
事後評価分科会 「次世代材料評価基盤技術開発/ 有機EL材料の評価基盤技術開発 |

(平成22年度補正~平成28年度)

5. プロジェクトの概要説明

5.2 「研究開発」「成果の実用化に向けた取り組み及び見通し」 について (公開)

次世代化学材料評価技術研究組合 平成28年12月6日

◆項目毎の目標と達成状況:ガラス基板

項目	最終目標	成果	達成度
①-1 ガラス基板 材料評価技術の 開発	1)単色&白色基準素 子設計とバッチ作製手法 確立	●基本性能素子及び高性能単色、白色基準素子作製手順を確立●高性能単色素子を外部研究機関に業務委託	0
	2)性能評価手法確立	●照度測定方法による配光測定手法の有 効性確認	0
	3)加速寿命評価法確 立	●加速試験による劣化カーブ時定数の電流/ 温度依存性解析による予測手法を開発●1/40短期寿命予測手法の確立●特許化、解析ソフトの作製と技術移転交渉中	Ο
①-2 ガラス基板 解析技術の開発	1)劣化部位の非破壊箇 所・構造変化特定手法 確立	●種々の分析手法を用いて、劣化解析の有 効性を確認	0

◆項目毎の目標と達成状況:フレキ基板

項目	最終目標	成果	達成度	
子設計とバッチ R2Rプロセス代 法確立 2) オ料評価技術 の開発 2)性能評価目立 ・機械負荷評価 術の確立 ・評価技術の標 3)フィルム特有	1)フレキ単色基準素 子設計とバッチ作製・ R2Rプロセス作製手	●独自設計のR2R連続フレキパネルの試作設備を 導入し、多段階塗布技術により、塗出し膜厚不均一 を解決した。また、真空中の効果的な静電気対策を 施し、静電気による歩留まり低下を解決した。	0	
	法確立	●ガラス基板素子と同等の初期発光特性を有する フレキパネルの試作と材料評価技術を確立した		
	 ・機械負荷評価基盤技	●実デバイスに即した基礎物性評価,シミュレーション,機械負荷試験を連携させることにより,素子構造と材料の最適な設計指針が得られることを実証した	0	
		●機械特性評価の知見を反映させJEITA規格 (ET-4501)を策定した●それをベースに国際標準化(IEC-TC119)を推 進中		
	3)フィルム特有の加速寿命評価法確立	③フレキ基板(周辺材料評価技術の開発)の「フレキシブル 有機EL素子の寿命評価技術確立」開発項目で実施	0	

◆項目毎の目標と達成状況:フレキ基板

項目	目標	成果	達成度
	1) 水蒸気透過率10 ⁻⁶ g/ m ² /dayレベルのバリア性能	■ 10-6レベルの高信頼性バリア性 能評価技術を確立	
	評価法確立	参照試料による装置校正手法 を開発 ⇒特許取得	
3		● 評価技術の実用化に向けた取り組みを実施中	©
フレキ基板 周辺材料評価 技術の開発	フレキシブル有機EL素子の寿命評価技術確立	• 素子寿命判定に必要なバリア性能の定量評価技術を確立した	(参照試料を開発・特許) 化し大幅達
	• 接着材の水蒸気バリア性 評価技術確立	• 接着材評価技術を確立し、消 光開始時間の推定を可能にした	成と評価)
	・ 水蒸気起因の素子劣化メカニズム推定	• 消光原因を推定し、整合性のある試験結果を示した	

※)参照試料:水蒸気透過度測定装置の校正用ハイバリアサンプル

◆項目毎の目標と達成状況:感性評価

項目	最終目標	成果	達成 度	課題と解 決方法
④ 有機EL材料に関わる照明環境の生理的・心理的効果の評価技術の開発 【終了前事後評価】	1)照明空間の光 学的機能評価技 術の確立	●空間輝度分布測定法(L-CEPT)により、波長特性・配光特性を効果的に記述するパラメータを抽出し検証した。	0	3月までに達成予定
	2)照明環境の心 理的評価技術の 確立	●照明下での対象物の視認性評価やアンケート等による心理的評価により、有機EL照明を特徴付ける手法を開発した。		3月までに達成予定
	3)照明環境の生 理的評価技術の 確立	●照明環境を特徴付けるパラメータと生理指標の相関を見出す評価技術を確立した・照明による休息効果への影響として、有機EL照明下での心拍数減衰効果を見出した・照明による精神運動性覚醒度への影響として、青色照明による覚醒促進作用を見出した・照明による脳波への影響として、有機EL光源を直視しても休息効果が維持されることを見出した・照明による眼電図への影響として、有機EL光源を直視しても眩しさが少ないことを見出した	0	3月までに達 成予定
	4)光学的指標と生理的・心理的評価 指標と有機EL材 料との相関評価技 術開発	●照明用の有機ELスペクトルと材料・素子構成との関係を評価する手法を開発した	0	3月までに達成予定

◆成果の普及

	平成23 年度	平成24 年度	_	_		平成28 年度	計
論文		3	1	2	4	0	10
研究発表·講演 ^{※1)}	1	13	9	27	28	13	91
新聞・雑誌等への掲載		1		1		1	3
展示会への出展						1	1
拠点イニシアチブ ^{※2)}			7	7	7	2	23

※平成28年度10月11日現在

※1)研究発表·講演 SID主体 : **10**件 招待講演 : **15**件

※2)拠点イニシアチブ

組合員がCEREBA技術により特定材料を評価し自社開発に活用.

