかじめ協議をしておく必要がある。さらに、運用を始めた後も定期的に性状を検査し、受入可能な変動幅に収まっているかを確認することが重要である。

（2）湿潤系ス ※主に消化液

1）肥料成分

消化液の肥料としての品質を測る指標は窒素、カリウム、リンの 3 成分である。消化液中にはこれらの成分が豊富に含まれているため、農家は化学肥料の代替として利用できる。図 II.2-5 に示す通り、それぞれの元素含有率は原料によって異なるため、利用者はこれらを考慮して施肥設計を行う必要がある。ただし、消化液の土壌への過剰な散布による窒素またはカリウム汚染が発生しないよう十分注意すべきである。

なお、下水汚泥は重金属が混合している可能性があるため、液肥として利用することは困難である。

図 II.2-5 バイオマス種毎の肥料成分の比較
（出所）「バイオガス化マニュアル」（有機資源協会）2006年
2) 発酵不適物
発酵不適物の混入は液肥の品質を落とすだけでなく、散布設備の故障に繋がることもあるため、原料を発酵槽に投入する前段階で最大限除去する必要がある。除去は、収集段階および前処理設備（破砕機等）で行うが、前段の段階で行うことがより重要である。発酵不適物が問題になるのは、家庭系および事業系生ごみを原料とする場合に多い。家庭系の場合は食器等の金属や貝殻等が、事業系の場合はビニールやテープ等が発酵不適物として混入しやすい。発酵不適物を含む可能性のあるバイオマスを調達する際は、排出元に対して十分な啓発活動を実施する必要がある。また、事業者から逆有償で回収する際、発酵不適物量に応じた料金を設定する等、分別のインセンティブを与えることも有効である。

3) 季節変動
消化液の性状は投入原料の成分に影響を受けるため、特定の時期に急激に受入量が増加する場合は消化液成分の変化に注意が必要である。成分の季節変動の影響は処理規模や貯留槽の容量を大きくすることで低減できる。
2.3.5. 副生物の処理単価/販売価格

(1) 木質系

焼却灰の処理単価は地域によって様々である。既存事例をみると、表Ⅱ.2-6のように少なくとも1〜1.5万円/tはかかるケースが多い。一方で、高額な地域では3万円を超えることもあるため、事業性には大きく効いている。基本的には地域の産業廃棄物処理業者に処理を委託せざるをえないため、単価を安くする工夫をするのは容易ではない。ただし、製品原料として利用することで処理費が安くなるケースがあるため、検討の価値がある。肥料として直接散布する事例は非常に少ないため、単価の事例が限りないが、後述の液肥の販売価格事例は参考になると思われる。

表Ⅱ.2-6 焼却灰の処理単価の例

<table>
<thead>
<tr>
<th>事例</th>
<th>処理単価（万円/t）</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般的な地域</td>
<td>1〜1.5</td>
</tr>
</tbody>
</table>

(注)高額な地域では処理単価3万円/tという事例もある。
（出所）各種事例へのヒアリング等より

(2) 湿潤系

1) 液肥の販売価格

消化液を周辺農地に還元する際、全量消費を実現するための価格検討が必要がある。国内の既存事例における販売単価の例を表Ⅱ.2-7に示す。自治体による価格設定では、およそ40〜500円/tとなっている。通常水稲の場合は、10aあたり5〜7t散布を行うため、たとえば自治体Aの価格設定では、10,000円/haとなる。水稲用の化学肥料を20,000円/haすると、単純に比較した場合、農産物の生産コストは1/2に削減されることになる。ただし、消化液単体では不足する化学成分があるため、別途成分調整を行うコストが発生することに留意が必要である。

表Ⅱ.2-7 国内の既存事例における消化液液肥の販売単価の例

<table>
<thead>
<tr>
<th>事例</th>
<th>価格（散布込み）</th>
</tr>
</thead>
<tbody>
<tr>
<td>自治体A(水稲栽培)</td>
<td>通常液肥:約200円/t</td>
</tr>
<tr>
<td>自治体B(水稲栽培)</td>
<td>通常液肥:40円/t</td>
</tr>
<tr>
<td>自治体C(水稲・麦栽培)</td>
<td>通常液肥:500円/t</td>
</tr>
<tr>
<td></td>
<td>リン酸添加液肥:900円/t</td>
</tr>
</tbody>
</table>

※水稲での液肥散布量目安:10aあたり5〜7t
（出所）自治体へのヒアリングを基に作成

また、このような安価な価格設定に加え、上記事例にみられるように、事業主体による散布サービスを提供する等、農家にとって消化液を利用し易くなるための工夫を検討することが重要である。
2) 下水処理に係る費用

消化液の農地還元が難しい場合、次善策として下水道に放流することを検討する。主な費用としては、排水処理に係る薬品費と下水道使用費が挙げられる。

薬品費については、消化液の成分および自治体の排水処理基準が異なるが、既存事例では1,000～2,000 円/消化液トン程度となっている。

下水道利用料については、表 II.2-8 に示すように、全国平均値140 円程度となっているが、一般的に小規模な自治体ほど使用料は高い傾向にある。また、運転状況によっては下水処理場での受入困難なケースがあるため、自治体にヒアリングを行う必要がある。

<table>
<thead>
<tr>
<th>事例</th>
<th>処理単価（平均値）</th>
</tr>
</thead>
<tbody>
<tr>
<td>全国平均</td>
<td>140.9 円/m³</td>
</tr>
<tr>
<td>政令指定都市</td>
<td>141.8 円/m³</td>
</tr>
<tr>
<td>一般的都市（5 万人以上）</td>
<td>184.2 円/m³</td>
</tr>
<tr>
<td>一般的都市（5 万人未満）</td>
<td>245.8 円/m³</td>
</tr>
</tbody>
</table>

（出所）「下水道統計」（日本下水道協会）2012 年
2.4. 副生物貯蔵設備に関する検討（木質・湿潤共通）

2.4.1. 設備の初期費用

事業性の検証を進めるにあたり、事業全体にかかる初期費用の概算が必要となる。そのため、副生物貯蔵設備の下表の項目に関する初期費用の積算を行う。ただし、多くの場合、副生物貯蔵設備はエネルギー変換設備と同じ敷地内に設置されるため、その場合は後述の変換設備と併せて見積もることとなる。表 II.2-9 に初期費用検討の際の方法を示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>設定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>設備一式</td>
<td>設備メーカーと協議を行い、計画諸条件を定め見積から設備コストを積算する。できれば複数のメーカーより見積をとると比較が出来て良い。</td>
</tr>
<tr>
<td>土木・建築工事一式</td>
<td>設備と分離して発注を予定する場合、一級建築設計事務所又は建設会社等から見積をとり積算する。</td>
</tr>
<tr>
<td>土地購入費用</td>
<td>用地所有者と確認する。</td>
</tr>
<tr>
<td>（副生物利用設備一式）</td>
<td>事業者自ら消化液の散布等を実施する場合は、散布に必要なホースや噴霧器等の金額を見積もる必要がある</td>
</tr>
</tbody>
</table>

湿潤系バイオマスの場合は、消化液の農地への散布頻度が貯留設備の初期費用に大きく影響することに留意が必要である。寒冷地域のように二毛作や二期作が困難な場所では、最大で半年程度の消化液を貯留するケースもあり、大規模な貯留タンクが必要となる。したがって、年間を通じて定期的に消化液を還元できる立地場所の選定、もしくは体制の構築が重要となる。表 II.2-10 に、設備規模に応じた消化液発生量の例を示す。

<table>
<thead>
<tr>
<th>設備規模</th>
<th>消化液発生量（半年分）※湿式の場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>100t/日</td>
<td>16,500〜33,000 t</td>
</tr>
</tbody>
</table>

（出所）各種事例へのヒアリング等より

2.4.2. 設備の運用費

事業性の検証を進めるにあたり、副生物貯蔵設備の運用費の把握も併せて必要となる。焼却灰や消化液の貯蔵設備の運用費は、メンテナンス費が主となる。ただし、焼却灰の貯蔵はフレコンバック等で行うケースも少なくないため、その場合はその購入費用が定常的にかかる。

