様式2-1-2 国立研究開発法人 年度評価 総合評定様式

1. 全体の評定										
評定	A:国立研究開発法人の目的・業務、中長期目標等に照らし、法人の活動による成果、取組	25年度	26年度	27年度	28年度	29年度	30年度	3 1 年度		
(S, A, B, C,	等について諸事情を踏まえて総合的に勘案した結果、適正、効果的かつ効率的な業務運営の									
D)	下で「研究開発成果の最大化」に向けて顕著な成果の創出や将来的な成果の創出の期待等が	A	A	A	A					
	認められる。									
評定に至った理由	項目別評定のとおり、技術開発マネジメント関連業務において顕著な成果を得ており、業務運営の効率化、財務内容の改善についても着実な業務運営がなされていることか									
	ら、法人の目的・業務、中長期目標等に照らし、「研究開発成果の最大化」に向けて顕著な成果	果の創出や将	子来的な成果	の創出の期待	寺等が認めら	れることか	ら、A評定る	とした。		

2. 法人全体に対する評価

・「I. 研究開発の成果の最大化その他業務の質の向上に関する事項」のうち「技術開発マネジメントの機能強化等」については、平成28年度は6分野の技術戦略に基づき、新規ナショナルプロジェクト3事業を立案、既存の3事業に活用したほか、非連続ナショナルプロジェクトの選定基準の明確化、経済産業省で行われていた外部事前評価を平成28年度からNEDOで実施するなど、技術戦略及びそのプロジェクト構想に基づくプロセス(技術戦略~PM選定~内部・外部事前評価~予算要求~基本計画策定~プロジェクト開始)を実践。また、「NEDO研究開発マネジメントガイドライン新訂第1版」を策定し、PM主体のプロジェクト実施を推進するとともに、知財マネジメント基本方針の適用など、技術開発マネジメントの機能強化に向けた取組を推進。さらに、国の政策方針や事業者からのニーズを踏まえ、間接経費率の拡大など制度改善を実現。

ベンチャー企業等の振興については、研究開発型ベンチャーと事業会社との連携を促進する新事業(企業間連携スタートアップに対する事業化支援(SCA))を開始し、ベンチャー・エコシステムの更なる強化を図るとともに、オープンイノベーションの推進に向けて、日本初のオープンイノベーション白書を公表するとともに、マッチングイベントやワークショップ等を積極的に開催(前年度比2倍以上)。また、標準化の推進や金融機関とのマッチング等による事業化支援の推進、各種メディアを活用した情報発信の推進などの取組で顕著な成果を上げている。以上からA評価とした

「技術分野ごとの目標」については、太陽電池の開発において化合物3接合型太陽電池モジュールで世界最高記録(31.2%)の達成、セルロース系バイオマスからのエタノールを生産に適した世界最高レベルの変換効率となる組換え酵母株の開発、世界トップレベルのエネルギー密度及び出力密度を達成した車載用リチウムイオン電池の開発、世界最高水準の耐熱性等を有するカーボンナノチューブを使ったスーパーエンジニアリングプラスチックの開発、国内初となる防爆認証を取得した災害調査用ロボットの開発など、顕著な成果を上げている。以上からA評価とした。

- ・「Ⅱ.業務運営の効率化に関する事項」については、政府方針に対応した機動的な組織体制の構築(IoT推進部、ロボット・AI部、AI社会実装推進室の設置)、事前評価における電子審査の導入、ペーパレスの推進による複合機使用量の削減、CO₂削減に向けた取組、国立研究開発法人で初となるISO/IEC27001(ISMS)の認証取得などの取組で顕著な成果を上げており、プロジェクト成果の受賞件数の増加、業務のアウトソーシング拡大などの取組についても着実な業務運営を行っている。以上からB評価とした。
- ・「Ⅲ. 財務内容の改善」については、効率的な執行による運営費交付金債務の削減、リスク管理債権の適正化などの取組について、着実な業務運営を行っている。以上からB評価とした。
- ・外部有識者からは、これらの取組に対して、効率的な研究開発マネジメントの機能強化、研究開発型ベンチャーに対するシームレスな支援制度の拡充、オープンイノベーションを推進していく体制の構築、技術開発プロジェクトの標準化、イベントへの参加やフォーラムの開催等による幅広い情報発信などが行われていることを評価する、というコメントを得ている。また、各技術分野でも、太陽電池、バイオ燃料製造、革新型蓄電池、セルロースナノファイバー、フルSiCパワーモジュールの開発等で成果を上げていることを評価する、というコメントを得ている。さらに、業務運営の効率化に関しては、第4次産業革命の実現に向けた組織体制の構築と研究開発プロジェクトの実施、CO₂削減に向けた取組、情報セキュリティマネジメントの国際認証を取得したことについて評価する、というコメントを得ている。
- ・以上を踏まえ、全体の評定をA評価とした。

3. 項目別評価の主な課題、改善事項等

引き続き、第3期中長期計画等の達成に向けた取組を推進する。

4.	その他事項
----	-------

研究開発に関する審議	(研究開発に関する審議会の主な意見などについて記載)
会の主な意見	
監事の主な意見	(監事の意見で特に記載が必要な事項があれば記載)

様式2-1-3 国立研究開発法人 年度評価 項目別評定総括表様式

1	2-1-3 国立研究開発法.	1 7	~		別評定		1.3 4			tti. I.a
4	中長期目標(中長期計画)				年度評 個				項目	備考
		25	26	27	28	29	3 0	31	別調	
	TOBENO	年度	年度		年度		年度	年度	書No.	
	研究開発の成果の最大化その他			可上に関	する事	垻 (7	5%)			
<	<技術開発マネジメントの機能 	強化等。	>				,			
	(ア) 技術開発マネジメントの機能強化	A	A	A	A				I — 1	
	(イ)技術開発型ベンチャー企業等の振興	A	A	A	A				I - 1	
	(ウ) オープンイノベーションの推進			A	A				I - 1	
	(エ) 国際共同事業の推進	Α	В	В	В				I - 1	
	(オ)技術開発成果の事業 化支援			A	A				I — 1	
	(カ) 情報発信等の推進	A	A	A	А				I — 1	
	(キ)人材の流動化、育成	A	A	A	A				I - 1	
	研究開発成果を活用しよう とする者への出資による実 用化支援		В							平成 2 度から (オ) める。
<	<技術分野ごとの目標>									
	(ク)技術分野ごとの目標 (エネルギー分野)	A	A	A	A				I-2	
	(ク)技術分野ごとの目標 (産業技術分野)	A	A	A	A				I-2	
	(ク)技術分野ごとの目標 (国際展開支援)	A	A	A	A				I-2	
<	<クレジット取得関連業務>									•
	クレジット取得関連業務	A	В	В						平成2 度から (5) める。
	技術開発マネジメント関連業 務 (70%)	A	A	A						
	技術開発マネジメントの機能 強化等(50%)				A					
	技術分野ごとの目標(2 5%)				A					
2	クレジット取得関連業務 (5%)	A	В	В						
F										1
		1	I	I	1	I	I	1	I	1