新たに開始した案件(前年度からの継続案件は含まず)

◆成果の普及

平成24年8月16日 日刊工業新聞 13面掲載

分子レベルで計測産動作中の有機EL内部

平成26年7月8日 日本経済新聞1面掲載

世界初の量産技術曲げられる有機臣L照明

平成26年2月10日 化学工業日報 掲載

CEREBA 有機EL材料を評価

新聞コピーは投影のみ

特許出願(6件)

- ①短期寿命予測技術
- ②水蒸気バリア評価技術
- の2件については、PCT出願

①短期寿命予測技術

特許 第5870233号「有機EL素子の寿命推定方法、

寿命推定装置及び製造方法、並びに発光装置」

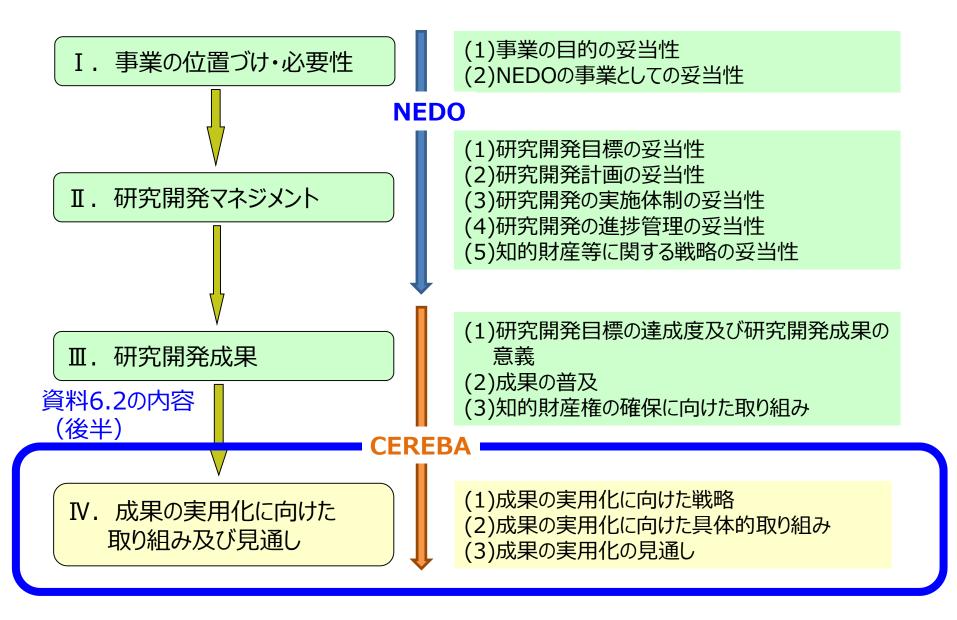
日·韓:登録査定

欧米:ビジネスモデル観点から取り下げ

PCT (WO/2015/080250)

②水蒸気バリア評価技術

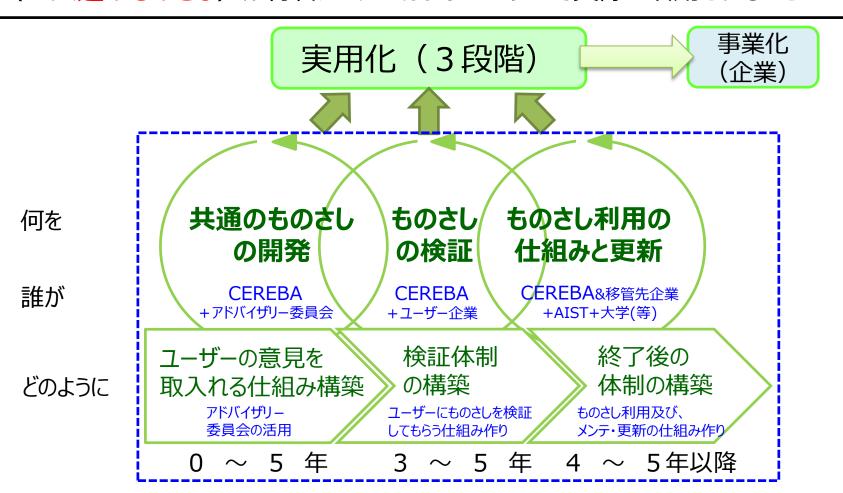
特許 第5890597号「水蒸気透過度測定装置の校正用標準フィルム、校正用標準フィルムセット及びそれを利用した構成方法」