なお、副生物貯蔵設備とエネルギー変換設備が同じ敷地内に設置されている場合は、後述のエネルギー変換設備と併せた見積結果となる。
3. エネルギー変換

3.1. 技術および設備に関する検討（木質・湿潤共通）

3.1.1. 採用する技術および設備

バイオマスの種類によって適用可能な技術や設備は異なるため、技術や設備の選定を適切に行うことは肝要である。組み合わせを誤ると、エネルギー効率が低下する、あるいはエネルギー事業の持続的な運営が困難になる可能性がある。また、事業で扱う予定のバイオマスに適用可能な技術であっても、現時点で変換設備としての信頼性が低い技術を用いる場合は、やはりエネルギー事業の持続的な運営が困難になる。本書では、持続的に地域の経済活動に貢献する事業および地域の仕組みを目指しているため、前提として安定稼動可能な技術を対象とする必要がある。

現在国内で商業利用されている変換技術は、主に図 II.3-1 に示す熱供給および電力供給を目的とする技術である。例外として、メタン発酵において発生したバイオガスを気体燃料として利用する場合が挙げられるが、この場合、工業燃料代替として自家消費をするのが主である。なお、本書では液体燃料製造は対象としない。

木質系バイオマスについては、直接燃焼とスチームタービンとの組み合わせが、商業利用例が多く安定稼働可能な技術である。また、固体燃料化技術としては、チップ化とペレット化が主である。一方、生ごみや食品加工残渣、畜産廃棄物、下水汚泥等の湿潤系バイオマスについては、湿式メタン発酵とガスエンジンあるいは温水ボイラの組み合わせが、商業利用例が多く安定稼働可能な技術である。乾式メタン発酵は、現在商業利用している先行事例があるものの、事例数が少ないため選定にあたっては慎重に検討する必要がある。
図Ⅱ.3-1 国内におけるエネルギー変換技術の組み合わせと導入状況
*1: 国内では実施困難と考えられる。
（注）実証事業実施中のものは図中に含まない。

バイオマス調達先やエネルギー供給先の状況等に応じて事業者は事業内容を決定し、事業内容に適した変換設備とそれを実現可能なメーカーを絞り込む。さらに、変換設備に必要とされる機能や性能を達成するためにかかる費用を考慮して、具体的な設備仕様と発注先のメーカーを選定する。変換設備によっては、バイオマスやエネルギーの品質に関する制約が生じる場合もあるため、留意が必要である。なお、事業の構想段階で既に採用する設備やメーカーが決まっていいる場合もある。その場合は、設備の仕様に合わせたバイオマス調達やエネルギー利用の可否を慎重に検討する必要がある。

本項後段では、主要な変換設備を選定する際の留意事項を記載する。

(1) 木質系
1) ボイラの選定

バイオマスボイラのメーカーは、様々な水分（率）に対応した製品を開発し販売している。たとえば、水分（率）50%前後の未乾燥チップを投入可能なボイラ、水分（率）20~30%の乾燥チップを投入可能なボイラ、水分（率）30%以下の乾燥チップを投入可能なボイラ、などがある。
アップを投入可能なボイラ、水分（率）10%以下のペレットを投入可能なボイラ等が主要な商品として挙げられる。投入可能な燃料とは異なる水分（率）や形状の燃料を投入すると、メーカーが公表しているエネルギー効率を達成できなかったり、設備に不具合が生じたりする。したがって、投入する燃料の性状や乾燥設備に合わせたボイラを選定することが重要である。また、定格出力での熱の性状（温水か蒸気か、温度や圧力）もボイラによって異なるため、エネルギー需要に応じて選定する必要がある。

さらに、ボイラには燃焼方式が複数あるため、様々な条件を考慮して選定する必要がある。主要な選定条件を表Ⅱ.3-1に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイオマスの燃料特性</td>
<td>低位発熱量</td>
</tr>
<tr>
<td></td>
<td>灰分</td>
</tr>
<tr>
<td></td>
<td>燃焼特性（示差熱分析値、熱重量分析値、組成など）</td>
</tr>
<tr>
<td></td>
<td>燃料性状（粒径、水分）</td>
</tr>
<tr>
<td></td>
<td>前述の項目に関する数値のばらつき具合</td>
</tr>
<tr>
<td>規模</td>
<td>燃焼量</td>
</tr>
<tr>
<td></td>
<td>用途（熱供給（温水・蒸気）・発電）</td>
</tr>
<tr>
<td>運転条件</td>
<td>運転時間（連続、間欠）</td>
</tr>
<tr>
<td></td>
<td>負荷変動</td>
</tr>
<tr>
<td></td>
<td>制御条件</td>
</tr>
<tr>
<td></td>
<td>取扱方法</td>
</tr>
<tr>
<td></td>
<td>異物混入状況</td>
</tr>
<tr>
<td></td>
<td>混焼/専焼</td>
</tr>
<tr>
<td></td>
<td>助燃の有無と助燃仕様</td>
</tr>
</tbody>
</table>

(出所)「バイオマスプロセスハンドブック」 (オーム社) 2012年

2) その他の設備の選定

事業者は、タービン発電機や燃料供給機器等の各設備のメーカーが取り扱う商品の規模や仕様とボイラの規模や仕様を突き合わせて、燃料投入からエネルギー供給まで最も円滑に進む設備の組合せを検討する。検討の際に技術的な知識は不可欠なので、事業者はメーカーあるいはコンサルタントとよく相談する必要がある。各設備の選定の際に具体的に注目すべき項目は、技術指針の各項を参照されたいたい。

なお、メーカー選定にあたっては、保守点検やトラブル対応まで見据えて、事業実施地とメーカーの事務所や出張所あるいはメンテナンス外注先の距離も考慮できると望ましい。

(2) 湿潤系

1) メタン発酵技術の選定

① 技術の分類と概要

メタン発酵技術は基本的には原料の水分調整の有無によって「湿式」と「乾式」の2種類に大別される（ただし、受入れる原料の状態によっては水分調整が必要（もしくは不要）となる場合があるため、厳密には区分することが困難である）。さらに、湿式法はメタン菌を低汚泥濃度で
浮遊させ処理を行う二相法、一相法と、メタン菌をグラニュール化し処理する UASB 法 10に分けることができ（以下、特に断らない限り二相法と一相法を「湿式」と呼び、UASB と区別することにする）。乾式には、横型、縦型 2 種類があり、いずれも高温発酵の技術である。

なお、各発酵技術は中温（槽内温度 30～40℃）と高温（50～60℃）の 2 種類が存在し、それぞれ長短がある。高温発酵は中温発酵の 2～3 倍程度有機物分解速度（メタンガス生成速度）が速く、発酵槽の容積を小さくすることが可能である。一方で、高温発酵ではアンモニアガスや硫化水素ガスによって菌が影響を受け易くなるため、処理の安定性は中温発酵に比べて劣る。また、高温になるほど発酵槽の加温に係るエネルギーを多く消費することにも留意する必要がある。

図 Ⅱ.3-2 メタン発酵技術の分類の例

（出所）メーカーへのヒアリングを基に作成

表 Ⅱ.3-2 に湿式、UASB、乾式それぞれの概要を示す。

湿式は、運転管理が比較的容易であること、並びに処理可能な原料の幅が広いことから、現在国内で生ごみや畜産廃棄物、下水汚泥を原料とする多数のメタン発酵施設において導入されている。ただし、投入原料に対して 100～200%程度 11の消化液が発生するため、還元先の農地の確保や排水処理コストが課題となる。