[※]重要度を「高」と設定している項目については各評語の横に「○」を付す

難易度を「高」と設定している項目については各評語に下線

		I				_			1 ~ ~ ~ 1	tti. In
	中長期目標(中長期計画)	0.5	0.0		手度評 価		2.0	0.1	項目別 調書No.	備考
		25 年度	2 6 年度	2 7 年度	28 年度	29年度	30年度	31 年度	前音No.	
Ⅱ. 当	と 養務運営の効率化に関する事項(1)			一一尺	一十尺	一十尺	一十尺	一十尺		
	(1)機動的・効率的な組織・	A	A	Α	A				П	
	人員体制									
	(2) 自己改革と外部評価の徹	A	В	Α	В				II	
	(2) 聯星の英級点 しいせも明	A	В	В	В				П	
	(3)職員の意欲向上と能力開 発	A	D	D	D				Ш	
	(4) 業務・システムの最適化	Α	Α	В	Α				П	
	(5)外部能力の活用	А	В	В	В				П	
	(6)省エネルギー及び省資源	Α	Α	Α	Α				П	
	の推進と環境への配慮	Λ	D	D	D				П	
	(7)業務の効率化、役職員の 給与等の水準の適正化	A	В	В	В				"	
	(8) 随意契約の見直しに関す	А	В	В	В				Π	
	る事項、入札・契約の適正									
	化、官民競争入札等の活用、									
	公益法人等に対する支出の適 正化									
	(9) コンプライアンスの推進	Α	В	В	A				П	
	業務運営の効率化(17.	A	В	В	В					
	5 %)									
Ⅲ. 財	<u> </u> 務内容の改善に関する事項(7.5	5%)								
	(1)繰越欠損金の増加の抑制	Α	В	В	В				Ш	
	(2) 自己収入の増加へ向けた	D	D	D	D				Ш	
	(2) 自己収入の増加へ向けた 取組、資産の売却等	В	В	В	В				1111	
	(3) 運営費交付金の効率的活	В	В	В	В				III	
	用の推進									
	() TI A A - North				-					
	(4) 剰余金の適正化	В	В	В	В				Ш	
	└── (5)債務保証経過業務、貸付	В	В	В	В				III	
	経過業務、リスク管理債権適									
	正化									
	(6)年金、基金、共済等の事	Α	В							
	業運営のための資金運用の適									
	正化 (7)関係法人等への支出の適	В	В							
	正化									
	財務内容の改善 (7.5%)	В	В	В	В					
IV. 3	その他の事項(一)									
	_									

堅・中小企 業等の採択 額の割合

1. 当事務及び事業に関	する基本情報		
I - 1	技術開発マネジメントの機能強化等		
関連する政策・施策	_	当該事業実施に係る根拠(個	国立研究開発法人新エネルギー・産業技術総合開発機構法第15条
		別法条文など)	
当該項目の重要度、難易		関連する研究開発評価、政策	0426国立研究開発法人新エネルギー・産業技術総合開発機構一般管理費
度		評価・行政事業レビュー	0432国立研究開発法人新エネルギー・産業技術総合開発機構一般管理費
			(エネルギー需給勘定)

2. 主要な経年データ ① 主な参考指標情報 ②主要なインプット情報(財務情報及び人員に関する情報) 基準値等 27年度 25年度 26年度 28年度 29年度 30年度 3 1 年度 25年度 2 9 年 3 0 年 3 1 年 26年度 27年度 28年度 度 度 ナショナル 5年経過 27.5% 34.5% 22.7% 28.3% プロジェク 時点で 予算額 (千円) 123, 907, 032 153, 598, 478 136, 594, 901 133, 326, 650 トの実用化 25%以上 の内数 の内数 の内数 の内数 達成率 実用化促進 3年経過時 36.0% 31.8% 25.8% 39.5% 事業の実用 点で 30% 決算額(千円) 98, 011, 031 | 136, 812, 173 | 153, 744, 124 | 156, 143, 614 化達成率 以上 の内数 の内数 の内数 の内数 事後評価対 中期目標 100% 100% 100% 90.9% 経常費用(千 98, 259, 557 136, 858, 535 153, 670, 307 | 156, 028, 110 象のナショ 期間終了 の内数 の内数 の内数 円) の内数 ナルプロジ 時におい て8割以 ェクトの評 価が「合 格」の件数 事後評価対 中期目標 84.2% 93.3% 92.3% 81.8% 経常利益(千 3, 786, 034 3, 624, 169 2, 226, 767 1,630,556 象のナショ 期間終了 の内数 円) の内数 の内数 の内数 ナルプロジ 時におい エクトの評 て6割以 価が「優 良」の件数 イノベーシ 中期目標 74.1% 64.5%77.4% 行政サービス 134, 568, 343 | 148, 504, 321 | 156, 427, 389 93, 996, 323 ョンの実現 期間終了 実施コスト(千 の内数 の内数 の内数 の内数 に資する事 時におい て6割以 業の事後評 円) 価が「順 調」の割合 新規採択額 20%以上 29.0% 24.8% 従事人員数 774 の内数 832 の内数 887 の内数 923 の内数 に占める中