日·韓:登録查定

米:推進中

欧:ビジネスモデル観点から取り下げ

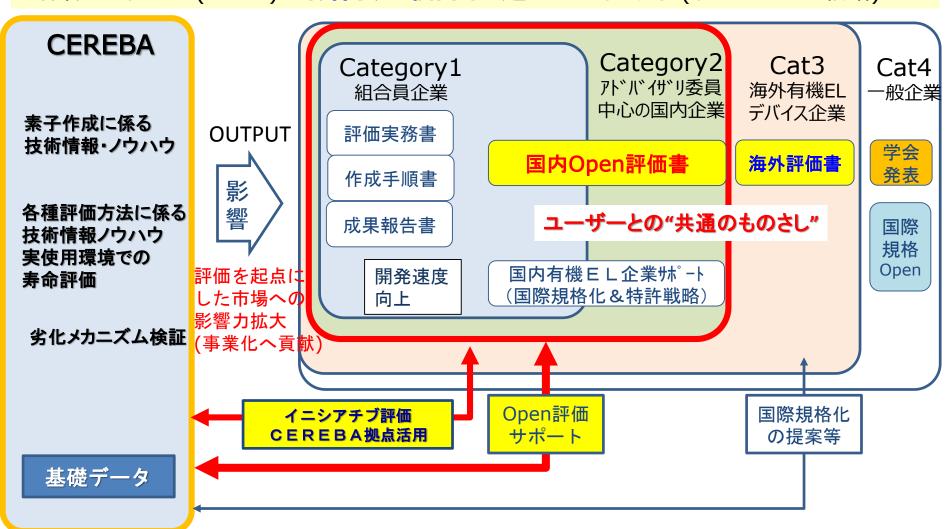
PCT (WO/2015/182706)


平成23 平成24 年度 平成25 年度 平成26 年度 平成27 年度 平成28 年度 計 特許出願 2 3 1 6

本プロジェクトにおける実用化の定義

研究開発成果である『基準素子を活用した材料評価基盤技術』

(= 共通のものさし) が材料メーカーおよびユーザーで実際に活用されること



4. 成果の実用化に向けた取り組み及び見通し (1) 戦略

◆実用化に向けた戦略

カテゴリー別によるオープン-クローズ戦略

- ・評価技術は国内向けOpen評価書で国内有機EL会社(Cat1,2)が活用可能 (オープン戦略)
- ・海外デバイスメーカー(Cat 3)と海外向け評価書で共通のものさしとする (オープン・クローズ戦略)

戦略に基づき、(a)組合員を対象に全ての開発成果に関わる材料評価「拠点イニシアチブ」と (b)アドバイザリー委員各社を対象に7つの評価技術を選定した「オープン評価」を実施した。 これにより、本開発成果がユーザー各社においても評価技術として有用性であることを検証した。

(a) 「**拠点イニシアチブ」項目** -組合員対象に実施-

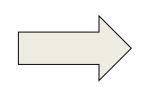
項目	開発成果
①-1 ガラス基板 材料評価技術の開 発	単色&白色基準素子 設計とバッチ作製手法 確立性能評価手法確立加速寿命評価法確立共通のものさし実証
①-2 ガラス基板 解析技術の開発	● 劣化部位の非破壊箇 所・構造変化特定手 法確立
② フレキ基板 材料評価技術の開 発	単色基準素子設計と バッチ作製・R2Rプロセ ス作製手法確立性能評価手法確立フィルム特有の加速寿 命評価法確立共通のものさし実証
③ フレキ基板 周辺材料評価技術 の開発	 水蒸気透過率10⁻⁶ g/m²・dayレベルのバリア性能評価法確立 共通のものさし実証

(b)「オープン評価」項目 -アドバイザリー委員対象に実施-R2Rバリ 機械特性 ア膜評価 評価技術 技術 接着剤透 バリアフィルム 評価技術 水率評価 (WVTR) 技術 パネル 短期寿命 特性評価 推定評価 技術 技術 CEREBA『基準素子』

(公知材料で素子構造を設計. 都度進化)

デバイスメーカーとの 共通のものさし化 が重要と考えられる 7つの評価技術 を選定

4. 成果の実用化に向けた取り組み及び見通し (2)具体的取り組み



◆成果の実用化の見通し

- ・CEREBAがインフラを引継ぎ、組合企業各社の新規材料評価がPJ終了後もできるようにした。
- ・産総研や共同実施先が主体で開発した技術、外部移管した技術についても組合企業とユーザーが活用できる体制を構築した。


CEREBA

- ・技術とインフラの継続
- ・産総研・大学との橋渡し

新規PJ提案

- ・評価技術の実用的活用
- ・フレキシブルディスプレイ

組合各社

・成果のドキュメント化 「評価基準書」 「評価実務書」 「作製手順書」

国際標準化

·IEC,ISO,国内団体規格 推進

技術の一部外部移管(戦略的に選定)

- •基準素子作製
- ⇒Q-Lights(基本性能素子)

・バリア評価

- ⇒住化分析センター,海外評価機メーカー
- •短期寿命予測
- ⇒ソフト装置組み込み(交渉中)
- ・バリア参照試料
- ⇒デファクト化(装置メーカー検討中)