UASB は主に食品工場等における高度な排水処理として国内で多数導入されている。ただし、畜産廃棄物や生ごみ等の固形物原料の処理には適していない。

乾式は、生ごみや食品加工残渣に紙類・剪定枝等の固形状の廃棄物を加えた混合処理が基本となるため、発酵槽中の有機物濃度が高く、単位原料あたりのバイオガス発生量が大きいことが特徴である。さらに、湿式や UASB と異なり発酵残渣の含水率が低い（基本的に固形状もしくはスラリー状となる）ため、残渣処理コストを低く抑えることが可能となる。乾式は、近年ヨーロッパを中心に普及しつつあり、国内でも民間の事業系生ごみ処理施設や、自治体の一般廃棄物処理施設において複数導入されている。課題としては、アンモニアによる発酵阻害が生じやすく運転管理が比較的難しいこと、現時点では湿式に比べ処理量あたりの建設コストが高いこと等が挙げ

10 向流嫌気性汚泥床法（UASB：Up-flow Anaerobic Sludge Blanket）
11 湿式の場合は原料に水を混合するため、投入原料よりも消化液発生量が大きくなる。
られる。ただし、一般的に乾式の方がガス発生量が多く、エネルギー販売収入が大きいため、キャッシュフロー全体を比較して経済性について判断する必要がある。

表 II.3-2 メタン発酵技術と適する投入物

<table>
<thead>
<tr>
<th>項目</th>
<th>UASB</th>
<th>湿式</th>
<th>乾式</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料濃度</td>
<td>5〜8%</td>
<td>2〜8%</td>
<td>15〜30%</td>
</tr>
<tr>
<td>処理概要</td>
<td>メタン菌をクラニュール処理</td>
<td>メタン菌を低い汚泥濃度で浮遊させ処理</td>
<td>メタン菌が高い汚泥濃度で処理</td>
</tr>
<tr>
<td>特徴</td>
<td>・高効率・固形物不得意</td>
<td>・運転管理容易・排水処理不要</td>
<td>・固形物処理可能・排水処理不要</td>
</tr>
<tr>
<td>主な適用先</td>
<td>食品排水</td>
<td>食品加工残渣・畜産廃棄物</td>
<td>固形廃棄物</td>
</tr>
<tr>
<td>実績</td>
<td>国内多い</td>
<td>国外多い</td>
<td>国内少ない</td>
</tr>
</tbody>
</table>

(出所) メーカーへのヒアリングを基に作成

② 技術の選択基準

メタン発酵に係る技術を選択するにあたっては、事業主体が地域で収集可能な原料を基に、適する技術を選択することが基本となる。

上記3種類の技術のうち、UASBについては食品工場等の排水処理が導入対象となる。

湿式については、食品廃棄物、畜産廃棄物、下水汚泥等、幅広い湿潤系バイオマスを処理可能である。ただし、乾式のように紙や剪定枝のような固形物も含める場合には、前処理が必要であったり、適さない場合もあったりするため、メーカーに相談することが必要である。

乾式は、基本的に紙ごみ等の固形廃棄物の混合が必要となる。したがって、一般廃棄物を原料とすることが最も望ましい。

一般廃棄物からプラスチックを除去した際の生ごみと紙ごみの比率は乾式メタン発酵における適切な原料状態となる。その他の湿潤系バイオマスも処理可能であるが、固体原料の比率等の減量調整が必要となる。

図 II.3-3 原料毎のメタン発酵技術選択の例

（出所）メーカーへのヒアリングを基に作成
なお、環境省の循環型社会形成推進交付金においては、バイオガス回収率 150 m³/t-wet を達成した場合、事業費の 1/2 を交付するとしており、この基準を満たす上では処理量あたりのバイオガス発生量が大きい乾式メタン発酵が適している。また、施設内の選別機によって生ごみと可燃ごみを分別するシステムの場合は、乾式の方が粗い原料スケールでも処理が可能という利点も存在する。なお、排出物による分別を行わないシステムにおいては選別装置等の前処理設備の選択は重要である。メタン発酵を行う上では選別の程度が高くなる程、単位投入量あたりのガス発生量は増加する。その一方で、メタン発酵処理量（発酵槽への投入量）は減少するため、設備規模の設定時に注意する必要がある。また、選別装置に関わるコストは増加するため、総合的な経済性の検討は重要である。

技術の選択においては、上述の事項の他、原料の性状や組み合わせをはじめとする各種条件によって適する技術は異なるため、扱うバイオマスの含水率や副生する消化液の量等の観点だけで採用する技術（湿式／乾式または高温／中温）を判断すると、必ずしも最適な発酵技術の選択にならない可能性がある。したがって、原料の性状や種類、規模等を基に、国内の類似事例のシステムを参照するとともに、メーカーおよびステークホルダーと相談の上、技術選定を行うのが望ましい。

2) エネルギー利用技術の選定

エネルギー利用技術は、事業主体もしくは周辺地域のエネルギー需要、並びに事業性を考慮して採用する技術の検討を行う。

① 発電設備

発電の場合はガスエンジンおよびマイクロガスタービン、デュアルフューエルエンジンが選択肢として挙げられる。処理量が数十t/日を超える比較的大規模のメタン発酵施設のように十分なガス発生量が見込まれる場合は、ガスエンジンもしくはマイクロガスタービンを複数台設置して発電することが一般的である。一方で、数t/日程度の小規模メタン発酵施設では、ガス発生量に変動が生じやすいため、軽油等の補助燃料を併用したデュアルフューエルエンジンが採用されることが多い。

また、エンジンに関しては、一定時間毎に点火プラグの交換等の整備が必要となり、連続運転の場合予備機が必要となる。たとえば、要る発電規模の 100% の発電容量のエンジンを 2 台設置するケースや、50% のエンジンを 3 台設置するケース等があり、機器選定時に注意するべきである。

なお、エネルギー需要の変動およびガス貯留設備容量によっても利用可能なガス量の安定性が変化することを考慮した上で技術を選択する必要がある。

② ガス利用設備

バイオガスの直接利用は、タンク等による需要地までの輸送、都市ガス導管注入、パイプラインによる隣接需要地への輸送の 3 種類がある。ガスの直接利用は最もエネルギー効率が高い利用方法であるが、現時点ではガスの直接利用に関する国内事例は数例程度に留まっている。いずれ
のケースでも設備コスト（ガス精製装置等）に大きなコストが掛かるため、大規模でない限り経済性を確保することは困難である。特に、都市ガスの導管注入については、ガス燃焼特性を担保するために稼働中のガス組成の変動許容範囲が厳しく規定されている。そのため、ユーティリティ会社との調整やガス精製装置以外にも付臭および熱量調整装置等の各種設備コストが発生することを留意すべきである。

③ ボイラ
食品工場等では、発生したバイオガスを発電に利用せず、全量ガスボイラによって熱利用を行っているケースがある。バイオガスボイラの導入にあたっては、要求される温度帯やバイオガス性状等に留意したボイラおよび周辺機器の選定が必要である。

3) ガス貯留設備
バイオガス貯留設備はエネルギー供給先の需要変動を踏まえて決定する。すなわち、需要家である近隣施設が24時間エネルギーを利用する場合、バイオガス貯留設備は1時間分程度の容量で対応が可能である。反対に需要家が日中のみ運転する工場であるケースや、バイオガス発電と太陽光発電を併用し、夜間にバイオガスを利用するケースでは、十分な大きさの貯留設備が必要となり、投資額が増大することに注意が必要である。
3.1.2. バックアップ設備の必要性

エネルギー需要家自身が変換設備を持っている場合、外部に熱や燃料を販売する場合、そして外部から熱や電力、燃料等の供給を受ける場合は、バックアップ設備の要否を検討しなくてはならない。エネルギー供給が止まることが許されない病院や老健施設等では、バックアップ設備の検討は特に重要である。重油や灯油、ガス、ディーゼル等の化石燃料を用いる設備がバックアップ設備の主な候補である。

既存のボイラ設備や自家発電設備の更新時期に合わせて変換設備を導入する場合、事業者は、それまで利用していた設備を完全に廃棄せずに敷地内にバックアップ設備として置いておくことが望ましい。そうすることで、バックアップ設備の確保にかかる費用を低減することができる。