注)予算額、決算額は支出額を記載。人件費については共通経費分を除き各業務に配賦した後の金額を記載

I(ア)技術開発マネジメントの機能強化

中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	績等・自己評価	主務大臣による評
			の視点)、指標等	主な業務実績等	自己評価	
					<自己評価> A	評定
に策切関り強び境の業術携効る 確産もはでたク図むて手の企も 連了(にさた 関係の関連では、できれば、大変に関するでは、が社しネ的クジががノて・積す開にでいる。というでは、機マ行産経ネにの研と業すが、大変に、が社しネ的クジががノて・積す開にでいた。というでは、機マ行産経ネにの研と業すが、大変に、が社し、では、大変に、大変には、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に	分発当競ギ献政を力をとエの実能も確施等将影開体もど高にあョな小的る 技の野関た争一す策お強実産一調施をににすの来響発の含、度取るン技・な。こ術い民族は化間政づ日繋ると能始で限れ、ま実業た、、リク図むえい約4を関す推がびのの分のるのイ海公る揮のし費高会しが資クジががノし中業も を実すが、近野で大変のののののののののののののののののののののののののののののののののののの	は般をが工になお化るの外政能に意ま性社得ン活ど度りえ手中のす 術は価に跡(さした)をすす産ギすに、がのタと施大れ検費く大術体含ス図こイで中的 しマ業.)(に以れる技に競、くづ本技、フ調関発でし対もな発中たマながべ要・活 観ジ了)結.述の公をすす産ギすに、がのタと施大れ検費く大術体含ス図こイで中的 しマ業.)(に以れる技に競、くが本技、フ調関発でし対もな発中たマながべ要・活 観ジ了)結.述の公をするる業一べ基日る際一の機限ま証用とき開のめクりとノ重小な たネ終(の1)結.述の公を対すの水腫のに競を産機め機るを施つ、影にでリネが必一なべ用 点メ段(果(1)に果すり連は並の基重争実業能公構と明確不産たネ資軽ト取るの約一も えつ事)に)でりの野業、び解本点力施界や的のと確す確業らジ金減のに。担型企の 、い後(し、)に関するが、といいのが、といいのが、といいのが、といいのが、できばいのが、といいでは、これののが、といいでは、これののが、といいのが、といいでは、これののが、といいでは、これののが、といいのが、といいでは、これののが、これでは、これののが、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは		(1)技術開発マネジメント関連業務 機構が、エネルギー分野をは特別発生と関連業務 産業技術分野全般に関する技術開発の開発の解発をは 業競争力強化へ、政治を関連では、一、大変を 業競争力強化では、大変を 、大変を 、大変を 、大変を 、大変を 、大変を 、大変を 、大変を	<自己評価の根拠>	

1)「ナショナルプロジェクト」(民間企業等のみでは取り組むことが困難な、実用化・事業化までに中長期の期間を要し、かつリスクの高い技術開発関連事業)であって、2)以外のものについては、その特徴・性格を踏まえ、技術開発期間の短期化やリスク回避に決して繋がることがないよう十分留意した上で、事業終了後、5年経過後の時点での実用化達成率(製品化又は上市段階の比率。以下同じ。)を25%以上とすることを目標とし、その達成状況を評価する。	り組むことが正とが、 関本でして、 とがまでして、 といまでして、 を要し、かい事を関系のあった。 を関系のは、 を関系のは、 を関系のは、 を関系のは、 を関系のは、 を関系のは、 を関系のは、 を関系のは、 を関系のは、 をを関系のは、 をををを、 ををのるのでは、 ををのるのでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののでは、 をののは、 ののののののは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 のののののは、 ののでは、 のののののは、 のののののは、 のののののは、 のののののは、 のののののは、 ののののののは、 のののののは、 のののののののののの		ナショナルプロジェクトについては、平成22年度に事業を終了した256事業者のうち、58事業者(22.7%)が実用化を達成した。	
2)「ナショナルプロジェクト」のうち、非連続なイノクト」のうち、非連続なイノベーションの創出を目的として行われる技術開発関連事業であって、特にリスクの高いもの(以下「非連続リスクの高いもの(以下	ト」のうち、非連続なイノベーションの創出を関連事業なイノして行われる技術開発関連事業いまって、特にリスクションにであっ、以下「非連続ナションにの見いては、実用化・事業化の他の技術や用途への波及効果等の技術や用途への波及効果等の		非連続ナショナルプロジェクトの評価 方法を決定し、実施に向けて準備を進めている(平成28年度は評価対象案件なし)。	●平成28年度に選定基準や選定手順を決定し、平成27年度開始プロジェクトから1件、平成28年度開始プロジェクトから2件、平成29年度開始プロジェクトから1件の非連続ナショナルプロジェクトを選定。
3)「実用化促進事業」(実用化・事業化に比較的近い技術の実用化促進を目的とする民間企業等によるテーマ公募型の技術開発関連事業)については、技術開発成果の達成とともに実用化・事業化を一層重視するとの観点から、事業終了後、3年経過後の時点での実用化達成率を30%以上とすることを目標とし、その達成状況を評価する。なお、今後、本事業の対象は中堅・中小・ベンチャー企業に限定することとする。こととする。	化の電子の ・事化に ・事化に ・事化に ・事化に ・事化に ・事化に ・事化に ・事化に ・事の ・事の ・事の ・では ・では ・では ・では ・では ・では ・では ・では		堅・中小・ベンチャー企業に限定した上で、 平成24年度に終了した43件のうち、17件(39.5%)が実用化した。 平成28年度は中堅・中小・ベンチャー 企業を対象とした以下の事業を実施した。 ①中堅・中小企業への橋渡し研究開発促進事業 ②課題解決型福祉用具実用化開発支援事業	る見込みを得た。
チャー企業の育成・支援に 意識的に取り組む観点から、新規採択額に占める中 堅・中小・ベンチャー企業 の採択額の割合を20%以 業の採択額の割合の目標	加えて、イノベーションの 担い手として重要な技術集約 型の中堅・中小・ベンチャー 企業の育成・支援に意識的に 取り組む観点から、中堅・中 小企業への橋渡し研究開発促	_	イノベーションの担い手として重要な技術集約型の中堅・中小・ベンチャー企業の育成・支援への取組として、新規採択額に占める中堅・中小・ベンチャー企業の採択額の割合20%以上を目指し、中小企業への機構の事業の浸透を目的とした「地域版NEDOフォーラム」や出張説明会(キャラバン活動)の開催等、中堅・中小・ベンチャー企業に対する地道なNEDOの	なり、目標を上回る実績を達成。