熱供給のバックアップ設備である化石燃料焚きボイラは、バイオマスボイラに比べて立ち上げが早く、急速な加温に有効であるため、バックアップボイラを朝のスタートアップ時やピーク需要時に活用することも可能である。このような運用を想定することで、バイオマスボイラの負荷低減や、バイオマスボイラの規模縮小による初期費用の低減が可能な場合がある。

電力供給のバックアップ設備は、主にディーゼルエンジン発電機やガスエンジン発電機である。あるいは、系統電力の受電設備を併設し、バックアップ対策とすることも可能である。この場合、系統電力で停電が生じた際に逆潮流が発生する可能性があるため、遮断器等を設置して対策をとる必要がある。
3.2.運用体制に関する検討（木質・湿潤共通）

3.2.1. 設備の運転体制

運転要員と班の組み方も重要な検討事項である。設備の規模や種類（発電設備、熱供給設備、ガス供給設備、チップあるいはペレット工場）、稼働時間によって、運転要員数や1日のシフト数、および班体制が異なる。

また、ボイラ・タービン主任技術者や電気主任技術者等の資格保有者の確保の方法の検討も忘れてはならない。取得にあたって実務経験が必要な資格もあるため、運転開始当初は別事例での経験のある資格保有者に一時的に依頼する場合が多い。その場合は、運転開始後に事業者が人材育成に取り組む必要がある。すなわち、少なくとも一部の運転員が資格試験を受験し実務経験を積むことで、資格保有者を確保しなくてはならない。なお、第1種、第2種ボイラ・タービン主任技術者は学歴に応じて必要な実務経験年数が異なる点には注意が必要である13。

3.2.2. 設備のメンテナンス体制

変換設備がトラブルを起こした場合の対応方法、交換や修理等の作業実施者、メンテナンス時に必要な部品等の調達先についても、事業計画段階から検討する必要がある。

検討に際しては、各設備や部品の点検や交換の頻度を把握することが重要である。特に、主要変換設備であるタービンやボイラは、表 II.3-3 のようにそれぞれ4年ごと、2年ごとの法定点検を必須である旨が、電気事業法において定められている。ガスエンジンには法定点検は定められていないが、定期的に点検や部品交換が必要である。

メンテナンス体制は、メーカーとの年間保守契約の締結、あるいは現場の運転員によるメンテナンスの実施、に大別される。後者を採用する場合、技術や設備に精通した運転員を雇う、あるいはメーカーの協力を仰ぎつつ運転員を育成する等の工夫をする必要がある。また、後者を採用する事例の中には、交換が必要な部品をメーカーに定期的に発注して常に在庫がある状態にして、不具合が発生しても迅速に部品を交換できる体制を整えている事例もある。

<table>
<thead>
<tr>
<th>機器名</th>
<th>法定点検年数</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気タービン</td>
<td>4年ごと</td>
</tr>
<tr>
<td>ボイラ設備</td>
<td>2年ごと</td>
</tr>
</tbody>
</table>

（出所）電気事業法

13 経済産業省ウェブサイト（http://www.meti.go.jp/information/license/c_text30.html）
3.3.費用に関する検討（木質・湿潤共通）

3.3.1. 設備の初期費用

事業性の検証を進めるにあたり、表 II.3-4 の項目について交換設備の初期費用の積算を行う。このとき、2.2.1. で述べた通り、実績のあるメーカーあるいは施工者のうち、対象地域にて対応可能な候補会社を絞込んだ後、見積もりを取得する手順が有効である。提出される見積もりは事業者の計画の全ての項目を網羅していない場合があり、実施時に問題となることがある。特に見積もり範囲外になり易い「事前調査、整地、土木建築工事の共通部、官庁申請、予備品等」には十分精査して、費用を計上することが重要である。

表 II.3-4 初期コスト設定項目と方法

<table>
<thead>
<tr>
<th>項目</th>
<th>設定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>設備一式（受変電設備も含む）</td>
<td>設備メーカーと協議を行い、計画諸条件を定め見積もりから設備コストを積算する。複数のメーカーより見積もりをとることが望ましい。</td>
</tr>
<tr>
<td>土木・建築工事一式</td>
<td>設備を分離して発注を予定する場合、一級建築設計事務所または建設会社等から見積もりをとる。</td>
</tr>
<tr>
<td>系統連系費用</td>
<td>電力会社と相談し、概算コストを把握する。</td>
</tr>
<tr>
<td>土地購入費用</td>
<td>用地所有者に確認する。</td>
</tr>
<tr>
<td>重機・車両購入費</td>
<td>重機または車両販売店等から見積もりをとる。</td>
</tr>
<tr>
<td>開業前経費</td>
<td>開業前までに必要経費を見込み予算を組む。主な開業前コストとしては以下が考えられる。地質調査費、測量費、燃料分析費、水質分析費、建築設計費、開発申請費用、許認可申請費（外部委託の場合は）、溶接安全管理審査費用（第三者機関）、試運転中費用、建設中事業者人件費、建設中金利</td>
</tr>
</tbody>
</table>
3.3.2. 設備の運用費

事業性の検証を進めるにあたり、事業実施の運用費の把握も併せて必要となる。そのため、下表の項目に関する運用費の積算を行う。少なくとも、年間の収入がこの積算されたコストを上回らない限り、補助金や助成を利用しても事業は成立し得ない。

(1) 木質系

エネルギー変換設備に関わる主要な運用費（バイオマス調達費用を除く）とその概算方法について下表で述べる。

<table>
<thead>
<tr>
<th>表 II.3-5 木質系バイオマスのエネルギー変換設備に関する運用費</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユーティリティ費</td>
</tr>
<tr>
<td>メンテナンス費</td>
</tr>
<tr>
<td>人件費</td>
</tr>
<tr>
<td>灰処理費</td>
</tr>
<tr>
<td>一般管理費</td>
</tr>
</tbody>
</table>

(出所) 「バイオマスエネルギー導入ガイドブック（第4版）」（NEDO）2015年

(2) 湿潤系

エネルギー変換設備に関わる主要な運用費とその概算方法について下表で述べる。

<table>
<thead>
<tr>
<th>表 II.3-6 湿潤系バイオマスのエネルギー変換設備に関する運用費</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユーティリティ費</td>
</tr>
<tr>
<td>メンテナンス費</td>
</tr>
<tr>
<td>人件費</td>
</tr>
<tr>
<td>下水処理費</td>
</tr>
<tr>
<td>一般管理費</td>
</tr>
</tbody>
</table>

(出所) 「バイオマスエネルギー導入ガイドブック（第4版）」（NEDO）2015年
4. システム

4.1. 事業計画の検討（木質・湿潤共通）

4.1.1. 資金調達計画

事業を計画する場合、まずは自己資金での実施可能性を検討する。自己資金のみで事業を実施できない場合には、外部からの資金調達が必要となる。外部からの資金調達手法には、主として融資（デット）と出資（エクイティ）の2種類がある。また、その他に補助金等を活用する手法もある。それぞれのメリットとデメリットを表II.4-1に整理した。

表 II.4-1 外部資金調達手法の比較

<table>
<thead>
<tr>
<th>項目</th>
<th>一般的な外部資金の調達手法</th>
<th>その他の手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>主な特徴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>元本および利息を返済する必要がある</td>
<td>出資者が経営に関与するため、経営の自由度が低下する場合もある</td>
<td></td>
</tr>
<tr>
<td>留意事項</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主な調達先</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 「補助事業等により取得し又は効用の増加した財産の処分等の取扱いについて」平成16年6月10日会課第5号（改正：平成20年6月6日）参照

事業を実施するには、バイオマス調達からエネルギー利用に係わる複数の関係者との連携が必要となる。関係者間の連携を強固にし事業リスクを軽減するための資金調達の手法として、共同出資がある。共出資で資金調達を行う場合には、各出資者が事業目的を十分に共有し、安定した経営ができるよう留意する必要がある。
なお、今後バイオマス調達に係る競争が激化し、予定よりも調達価格が上昇する可能性も考えられる。したがって、そのような長期的リスクも考慮した資金調達計画が必要である。長期的リスクの検討については4.2.2で詳述するので、参照されたい。

4.1.2. 事業期間

事業者は、事業目的に応じて、初期費用の回収期間や事業期間を設定する必要がある。たとえば、FIT制度を使った売電を事業目的とする場合は、買取期間の20年が終了した後の事業継続や設備運用方法についてあらかじめ検討しておかなくてはならない。

事業期間の設定の際には、事業者は設備の耐用年数を把握する必要がある。法律上は、減価償却を算定する際の法定耐用年数が設備機器別に定められている。しかし、メンテナンスを適切に行い、メーカーと定めた設計条件を大幅に逸脱しないように利用することで、法定対応年数よりも長く使用することが可能である。たとえば、製材所等が設置している端材を燃料とするボイラ設備は、部品交換や修理等を続けながら数十年使っている事例もある。

表II.4-2 主要機器の法定耐用年数

<table>
<thead>
<tr>
<th>機器名</th>
<th>法定耐用年数</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気ボイラ</td>
<td>15年</td>
</tr>
<tr>
<td>温水ボイラ</td>
<td>導入先に応じて異なる</td>
</tr>
<tr>
<td>メタン発酵槽</td>
<td>15年</td>
</tr>
<tr>
<td>蒸気タービン発電設備</td>
<td>15年</td>
</tr>
<tr>
<td>ガスエンジン発電設備</td>
<td>15年</td>
</tr>
<tr>
<td>特殊車両（林業用設備）</td>
<td>5年</td>
</tr>
<tr>
<td>特殊車両（運送事業用）</td>
<td>4年</td>
</tr>
<tr>
<td>工場用建屋（鉄骨）</td>
<td>38年</td>
</tr>
<tr>
<td>工場用建屋（木造）</td>
<td>15年</td>
</tr>
</tbody>
</table>

（出所）国税局ウェブサイトより
4.1.3. 立地

表 II.4-3 に挙げるように、エネルギー事業の用地選定の条件は、バイオマスの調達先との距離、エネルギー需要先との距離、近隣の送配電設備との距離、道路状況等複数ある。さらに、湿潤系バイオマスの場合は、消化液を散布可能な周辺農地の面積、あるいは下水処理場との距離も重要な条件となる。これらの条件をすべて満たし、かつ環境規制やその他法規制もクリアできる十分な広さの土地を見つけするのは容易ではない。したがって、事業者が条件の優先順位付けを行うことが重要である。

一方、すでに用地候補がある場合には、表 II.4-3 中に挙がる各費用項目の見積もりを早い段階で行い、その結果に留意して事業計画の立案や見直しを行う必要がある。

表 II.4-3 用地選定の主要な条件

<table>
<thead>
<tr>
<th>主な選定条件</th>
<th>影響する費用項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>バイオマスの調達先との距離</td>
<td>バイオマス輸送費</td>
</tr>
<tr>
<td>エネルギー需要先との距離</td>
<td>湯水および蒸気配管敷設費用</td>
</tr>
<tr>
<td>(かつ輸送を妨げる幹線道路や構造物および埋設物の有無)</td>
<td>燃料輸送費（設置する設備がペレタイザーやチッパーのみの場合）</td>
</tr>
<tr>
<td>(特別)高圧の送電設備との距離</td>
<td>送電線および鉄塔敷設費用</td>
</tr>
<tr>
<td>幹線道路との距離</td>
<td>変圧器等の電気機器設置費用</td>
</tr>
<tr>
<td>バイオマスの保管場所の確保し易さ</td>
<td>バイオマス保管場所の燃料費用</td>
</tr>
<tr>
<td>消化液の利用が可能な農地の面積</td>
<td>消化液処理費</td>
</tr>
<tr>
<td>(湿潤系バイオマス、液肥利用)</td>
<td>消化液輸送・散布費</td>
</tr>
<tr>
<td>下水処理場との距離</td>
<td>消化液処理費</td>
</tr>
<tr>
<td>(湿潤系バイオマス、排水処理)</td>
<td></td>
</tr>
</tbody>
</table>

この他、上下水道や低圧の配電網、ガス、通信等のインフラの状況についても、設計段階に入前に確認する必要がある。これは、インフラの状況によっては追加的な費用負担が発生するためである。たとえば、ボイラ用水として工業用水、地下水、一般上水道のうちどれを利用できるかによって用水費用が大きく変わるとため、事業性に影響がある。
4.1.4. 事業実施スケジュール

事業者が事業実施スケジュールを組む際には、構想や調査にかかる数年とその後の設計〜試運転にかかる最低2年間の両方を考慮しなくてはならない。構想や調査の段階では、林業関係者や地域自治体等の関係者との調整が必要であり、この段階に時間を要する場合が少なくない。また、メーカーや施工会社の繁忙度合いによっては、設計〜試運転にさらに時間がかかる可能性もある。このように、バイオマスエネルギー事業は、検討を始めてから短期間で商業運転を開始することができない点に留意する必要がある。

図 Ⅱ.4-1 地域自立システム検討フロー
4.1.5. 関連法規制等

(1) 関連法令

事業者は表 II.4-4 に示すような各種法令を設計前の調査の段階で確認する必要がある。これは、事業内容によっては規制対応のために費用がかかるためである。

このうち、公害防止に関する条件は、各関係法規による規制基準値と地域の公害防止条例等の両方を参照する必要がある。特に地域の規制基準を事前に確認しないで進めると、設計時の機器選定に影響を及ぼすだけでなく性能保証事項にも影響するため、地域の所管自治体の関係部局への確認が重要となる。