れを公表するものとする。 ※中堅企業:従業員1,0	小・ベンチャー企業への各 種事業の周知、応募に関す る個別相談等を積極的に 行うとともに、必要に応じ	中堅・中小・ベンチャー企業 への各種事業の周知、応募に 関する個別相談等を積極的に 行うとともに、必要に応じて 中堅・中小・ベンチャー企業 向けの応募枠を設けるなどに	認知度向上の取組を実施。平成28年度の 実績は24.8% (新規採択額264.1 億円のうち中堅・中小企業等の採択額6 5.4億円)であり目標を上回っている。 (参考:補正予算を含まない場合18. 2% (新規採択額242.8億円のうち中 堅・中小企業等の採択額44.1億円))	
	ジ事特巻で施で活に融大にし必大な マし複わ後技題う基含技等制すま工業性く適す得用取合化おて要括運類がた数れ、術が、づめ術をのるたクをや環切るらすりををい実にり用似同りのる効開生既きた開行見ったりをや環切るらすりををい実にり用似同りのる効開生既きた開行見ったりをや環切るらすりををいまですがするに種術と的業るの業業テ、しまりが術術変みも成、、し。各るてるう技引の開にか務こ政務の一必をは上野発をわ、を業野成た度と数、 開続術事り効実が決枠編のなうが促と取まて事互連携の制連に度動 テ進容で今的にい等み理点施の口進のりえ実業に携、最度携、を的 一行が行 な問よにを、化体と口進のりえ実業に携、最度携、を的 一行が行 な問よにを、化体と	大学である。	また、ナショナルプロジェクト及び実用 化促進事業を、技術分野ごとの特性や、文 で場別に選及を取り巻く環境の変化を踏まに、等を 事業間を担めたの最大化を図った。 事業間連携に取り組み、分野連携、融合を 具体的には、機構を図った。 具体的には、機発基盤技術プローンので開発法人の 場所が実施している戦略的インシーン制造プログラム(SIP)「科学「イーンション制造プログラム(SIP)「科学」である が実施している戦略的インシーンが実施している が実施している戦略的インシーンが表演を がまかまが実施している。 が実施している。 が実施している。 が実施している。 が実施している。 が実施している。 がまかまがまかった。 が実施している。 が実施している。 が実施している。 が実施している。 が実施している。 が実施している。 がまかまかまか。 がまからプロジェークトを推進した。	
画(Plan)、実施(Do)、 評価(Check)、更にその結果を反映・実行(Action)させた次の計画、 実施及び評価へとつなげる PDCA(企画-実施-評価-反映・実行)サイクルを深化させ、それら各段階におけるより高度な技術開	トの機能強化 機構がナショナルプロ ジェクト及び実用化・事業 化促進事業を推進するに 当たっては、事業の企画 (Plan)・実施(Do)・ 評価(Check)、更にそ の結果を反映(Actio n)させた次の計画(Pl	の機能強化 機構がナショナルプロジェ クト及び実用化・事業化促っ 事業を推進するに当またっ 実施(Do)、評価(Check)、更にその結果を反映(Do) にtion) させた次の計 (Plan) 及び実施(Do) へと繋げるいわゆるPDCA (企由一実施一実施一次となせ、 高度な技術開発マネジメト	(ア)技術開発マネジメントの機能強化機構がナショナルプロジェクト及び実用化・事業化促進事業を推進するに当たっては、事業の企画(Plan)、実施(Do)、評価(Check)、更にその結果を反映(Action)させた次の計画(Plan)及び実施(Do)へと繋げるいわゆるPDCA(企画ー実施一評価ー反映・実行)サイクルを深化させ、高度な技術開発マネジメントを実践した。具体的には以下のとおり。	

(実証事業を除く。)については、以下の方針の下ででは、以下の方針の下で実施する。ただし、平成26年度までに開始され、平成27年度以降、大幅な見直しを行わないものについては、(i)-2の実証事業と同様に取り扱うものとする。	ジェクト (実証事業を除く。) ナショナルプロジェクト (実証事業を除く。)について は、以下の方針の下で実施す る。ただし、平成26年度ま でに開始され、平成27年度 以降、大幅な見直しを行わないものについては、(i)-2 の実証事業と同様に取り扱う ものとする。	(i) 企画、実施段階 (i) -1 ナショナルプロジェクト(実証事業を除く。) ナショナルプロジェクト(実証事業を除く。) については、以下の通り実施した。ただし、平成26年度までに開始され、平成27年度以降、大幅な見直しを行わないものについては、(i) -2の実証事業と同様に取り扱うものとした。	亚市9.9年度14年6八年の世代前頃17世で	
つ、技術の開発や普及に係 る道筋を踏まえた技術戦 略を策定するとともに、継 続的に改定する。 また、技術戦略研究セン ターは、策定した技術戦略 を基盤として、今後研究す べき領域を特定するとと もに、これを担い得る実施	ト 政他知や外へ分技をある。 一盤域を並考を お文研組極フ等夕定る向最たの 構応 に	びJST等の公的他機関とも連携し産学 官の英知を集め、将来の社会ニーズや国際 的な研究動向及び国内外の研究水準から 見て実施すべき技術に係るテーマに重点 分野化・骨太化を図りつつ、技術の開発や	き、新規ナショナルプロジェクト3事業を 立案するとともに、既存のナショナルプロ ジェクト3事業に活用。	

(注1) 方法論募集(R	(注1)方法論募集(RFI:			
F I : Request for	Request for Information)			
Information)	産学官におけるアイデアや			
産学官におけるアイデ	研究状況を把握するため、技			
アや研究状況を把握する	術開発の様々な方法論を広く			
ため、技術開発の様々な	募集する。			
方法論を広く募集する。	(注2) ワークショップ			
(注2) ワークショップ	技術開発の対象技術や実施			
技術開発の対象技術や	者の候補・水準・可能性等の			
実施者の候補・水準・可	把握や発掘のため、産学官の			
能性等の把握や発掘のた	関係者を一同に集め、大学や			
め、産学官の関係者を一	公的研究機関と産業界とが基			
同に集め、大学や公的研	礎研究も含め具体的技術課題			
究機関と産業界とが基礎	等について双方向で話し合			
研究も含め具体的技術課	い、議論を行う。			
題等について双方向で話	(注3) 先導調査			
し合い、議論を行う。	国内外における、①学会発			
(注3) 先導調査	表の内容、②論文動向・特許			
国内外における、①学	動向、③産業界の研究開発動			
会発表の内容、②論文動	向、④当該技術による経済・			
向・特許動向、③産業界	社会インパクト、⑤当該技術			
の研究開発動向、④当該	普及のための方策等を把握す			
技術による経済・社会インパスなど	るため、技術戦略及びプロジ			
ンパクト、⑤当該技術普	ェクト構想の策定の際に調査			
及のための方策等を把握	を行う。			
するため、技術戦略及び	(注4) 先導研究			
プロジェクト構想の策定	候補となる技術課題の現状			
の際に調査を行う。	水準、今後の発展可能性及び			
(注4) 先導研究	限界を確認するとともに、競			
候補となる技術課題の	合技術・代替技術の把握のた			
現状水準、今後の発展可	め、研究者等への委託により			
能性及び限界を確認する	予備的な研究を行う。			
とともに、競合技術・代				
替技術の把握のため、研				
究者等への委託により予				
備的な研究を行う。				
これらの取組を通じ、	これらの取組を通じ、産業	_	これらの取組を通じ、産業界、学術界等	
産業界、学術界等との情	界、学術界等との情報交換な		との情報交換などにより構築した外部の	
報交換等により構築した	どにより構築した外部の専門		専門家・有識者とのネットワークを深化・	
外部の専門家・有識者と	家・有識者とのネットワーク		拡大し、機構の技術開発マネジメントに活	
のネットワークを深化、	家・有職者との不ットワーク を深化・拡大し、機構の技術		用した。特に、ワークショップについては	
拡大し、機構の技術開発	開発マネジメントに活用す		35回開催した。	
マネジメントに活用す	る。特に、ワークショップに			
る。	ついては20回以上開催す			
	る。			