<table>
<thead>
<tr>
<th>表 II.4-4 事業に関連する法令一覧</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>関連法令</th>
<th>許認可・手続き等</th>
<th>手続きが必要となる場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>●エネルギー事業関連</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気事業法</td>
<td>主任技術者の選任・保安規定・工事計画の届出等</td>
<td>電気を供給する事業を行う場合（自家用で1,000kW未満を除く）</td>
</tr>
<tr>
<td>熱供給事業法</td>
<td>事業認可申請、供給規定認可・届出、導管工事計画届出、保安規定届出等</td>
<td>熱を供給する事業を行う場合（加熱能力の合計が21GJ/h以上の場合）</td>
</tr>
<tr>
<td>エネルギーの使用の合理化に関する法律（省エネ法）</td>
<td>当該工場のエネルギー消費量に応じ一定人数（1〜4名）の「エネルギー管理者」を選任</td>
<td>第一種エネルギー管理指定工場に指定された場合（年間エネルギー使用量が原油換算3000kl以上）</td>
</tr>
<tr>
<td>廃棄物の処理及び清掃に関する法律</td>
<td>産業廃棄物収集運搬業の許可手続き等</td>
<td>＜廃棄物処理業＞廃材処理費を徴収（逆有償）し、収集・運搬、処分を業として行う場合
＜廃棄物処理施設＞一定規模以上の処理施設を設置する場合</td>
</tr>
<tr>
<td>●立地関連</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国土利用計画法</td>
<td>土地売買届出手続</td>
<td>土地売買等の契約を締結した場合
・市街化区域:2,000㎡以上
・市街化調整区域:全て
・都市計画区域:5,000㎡以上
・上記以外の区域:10,000㎡以上</td>
</tr>
<tr>
<td>都市計画法</td>
<td>開発許可手続</td>
<td>開発行為をしようとする場合
・市街化区域:1,000㎡以上
・市街化調整区域:全て
・区域区分が定められている都市計画区域及び準都市計画区域:3,000㎡以上
・都市計画区域及び準都市計画区域外の区域:1ha以上
*再生可能エネルギー施設の建設にあたり、建築物の建築を伴う土地の区画形質の変更があれば開発許可が必要となるものであって、すべての再生可能エネルギー施設の建設が開発許可の対象となるわけではない。</td>
</tr>
<tr>
<td>土地区画整理法</td>
<td>土地区画整理事業の施行地区内における建築行為等の許可手続き</td>
<td>土地区画整理事業の施行地区内における建築行為等の許可手続き
*その重量が5tを超える物体（容易に分割でき、分割された各部の重量がそれぞれ5t以下となるものを除く。）</td>
</tr>
<tr>
<td>農地法 農業振興地域の整備に関する法律</td>
<td>農地転用許認可手続</td>
<td>農地を農地以外のものにする場合又は農地を農地以外のものにするために所有権等の権利を設定又は移転する場合
なお、農用地域内の土地については、農用地域から除外するためには市町村の農業振興地域整備計画を変更しなければならない。</td>
</tr>
<tr>
<td>工場立地法</td>
<td>特定工場新設届出書、実施制限時間の短縮申請書</td>
<td>敷地面積0,000㎡以上又は建築面積3,000㎡以上の規模の製造業等に係る工場を新設又は変更する場合（水力、地熱及び太陽光発電所は除かれている）</td>
</tr>
<tr>
<td>関連法令</td>
<td>許認可・手続き等</td>
<td>手続きが必要となる場合</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>●プラント関連</td>
<td></td>
<td></td>
</tr>
<tr>
<td>建築基準法</td>
<td>建築確認申請</td>
<td>建築物を建てる場合</td>
</tr>
<tr>
<td>消防法</td>
<td>危険物(排出所、貯蔵所、製造所)設置許可申請書、消防用設備等着工届出書、予防規定認可申請書、危険物保安監督者選任届出書</td>
<td>潤滑油、非常用兼用発電機の燃料等が指定数量以上ある場合</td>
</tr>
<tr>
<td>高圧ガス保安法</td>
<td>高圧ガス貯蔵許可申請、危険予防規定認可申請書、高圧ガス製造保安統括者等届出書、冷凍保安責任者等届出書、特定高圧ガス取扱主任者等届出書、高圧ガス貯蔵所設置許可申請書</td>
<td>(定義)常温で圧力が1MPa以上となる圧縮ガス等 (製造)ガスを製造する能力が100m³/月以上の場合 (貯蔵)LPG等の貯蔵量が300m³以上の場合 (特定高圧ガス消費)LPG等と300m³以上貯蔵・消費する場合</td>
</tr>
<tr>
<td>道路法</td>
<td>道路法に基づく車両制限</td>
<td></td>
</tr>
<tr>
<td>道路交通法</td>
<td>道路使用許可等手続</td>
<td></td>
</tr>
<tr>
<td>航空法</td>
<td>昼間障害標識設置物件の届出</td>
<td></td>
</tr>
<tr>
<td>電波法</td>
<td>伝搬障害防止区域における高層建築物等に係る届出</td>
<td>電波伝搬障害防止区域内に建築を予定している高層建築物（地表高31mをこえる建築物）等が、重要無線通信に障害を及ぼすと判断される場合</td>
</tr>
<tr>
<td>労働安全衛生法</td>
<td>共同企業体代表者届出書、総括安全衛生管理者専任報告、安全管理者専任報告、排熱ボイラ設置届出（報告）書、管理監督者選任報告書、産業廃棄物設置届出書</td>
<td>(排熱ボイラ)発電用以外で、同法施行令で定義されたボイラの場合</td>
</tr>
<tr>
<td>労働基準法</td>
<td>労働者名簿、賃金台帳、時間外・休日労働に関する届出、就業規則（常時10人以上を使用している場合）等</td>
<td>労働者を雇い入れた場合</td>
</tr>
<tr>
<td>●環境基準等</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大気汚染防止法</td>
<td>大気汚染に関する届出</td>
<td>熱供給事業、電気供給事業など、ばい煙発生施設を有する事業を行う場合</td>
</tr>
<tr>
<td>騒音規制法</td>
<td>特定建設作業実施届出書</td>
<td>小花木、電気事業法で規定される電気工作物において発生するばい煙を排出する場合には、上記手続に代わり、電気事業法に基づく届出が必要となる。</td>
</tr>
<tr>
<td>振動規制法</td>
<td>特定建設作業実施届出書</td>
<td>＜特定施設の設置＞指定地域内において工場又は事業場（特定施設が設置されていないものに限る）に特定施設を設置しようとする場合 ※たとえば、チッパーを設置する場合など。なお、特定施設が電気事業法で規定される電気工作物である場合には、上記手続に代わり、電気事業法に基づく届出が必要となる。＜特定建設作業の実施＞指定地域内において特定施設作業を伴う建設工事を施工しようとする場合</td>
</tr>
<tr>
<td>水質汚濁防止法</td>
<td>水質汚濁に関する施設設置の届出手続き</td>
<td>工場又は事業場から公共用水域に水を排出する者が、特定施設を設置しようとする場合</td>
</tr>
<tr>
<td>土壤汚染対策法</td>
<td>土地の形質変更に係る届出手続き</td>
<td>土地の掘削その他の土地の形質の変更であって、その対象となる土地の面積が3,000㎡以上の場合</td>
</tr>
<tr>
<td>公害防止組織機構に関する法律</td>
<td>公害防止統括者選任届出書、公害防止管理者等の届出書</td>
<td>(公害防止統括者)常時従業員が20人以下の場合は不適任</td>
</tr>
</tbody>
</table>

（出所）「再生可能エネルギー発電事業支援ガイドブック平成26年度版」（資源エネルギー庁）など
（2）FIT制度に関連する手続

FIT制度の活用を考える事業者は、国からの設備認定を受けるための手続と電力会社との系統連系接続契約申込に向けた手続を並行して進める必要がある。

1）設備認定

国が示している設備認定の基準は表Ⅱ.4-5の通りである。

表Ⅱ.4-5 満たすべき基準

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>維持管理体制の確保</td>
<td>調達期間中、導入設備が所期に期待される性能を維持できるよう保証又はメンテナンス体制が確保されている</td>
</tr>
<tr>
<td>計量器の設置</td>
<td>電気事業者に供給された再生可能エネルギー電気の量を計量法に基づく特定計量器を用い適正に計量することが可能な構造となっている</td>
</tr>
<tr>
<td>発電設備の特定</td>
<td>発電設備の内容が具体的に特定されている（製品の製造事業者及び型式番号等の記載が必要）</td>
</tr>
<tr>
<td>開業後の報告</td>
<td>設置にかかる費用（設備費用、土地代、系統への接続費用、メンテナンス費等）の内訳及び当該設備の運転にかかる毎年度の費用の内訳を記録し、かつ、それを毎年度1回提出する</td>
</tr>
</tbody>
</table>

また、設備認定の際に提出が必要な図書および資料は表Ⅱ.4-6の通りである。

表Ⅱ.4-6 設備認定にあたって必要な図書および資料一覧

<table>
<thead>
<tr>
<th>図書および資料名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造図</td>
<td>設備設置場所の位置図、敷地図、設備配置図、システムフロー図</td>
</tr>
<tr>
<td>配線図</td>
<td>単線結線図（単線結線図には計量器設置場所を明記し、設置者は設置後速やかに報告する）</td>
</tr>
<tr>
<td>メンテナンス体制表</td>
<td>発電所設置者のメンテナンス責任者及び維持管理するための設備メーカーサポート体制等</td>
</tr>
<tr>
<td>発電設備の内容を証する書類</td>
<td>設計仕様書・ボイラ構造図・タービン構造図・発電機構造図・受変電設備構造図等</td>
</tr>
<tr>
<td>使用燃料の発熱量等計量分析実施予定書</td>
<td>使用する燃料の発熱量・水分率を計量分析することを約する書類</td>
</tr>
<tr>
<td>燃料使用量記録表</td>
<td>月ごとの燃料使用量の計量データを記録する書類</td>
</tr>
<tr>
<td>バイオマス比率計算方法説明書</td>
<td>複数の種類の木質系バイオマスを使用する場合に必要</td>
</tr>
<tr>
<td>バイオマス燃料の使用計画書</td>
<td>使用する木質系バイオマスの年間使用量・調達先・集荷地域・水分率（率）及び予定価格、具体的なバイオマス入手ルート（事前に調達先との調整が出来ていることが重要）</td>
</tr>
<tr>
<td>記約書</td>
<td>既存業界への影響がないことを誓約する書面</td>
</tr>
<tr>
<td>木質バイオマス証明書等</td>
<td>調達先名及び事業者認定番号の入った木質系バイオマスの証明書の写し</td>
</tr>
</tbody>
</table>

（出所）「再生可能エネルギー発電設備認定申請書の記載要領（バイオマス発電設備用）」（資源エネルギー庁）2015年
2) 系統連系接続契約

FIT 制度の活用有無に関わらず、電力会社の送電網に接続する場合には、事業者は電力会社へのアクセス検討申込と接続連系の申込を行わなくてはならない。特に特別高圧線への接続を希望する場合は、各電力会社営業所にて系統連系希望地点付近の系統図を閲覧し、それと同時に系統連系の事前相談の申込をする必要がある。申込を受け、電力会社が容量面から評価した連系制限の有無と連系地点までの直線距離等を確認し、事業者に回答する。

事前相談の回答により概ね系統連系接続の可能性が示されるので、その後本格的に系統連系アクセス検討を申し込む。売電を前提とした発電所である限り送電線へ接続は必須であるため、事前相談による接続可能性の有無は早い段階で確認しておく必要がある。

3) 系統連系接続契約と設備認定の流れ

図 Ⅱ.4-2 に示すとおり、FIT 制度の調達価格は設備認定取得と系統連系接続契約申込が行われた時点で決定される。したがって、運転開始を予定する時期から逆算をして各種手続きを進められると望ましい。

図 Ⅱ.4-2 系統連系接続契約と設備認定の流れ
（出所）「再生可能エネルギー発電事業支援ガイドブック平成 27 年度版」（資源エネルギー庁）
4.2.事業性の検討（木質・湿潤共通）

4.2.1.事業性評価

事業者は事業期間（20年あるいはそれ以上）の長期にわたるキャッシュフロー分析を行い、採算性を評価する必要がある。評価の結果、事業性が成立しない場合には、コスト低減や収入増の工夫をすることで事業計画を変更し、再評価を行う。この手順を繰り返すことで、持続可能性のある事業計画を作り上げる。

なお、事業性については、本格的な事業推進段階でも随時見直しを行う。当初の調査不足や外部要因等で想定との差異が発生することもあるので、常にチェックを行い、必要に応じて具体的な改善策等も検討しながら進める必要がある。

（1）木質系

事業費の概算を行う際には、以下に示す項目に注目する必要がある。また、林地残材や間伐材等の未利用バイオマスを扱う場合には、近隣の森林の伐採計画や再造林および育林計画、その際の費用等も考慮することが望ましい。

<table>
<thead>
<tr>
<th>項目</th>
<th>計算方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ⅰ
a.建設費</td>
<td>メーカー見積から算出する。</td>
</tr>
<tr>
<td>b.建設費低減率および補助率*％</td>
<td>建設費に建設費低減率および補助率(％)をかける。</td>
</tr>
<tr>
<td>c.実質建設費</td>
<td>上記のa－bより実質建設費を算出</td>
</tr>
<tr>
<td>Ⅱ
a.収入</td>
<td>①～④の合計</td>
</tr>
<tr>
<td>①売電収入</td>
<td>売電単価×売電電力×稼働日数×稼働時間などにより算出</td>
</tr>
<tr>
<td>②熱販売収入</td>
<td>熱販売単価×熱販売量×販売先稼動日数×販売先稼働時間などにより算出</td>
</tr>
<tr>
<td>③肥料等販売収入</td>
<td>肥料販売費×年間肥料量</td>
</tr>
<tr>
<td>④処理収入</td>
<td>処理料金×年間処理量</td>
</tr>
<tr>
<td>b.支出</td>
<td>①～⑧の合計</td>
</tr>
<tr>
<td>①ユーティリティ費</td>
<td>メーカー見積から算出する。</td>
</tr>
<tr>
<td>②メンテナンス費</td>
<td>全設備機器費の2～4％(あるいはそれ以上)を見込む</td>
</tr>
<tr>
<td>③人件費</td>
<td>人件費単価×人数などにより算出する</td>
</tr>
<tr>
<td>④減価償却費</td>
<td>（実質建設費－残存価格＜実質建設費の10％>）÷耐用年数より算出</td>
</tr>
<tr>
<td>⑤灰処理費</td>
<td>灰処理単価×灰処理量などにより算出する</td>
</tr>
<tr>
<td>⑥支払い金利</td>
<td>借入期間、据置期間等を銀行と相談の上決定。</td>
</tr>
<tr>
<td>⑦租税公課</td>
<td>簡単のために実質建設費から毎年の減価償却した額の差を対象とする。この場合、(実質建設費－累積減価償却費)×固定資産税率(1.4％)</td>
</tr>
<tr>
<td>⑧一般管理費</td>
<td>人件費の8～25％程度。実態に応じて設定する。</td>
</tr>
<tr>
<td>c.税引前利益</td>
<td>上記のa－bより算出</td>
</tr>
<tr>
<td>d.法人税等</td>
<td>事業の大きさ等により多少異なるが40.87％を適用すればよいと思われる。c×40.87％より算出</td>
</tr>
<tr>
<td>e.税引後利益</td>
<td>上記のc－dより算出</td>
</tr>
<tr>
<td>f.減価償却費</td>
<td>bの④と同値を設定</td>
</tr>
<tr>
<td>g.毎年キャッシュフロー</td>
<td>上記のe+fより単年度のキャッシュフローを算出</td>
</tr>
</tbody>
</table>

（出所）「バイオマスエネルギー導入ガイドブック（第4版）」（NEDO）2015年
（2）湿潤系
事業費の概算を行う際には、以下に示す項目に注目する必要がある。

表 Ⅱ.4-8 事業収支の検討項目

<table>
<thead>
<tr>
<th>項目</th>
<th>計算方法</th>
</tr>
</thead>
</table>
| I a.建設費 | メーカー見積から算出する。
| b.建設費低減率および補助率*% | 建設費に建設費低減率および補助率（％）をかける。
| c.実質建設費 | 上記のa-bより実質建設費を算出 |
| II a.収入 | ①〜④の合計 |
| ①売電収入 | 売電単価×売電電力×稼働日数×稼働時間などにより算出 |
| ②熱販売収入 | 熱販売単価×熱販売量×販売先稼働日数×販売先稼働時間などにより算出 |
| ③肥料等販売収入 | 肥料販売費×年間肥料量 |
| ④処理収入 | 処理料金×年間処理量 |
| b.支出 | ①〜⑧の合計 |
| ①ユーティリティ費 | メーカー見積から算出する。
| ②メンテナンス費 | 全設備機器費の2〜4%（あるいはそれ以上）を見込む |
| ③人件費 | 人件費単価×人数などにより算出する |
| ④減価償却費 | (実質建設費-残存価格<実質建設費の10%>)÷耐用年数<15年>より算出 |
| ⑤副産物処理費 | 灰処理単価×灰処理量などにより算出する |
| ⑥支払い金利 | 借入期間、据置期間等を銀行と相談の上決定。 |
| ⑦租税公課 | 簡単のために実質建設費から毎年の減価償却した額の差を対象とする。この場合、（実質建設費-累積減価償却費）×固定資産税率(1.4%) |
| ⑧一般管理費 | 人件費の8〜25%程度。実態に応じて設定する。 |
| c.税引前利益 | 上記のa-bより算出 |
| d.法人税等 | 事業の大きさ等により多少異なるが40.87%を適用すればよいと思われる。c×40.87%より算出 |
| e.税引後利益 | 上記のc-dより算出 |
| f.減価償却費 | b.の④と同値を設定 |
| g.毎年キャッシュフロー | 上記のe+fより単年度のキャッシュフローを算出 |

（出所）「バイオマスエネルギー導入ガイドブック（第4版）」（NEDO）2015年
4.2.2. 事業環境の長期変動リスク

エネルギー事業は長期に亘って実施されるため、時間の経過によって事業環境も大きく変化することが予想される。そのためリスクを理解した上で事業計画を立てる必要がある。以下では、長期的な視野での変動要素として認識すべき項目を整理する。