(b) PMの選定 (b) PMの選定 (b) PMの選定 ● PM指名は所属部長が PMに書面を手交 (b) PMの選定 して行う、といったNEDO内のプロセス NEDOは、プロジェク 機構は、プロジェクト構 機構は、プロジェクト構想 PM指名プロセスを起案決裁とし、所属 が策定された段階で、プロジ ト構想が策定された段階 想が策定された段階で、プ 部長から書面で手交する方式に改善。併せ を明確化。 で、プロジェクト毎にPM ロジェクト毎にPMを選 ェクト毎にプロジェクト・マ て、PM指名に関するマニュアルも整備し を選定する。 定する。その際、プロジェ ネジャー(以下「PM」とい た。また、「NEDO研究開発マネジメン クトの規模や特性に応じ う。)を選定する。その際、プ PMは、基本計画の策定 トガイドライン」「アクションチェックリ (下記 c.)、実施体制の構 て、以下に示す資質やこれ ロジェクトの規模や特性に応 スト」「PMの行動ガイド」を体系的に再 築(下記 d.)、プロジェク らを活用したマネジメン じて、以下に示す資質やこれ 構築した「NEDO研究開発マネジメント トの経験を有する人材を トの実施(下記 e.) 等、プ らを活用したマネジメントの ガイドライン新訂第1版|を作成しリリー ロジェクトの進行全体を企 企業・大学や機構内から選 経験を有する人材を企業・大 スした。 平成28年度末現在のPMの内訳は、民 画・管理するものとし、そ 定する。 学や機構内から選定する。 の任務の実施に当たって必 ・高い技術的知見 高い技術的知見 間出向が31名、プロパーが18名(うち 要となる資金配分や技術開 ・産学官の専門家との幅広 ・産学官の専門家との幅広い 中途採用8名)、官庁出向が3名となって ネットワーク いる。 発内容の見直し、実施体制 いネットワーク プロジェクト関係者との の変更の権限と裁量を有す プロジェクト関係者との十 るものとする。 十分なコミュニケーシ 分なコミュニケーション能力 このため、NEDOは、 ョン能力 ・目標達成に導く意欲及びリ PMの任務・責任・権限等 ・目標達成に導く意欲及び ーダーシップ に係る規程を整備するとと リーダーシップ また、機構は、各PMに個別 もに、PMの評価やガバナ また、機構は、各PMに プロジェクトの内容に対応し ンスに関する仕組みを整備 個別プロジェクトの内容 た任務・責任を指示する。 するものとする。 に対応した任務・責任を指 PMは、基本計画の策定(下 記(c))、実施体制の構築(下 示する。 PMは、基本計画の策定 記(d))、プロジェクトの実 施 (下記 (e)) 等、プロジェ (下記(c))、実施体制の構 築 (下記(d))、プロジェク クトの進行全体を企画・管理 トの実施 (下記(e)) 等、プ し、そのプロジェクトに求め ロジェクトの進行全体を られる技術的成果及び政策的 企画・管理し、そのプロジ | 効果を最大化することを念頭 ェクトに求められる技術 に任務を遂行する。 的成果及び政策的効果を PMは、その任務の遂行に 当たって必要となる資金配分 最大化することを念頭に 任務を遂行する。 や技術開発内容の見直し、実 PMは、その任務の遂行 施体制の変更の権限と裁量を に当たって必要となる資|有するものとする。 金配分や技術開発内容の このため、機構は、PMの任 見直し、実施体制の変更の|務・責任・権限等に係る規程、 権限と裁量を有するもの | 行動規範等を整備するととも とする。 に、PMの評価やガバナンス このため、機構は、PM に関する仕組みを整備する。 の任務・責任・権限等に係 さらに、研究開発プロジェク る規程、行動規範等を整備 ト・マネジメントガイドライ するとともに、PMの評価 ン、アクションチェックリス やガバナンスに関する仕 | ト、PMの行動ガイドなど、 組みを整備する。 複数のプロジェクト・マネジ メントに関連するガイドライ ン等を整理・統合し、PMの 権限と裁量を明確にする。 (c) 基本計画の策定 (c) 基本計画の策定 (c) 基本計画の策定 (c) 基本計画の策定 PMは、技術戦略及びプ PMは、技術戦略及びプ PMは、技術戦略及びプロ PMは、技術戦略及びプロジェクト構想 ロジェクト構想を踏まえ、 ジェクト構想を踏まえ、①技 ロジェクト構想を踏まえ、 を踏まえ、①技術開発の目標、②実施期間、 実施者の発掘等を行い、プ ①技術開発の目標、②実施 術開発の目標、②実施期間、 想定される金額規模、③求められるフォー ロジェクト終了時や途中時 期間、想定される金額規 想定される金額規模、③求め メーション(実施体制)の概要、④出口シ ナリオ及び⑤ステージゲートの概要を明 点での達成目標を明確に示 模、③求められるフォーメ られるフォーメーション(実 した基本計画を策定するも 確にしたプロジェクトの基本計画(原案) ーション(実施体制)の概 施体制)の概要、④出口シナ を作成した。 のとする。達成目標につい 要、④出口シナリオ及び⑤ | リオ及び⑤ステージゲート ては、実用化・事業化に伴 ステージゲート(注5)の (注5)の概要を明確にした また、この基本計画(原案)を基に、実 う市場創出効果や雇用創造 概要を明確にしたプロジ プロジェクトの基本計画(原 施者の発掘等を行うとともに、必要に応じ 効果のみならず、広範な産 ェクトの基本計画 (原案) 案)を作成する。 て、方法論募集、ワークショップ、先導調 また、この基本計画(原案) 査及び先導研究も併せて行い、プロジェク 業への波及効果、新産業の を作成する。