(1) 調達

1) 調達先である産業等の動向

バイオマスは農林水産業や木材関連産業、食品関連産業、あるいは廃棄物処理業などの各種産業から得られる。したがって、調達は関連産業の動向に大きく左右されることを十分に認識する必要がある。このことから、調達先は複数確保しておくことが望ましい。

たとえば、木材関連産業の製品（製材品、合板、集成材等）需要が減少した場合、その製造過程で発生する製材端材等の工場残材の発生量は低下する。したがって、製材端材を中心に調達する場合には、それらの関連産業の動向を注視し、減少が見込まれる場合の代替調達先を検討する必要がある。同様のことは、いずれのバイオマスについても言える。なお、家庭生ごみや下水汚泥の発生量は人口の推移に影響を受けるため、人口動態予測等を活用して検討を進めると。

また、関連産業の動向に伴う発生量の変動は、調達可能量の変動だけでなく、価格の変動をも引き起こしやすい点についても注意する。

2) 調達先との関係

調達先であるチップ工場や素材生産業者、畜産農家等は、小規模に運営されている場合が少なくない。この場合、その事業者の状況（たとえば事業承継の状況）によっては調達が困難になる可能性がある。株式会社等の比較的成熟した組織から調達している場合も同様のリスクを抱えていることは変わりがないが、リスクは小規模事業者との契約の方が大きい。

なお、木質系バイオマスを調達する場合には、バイオマス調達先から契約締結という形態でなく協定や覚書を交わすことを提案されるケースが多いと言われるが、これらの形態は長期変動のリスクを完全に軽減できない点は、十分に認識しなくてはならない。
（2）エネルギー利用

1) 再生可能エネルギーを取り巻く政策動向

再生可能エネルギーを取り巻く政策動向は主要な事業リスクの1つである。たとえば、昨今FIT制度の開始によって木質系バイオマスを活用した発電計画が増加し、既存の発電所の調達経路にも影響を及ぼしているのような状況を指す。国が推進する政策の内容によって、木質系バイオマスエネルギー事業の行く末が左右されることは、よく認識しなくてはならない。以下に、国の政策動向に関わる主要リスク要因を示す。

- 電源構成、エネルギーミックスに関する基本的な方針（委員会や審議会等での検討内容）
- インセンティブの対象が、FITか補助金（初期費用）か
＜FIT制度の場合＞価格、買取期間など
＜補助金の場合＞補助率、事業者の要件など
- 再生可能エネルギー由来の電力と熱・ガスそれぞれに対する優遇
- 電力の系統接続に関する基本的な方針（委員会や審議会等での検討内容）

具体的には、政策の中でも下表のような項目が事業に影響する。大きく推進側に政策転換された場合には、調達やプラントメーカーへの発注の競争が過熱されると考えられる。逆に保守寄りに政策転換された場合には、バイオマスエネルギー事業の計画数自体が大きく減ることが予測されると、バイオマスエネルギー供給量や供給価格が減少・低下する可能性があるとともに、プラントメーカー等の受注状況にも影響が出ると考えられる。

表 II.4-9 政策の方向転換により起こりうる変化の例

<table>
<thead>
<tr>
<th>「推進」に転換した場合</th>
<th>「抑制」に転換した場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>·送電容量の過剰による送電線への接続制限
·燃焼灰の引き取り先・処理先の飽和
·木材流通の変化とそれに伴う山林の荒廃
·木質系バイオマス調達価格の高騰</td>
<td>·電力の出力抑制による売電量減少
·FITの価格切り下げによる売電価格低下（ただし認定取得済みであれば影響なし）</td>
</tr>
</tbody>
</table>

2) 化石燃料の価格変動

バイオマスをエネルギー利用する意義の1つとして、化石燃料の代替がある。この意義はバイオマスの熱量あたり単価が化石燃料のそれよりも安くなる場合により重要となる。重油、灯油等の化石燃料は市況によって価格が大きく変動するため、事業開始時点でバイオマスの価格の方が安価であったとしても、事業期間中に逆転する可能性も十分にありうる。したがって、バイオマス調達価格を取り決める際にも、このような状況を考慮する必要がある。

なお、以下に化石燃料価格の変動例を示しているが、エネルギー量あたりの灯油やA重油の価格は、1年で倍以上に急騰または急落することもあり、変動が大きいことが明らかである。
図 II.4-3 エネルギー量あたりの化石燃料価格推移
（出所）灯油およびA重油：石油情報センターウェブサイト（一般財団法人日本エネルギー経済研究所）、石炭および輸入針葉樹チップ、ペレット：財務省貿易統計、広葉樹チップおよび針葉樹チップ：木材価格統計

3) 副生物の処理/利用業者との関係

副生物の処理業者または利用業者との関係もリスク要因として捉える必要がある。たとえば、木質系バイオマス事業において発生する焼却灰を何らかの製品の原料として用いる場合、利用する事業者が長期的に焼却灰を受入か否かを把握する必要がある。また、湿潤系バイオマスのメタン発酵事業については、発生する消化液を液肥として近隣農地に還元する場合は、持続的な利用可能性について注意が必要である。耕作放棄地等も増加する中、消化液の散布先が減少する可能性は大いにある。また、散布先の農家の方針が変われば消化液を受け入れてもらえない可能性も出てくる。このようなリスクを考慮した上で、副生物の処理/利用の方法を検討する。

3) エネルギー変換

エネルギー変換設備の寿命は部品ごとに様々であり、それらを都度交換しながら設備本体を使用する。交換すべき部品の点数は年数を経るにつれて多くなり、また不具合を生じるなどして、大幅に装置を更新する可能性も高くなる。このため、基本的にメンテナンスコストは年々増加するため、これを考慮して事業計画を立てることが必要である。あるいは、将来の大幅な装置更新等を見据えて、事業初期の段階から資金を積み立てることも考えられる。
（4）システム

1) 物価変動

近年、日本のインフレ率は0~1%前後で推移しているが、今後の景気動向によっては、将来的にはインフレ率がマイナスになる可能性もある。インフレ率は商品によってその率には差異があるが、物価が長期間一定であることはほとんどない。したがって、原料、エネルギー、設備機器等の価格の変動を考慮に入れて事業計画を立てる必要がある。さらに、人件費も物価の変動に伴い上下する傾向にあることも注意を払わなくてはならない。

一方で、FITでは、物価変動が考慮されず20年間一定の販売価格となるため、同制度を利用した事業の場合には、将来的に利益が小さくなる可能性も理解しておく必要がある。

図Ⅱ.4-4 日本のインフレ率推移
（出所）総務省統計局ウェブサイト（消費者物価指数（CPI）変化率をインフレ率として使用）
(http://www.stat.go.jp/data/cpi/historic.htm)

2) 為替変動

海外から物品を調達する場合には、為替の変動リスクも考慮しなくてはならない。たとえば、ここ数年で米ドルは1USD=約80円から1USD=約120円にまで変動し、同じものを調達するにも1.5倍のコストがかかるようになった。ペレット等を海外から輸入する場合は、毎年の調達費が大きく変動することになるので注意が必要である。このような為替変動の問題に対しては、円建てで長期契約を結ぶ、国内資源を一部利用する等の工夫が有効である。また、設備機器の一部あるいは全部を輸入した場合には、交換用部品の調達費用に為替変動が影響する。ただし、交換用部品を国内製造部品で調達できれば、リスク回避につながる。

14 インフレ率を消費者物価指数の変化率とした場合（http://www.stat.go.jp/data/cpi/historic.htm）
15 日本銀行 時系列統計データ検索サイト（https://www.stat-search.boj.or.jp/ssi/cgi-bin/famecgi2?cgi=$graphwnd）
図 II.4-5 為替の長期変動
（注）実質実効為替レート指数は2010年=100とした場合の値を示す。
（出所）日本銀行時系列統計データ検索サイトより