ト終了時や途中時点での達成目標を明確

に示した基本計画を策定した。その際、達

を基に、実施者の発掘等を行

創出も含めた中長期的視点

からの我が国産業競争力強

また、この基本計画(原

案)を基に、実施者の発掘 │ うとともに、必要に応じて、

化への貢献、内外のエネル ギー・環境問題を始めとす る社会的課題の解決への貢 献等の面からインパクトの 大きいチャレンジングなも のを設定する。

その際、産業界・学術界 等の外部の専門家の知見や 国民からの意見を幅広く収 集するとともに、技術・市 場動向調査や知財・標準化 戦略策定等の準備の綿密さ に、より重点を置き、事前 評価を行うこととする。

応じて、方法論募集、ワー クショップ、先導調査及び 先導研究も併せて行い、プ ロジェクト終了時や途中 時点での達成目標を明確 に示した基本計画を策定 する。その際、達成目標に ついては、実用化・事業化 に伴う市場創出効果や雇 用創造効果のみならず、広 範な産業への波及効果、新 ては、むしろ、その時点で の定量的目標の達成度を一留意して、設定する。 単に評価するのではなく 場合もあることに留意し て、設定する。

また、産業界・学術界等 の外部の専門家の知見や 収集するとともに、技術・ 市場動向調査や知財・標準 化戦略策定等の準備の綿 | 密さに、より重点を置き、 事前評価を行うこととす

(注5) ステージゲート きない初期のステージで は複数の選択肢を並行的 に試み、次のステージに移 行する際、評価を行うゲー トを設け、技術の取捨選択 や技術の融合、必要な実施 体制の見直し等を柔軟に 図る手法。

等を行うとともに、必要に | 方法論募集、ワークショップ、 先導調査及び先導研究も併せ て行い、プロジェクト終了時 や途中時点での達成目標を明 確に示した基本計画を策定す る。その際、達成目標につい ては、実用化・事業化に伴う 市場創出効果や雇用創造効果 のみならず、広範な産業への 波及効果、新産業の創出も含 めた中長期的視点からの我が 国産業競争力強化への貢献、 産業の創出も含めた中長 内外のエネルギー・環境問題 期的視点からの我が国産 を始めとする社会的課題の解 業競争力強化への貢献、内 | 決への貢献等の面からインパ 外のエネルギー・環境問題 | クトの大きいチャレンジング を始めとする社会的課題 なものを設定する。なお、達 の解決への貢献等の面か 成目標については、終了時に らインパクトの大きいチ は極力定量的なものとする ャレンジングなものを設しが、特に途中時点のものにつ 定する。なお、達成目標にいては、むしろ、その時点で ついては、終了時には極力しの定量的目標の達成度を単に 定量的なものとするが、特人評価するのではなく技術の潜 に途中時点のものについ 在的可能性を含め評価するこ とが適切な場合もあることに

また、産業界・学術界等の 技術の潜在的可能性を含し外部の専門家の知見や国民か め評価することが適切な┃らの意見を幅広く収集すると ともに、技術・市場動向調査 や知財・標準化戦略策定等の 準備の綿密さに、より重点を 置き、予算プロセス開始前に 国民からの意見を幅広く「事前評価を行うこととする。

(注5) ステージゲート プロジェクト期間を複数の ステージに分割し、採用する べき技術が確定できない初期 のステージでは複数の選択肢 を並行的に試み、次のステー ジに移行する際、評価を行う プロジェクト期間を複 | ゲートを設け、技術の取捨選 数のステージに分割し、採一択や技術の融合、必要な実施 用するべき技術が確定で | 体制の見直し等を柔軟に図る

成目標については、実用化・事業化に伴う 市場創出効果や雇用創造効果のみならず、 広範な産業への波及効果、新産業の創出も 含めた中長期的視点からの我が国産業競 争力強化への貢献、内外のエネルギー・環 境問題を始めとする社会的課題の解決へ の貢献等の面からインパクトの大きいチ ャレンジングなものを設定した。

また、産業界・学術界等の外部の専門家 の知見や国民からの意見を幅広く収集す るとともに、技術・市場動向調査や知財・ 標準化戦略策定等の準備の綿密さにより 重点を置き、予算プロセス開始前にあわせ て事前評価を実施した。

(d) 実施体制の構築

PMは、策定した基本計 画を公表し、事業実施者を 早期に公募する。

PMは、公募に対する応 募内容を踏まえながら、実 施体制 (案)を策定する。

PMは、策定した実施体 制(案)について、NEDO 外部の専門家・有識者等か らなる検討委員会の意見を 踏まえ、実施体制を決定す

その際、決定した実施体 制の公表や実施体制に含ま れなかった者に対する理由 の通知を行う等、実施体制 の決定過程の透明性を確保 することとする。また、公 募から事業開始までの期間 を事業毎に設定し、事務の 合理化・迅速化を図ること とする。

(d) 実施体制の構築

PMは、策定した基本計 画を公表し、事業実施者を 早期に公募する。

PMは、公募に対する応 募内容を踏まえながら、実 施体制(案)を策定する。

PMは、策定した実施体 制(案)について、機構外 部の専門家・有識者等から なる検討委員会の意見を 踏まえ、実施体制を決定す る。その際、PMの判断に より、数多くの提案の一次 スクリーニングなどに部 | (注6)を活用する。

なお、特定の実施者の採 択による利益相反を未然 に防止するため、必要に応 じ上記の検討委員会等に │制(案)を策定する。 よる確認体制を設ける。

また、決定した実施体制 の公表や実施体制に含ま れなかった者に対する理 由の通知を行う等、実施体 制の決定過程の透明性を に、十分な審査期間と体制 に確保することを最大限 留意することを前提に、応 募総数が多い場合等、特段 の事情がある場合を除き、 公募から事業開始までの 期間を事業毎に設定し、事 務の合理化・迅速化を図る | こととする。また、事業毎 に公募から採択決定まで の期間を公募要領に明記 し公募を行う。ステージゲ ート方式等により、途中段 階での実施内容の見直し 領に明記し公募を行う。

施主体間が競争関係にあ る場合のように、設置が適 切でない場合を除き、指導 力と先見性を有するプロ ジェクトリーダーを実施 主体の中から選定、設置 し、プロジェクトリーダー が、PMを含めた機構内部 との明確な役割分担に基 づき、機構と連携してプロ ジェクトを推進する。

(注6)ピア・レビュー方 式

産業界、学術界等の外部 の専門家・有識者を活用し (d) 実施体制の構築

PMは、策定した基本計画 を公表し、事業実施者を早期 に公募する。その際、新規事 業のうち9割以上の事業につ いて、政府予算の成立を条件 として、実施年度の前年度の 3月までに公募を開始する。 公募は、ホームページ等のメ ディアの最大限の活用等によ り採択基準を公表しつつ実施 する。また、公募に際しては、 機構のホームページ上に、公 募開始の1ヶ月前(緊急的に 必要なものであって事前の周 分的にピア・レビュー方式 | 知が不可能なものを除く。) に は公募に係る事前の周知を行

> PMは、公募に対する応募 内容を踏まえながら、実施体

PMは、策定した実施体制 (案) について、機構外部の 専門家・有識者等からなる検 討委員会の意見を踏まえ、実 施体制を決定する。その際、 PMの判断により、数多くの 確保することとする。さら│提案の一次スクリーニングな どに部分的にピア・レビュー 構築に必要な期間を適切 方式 (注6) を活用する。

> なお、特定の実施者の採択 による利益相反を未然に防止 するため、必要に応じ上記の 検討委員会等による確認体制 を設ける。

また、決定した実施体制の 公表や実施体制に含まれなか った者に対する理由の通知を 行う等、実施体制の決定過程 の透明性を確保することとす る。さらに、十分な審査期間 と体制構築に必要な期間を適 切に確保することを最大限留 や中止がある旨を公募要 | 意することを前提に、応募総 数が多い場合等、特段の事情 プロジェクト内の各実 | がある場合を除き、公募から 事業開始までの期間を事業毎 に設定し、事務の合理化・迅 速化を図ることとする。また、 事業毎に公募から採択決定ま での期間を公募要領に明記し 公募を行う。ステージゲート 方式等により、途中段階での 実施内容の見直しや中止があ る旨を公募要領に明記し公募 を行う。

> プロジェクト内の各実施主 体間が競争関係にある場合の ように、設置が適切でない場 合を除き、指導力と先見性を 有するプロジェクトリーダー を実施主体の中から選定、設

(d) 実施体制の構築

PMは、策定した基本計画を公表し、事 業実施者を早期に公募を行った。公募は、 ホームページ等のメディアの最大限の活 用等により採択基準を公表しつつ実施し た。また、公募に際しては、機構のホーム ページ上に、公募開始の1ヶ月前 (緊急的 に必要なものであって事前の周知が不可 能なものを除く。)には公募に係る事前の 周知を行った。

PMは、公募に対する応募内容を踏まえ ながら、実施体制(案)を策定し、策定し た実施体制(案)について、機構外部の専 門家・有識者等からなる検討委員会の意見 を踏まえ、実施体制を決定した。

また、決定した実施体制の公表や実施体 制に含まれなかった者に対する理由の通 知を行う等、実施体制の決定過程の透明性 を確保した。さらに、十分な審査期間と体 制構築に必要な期間を適切に確保するこ とを最大限留意することを前提に、応募総 数が多い場合等、特段の事情がある場合を 除き、公募から事業開始までの期間を事業 毎に設定し、公募要領に明記し公募を行っ た。また、ステージゲート方式等により、 途中段階での実施内容の見直しや中止が ある旨を公募要領に明記した。

プロジェクト内の各実施主体間が競争 関係にある場合のように、設置が適切でな い場合を除き、指導力と先見性を有するプ ロジェクトリーダーを実施主体の中から 選定、設置し、プロジェクトリーダーが、 PMを含めた機構内部との明確な役割分 担に基づき、機構と連携してプロジェクト を推進した。

	と相応事のウォレー	円1 プレバ お1 11 12	I	T	T	
	た提案書の審査方式。	置し、プロジェクトリーダーが、PMを含めた機構内部との明確な役割分担に基づき、機構と連携してプロジェクトを推進する。				
(e) プロジェクトの実施	(e) プロジェクトの実施	(注6)ピア・レビュー方式 産業界、学術界等の外部の 専門家・有識者を活用した提 案書の審査方式。 (e)プロジェクトの実施	_	(e)プロジェクトの実施	● PMに求められる機能や役割、過去の事	
PMは、事業全体の進捗を把握・管理し、その進捗状況を踏まえて、資金配分や技術開発内容の見直し、実施体制の変更を検討・実施するものとする。	PMは、プロジェクトの 実施期間中、技術戦活用・ 大子の 大子の 大子の 大子の 大子の 大子の 大子の 大子の 大子の 大子の	PMは、スターのでは、 では、 では、 では、 では、 では、 では、 では、 では、 では、		「NEDO研究開発マネジメントガイドライン」「アクションチェックリスト」「PMの行動ガイド」を体系的に再構築した「NEDO研究開発マネジメントガイドライン新訂第1版」を作成、リリースした。	例、プロジェクトのライフサイクルに沿っ たチェックリストやマニュアル、関連規程 等を記したガイドライン「NEDO研究開	
導入 ナショサルプロジェ、クターンの実施段期間を複数用いてのでででででででででででででででででででででででででででででででででででで	導入 ナショナルプロジェクトの実施段階において、 「ステージゲート方式」を 原則として活用するものとする。	入 ナショナルプロジェクトの 実施段階において、「ステージ ゲート方式」を原則として活 用するものとする。		平成28年度から開始した研究開発ナショナルプロジェクト8件のうち、「革新型蓄電池実用化促進基盤技術開発」の基本計画において、個別の研究開発テーマについてステージゲート方式を行い、技術の取捨選択や技術の融合、必要な実施体制の見直し等を柔軟に図る旨を記載した。他、「アジア省エネルギー型資源循環制度導入実証事業」「IoT推進のための高効率次世代レーザー技術開発」の3件においてもステージゲート方式の実施を記載した。		
(g)アワード方式の導入 ナショナルプロジェと降 の企画段階又は実施段でにおいて、挑戦的なテーやに 対し広い範囲から技術でに対し広い範囲からでであり込んでいるででででででいる。 点から、優れた成果を上げたないではいるででででででであります。 た案件に対して懸賞といるにないではないででででである。 とでイノベーションをはする「アワード方式」を	マに対し広い範囲から技術やアイデアを取り込んでアを取り込んでいく観点から、優れた成果を上げた案件に対してストを設けることでイノアルを加速する「アプード方式」をナショナルプ	企画段階又は実施段階において、挑戦的なテーマに対し広い範囲から技術やアイデアを取り込んでいく観点から、優れた成果を上げた案件に対し	_	(g)アワード方式の導入 ナショナルプロジェクトの企画段階又 は実施段階において、挑戦的なテーマに対 し広い範囲から技術やアイデアを取り込 んでいく観点から、優れた成果を上げた案 件に対して懸賞金を支払うコンテストを 設けることでイノベーションを加速する 「アワード方式」を実施するため、具体的 な規程を整備した。		

	ものとする。	I		I		
(i) -2 実証事業及び	(i)-2 実証事業及び	(i)-2 実証事業及び実	_	(i)-2 実証事業及び実用化促進事業		
実用化促進事業	実用化促進事業	用化促進事業		実証事業及び実用化促進事業について		
実証事業及び実用化促進	実証事業及び実用化促			は、以下のとおり実施した。		
		業については、以下の方針の		なお、平成26年度までに開始され、平		
針の下で実施する。	方針の下で実施する。	下で実施する。		成27年度以降、大幅な見直しを行わない		
如り下く天地する。		~ C		ナショナルプロジェクトも同様に取り扱		
		れ、平成27年度以降、大幅		うものとした。		
	降、大幅な見直しを行わな					
		ルプロジェクトも同様に取り				
		扱うものとする。				
	とする。					
(a) 実証事業に係る基本計	(a) 実証事業に係る基本計	(a) 実証事業に係る基本計画	_	(a) 実証事業に係る基本計画の策定等		
画の策定等	画の策定等	の策定等		国際的な技術開発動向、我が国産業界の		
実証事業については、国	国際的な技術開発動向、	国際的な技術開発動向、我		当該技術分野への取組状況や国際競争力		
	我が国産業界の当該技術	が国産業界の当該技術分野へ		の状況、エネルギー需給の動向、当該技術		
色ない技術に係るテーマを		の取組状況や国際競争力の状		により実現される新市場、新商品による我		
中心に推進するとともに、	競争力の状況、エネルギー	況、エネルギー需給の動向、		が国国民経済への貢献の程度、産業技術政		
新エネルギー関連の技術分	需給の動向、当該技術によ	当該技術により実現される新		策やエネルギー、環境政策の動向、国際貢		
野など、重点分野化・骨太	り実現される新市場、新商	市場、新商品による我が国国		献の可能性等を十分に踏まえつつ、適切な		
				1		
化を図るものとする。	品による我が国国民経済	民経済への貢献の程度、産業		事業の企画立案、実施体制の構築を図っ		
その際、上記の実用化達		技術政策やエネルギー、環境		t.		
	政策やエネルギー、環境政	政策の動向、国際貢献の可能		具体的には、実証事業については、国際		
にも、NEDOは政府と一	策の動向、国際貢献の可能	性等を十分に踏まえつつ、適		的競争水準から見て遜色のない技術に係		
層の連携の下、一体となっ	性等を十分に踏まえつつ、	切な事業の企画立案、実施体		るテーマを中心に推進するとともに、新工		
て事業の企画立案等に参画	適切な事業の企画立案、実	制の構築を図るものとする。		ネルギー関連の技術分野等、重点分野化・		
することとする。	施体制の構築を図るもの	具体的には、実証事業につ		骨太化を図った。その際、上記の実用化達		
また、事業毎に、事業終	とする。	いては、国際的競争水準から		成率に係る目標達成のためにも、機構は政		
了時や中間時点での達成目	具体的には、実証事業に			府と一層の連携の下、一体となって事業の		
標を定量的かつ明確に示し	ついては、国際的競争水準	ーマを中心に推進するととも		企画立案等に参画した。また、広範な視点		
た基本計画を策定するもの	から見て遜色のない技術	に、新エネルギー関連の技術		から社会、産業界のニーズに対応するた		
とする。	に係るテーマを中心に推	分野など、重点分野化・骨太		め、大学、公的研究機関の研究者等が有す		
∠ 9 ∅°						
	進するとともに、新エネル	化を図るものとする。その際、		る有望な技術シーズの発掘も行った。		
	ギー関連の技術分野など、	上記の実用化達成率に係る目				
	重点分野化・骨太化を図る	標達成のためにも、機構は政				
	ものとする。その際、上記					
	の実用化達成率に係る目	なって事業の企画立案等に参				
	標達成のためにも、機構は	画する。また、広範な視点か				
	政府と一層の連携の下、一	ら社会、産業界のニーズに対				
		応するため、大学、公的研究				
	案等に参画する。また、広	機関の研究者等が有する有望				
	範な視点から社会、産業界	な技術シーズの発掘も行う。				
	のニーズに対応するため、	は技術な パツ光堀の口力。				
	大学、公的研究機関の研究					
	者等が有する有望な技術					
	シーズの発掘も行う。	7 0 11/10 11/10 0 0 0 0 0 0 0 0 0 0 0 0 0		[▲上世イ・1、パックラック・1・1・1	
	S	その際、我が国が、2050	_	「エネルギー・環境新技術先導プログラ	●未踏チャレンジ2050のスキームの構	
		年にエネルギーを起源とする		ム」については、平成26年度に新規採択	築に向けた検討を開始。JSTと定期的な	
		温室効果ガスの半減等、エネ		し平成27年度のステージゲートを通過	連絡会を開催し、連携体制を構築。	
		ルギー・環境分野の中長期的		した16件、平成27年度に新規採択し平		
		な課題を解決していくために		成28年度のステージゲートを通過した		
		必要な、省エネルギー・新工		14件及び平成28年度に新規採択した		
		ネルギー・CO2 削減等のエ		12件を合わせた、42件の先導研究を実		
		ネルギー・環境分野における、		施。また、過去に採択したテーマのうち、		
		2030年以降の実用化を見		一元。また、過去に休休したアーマのアら、 平成28年度に14件がナショナルプロ		
		据えた従来の発想によらない		ジェクトのテーマ化決定。		
		革新的な技術の開発や新しい		さらに、平成28年度は、2050年頃		
		システムの原石を発掘し、将		を見据えた温室効果ガスの抜本的な排出		
		来の国家プロジェクト化への		削減を実現する革新的な技術・システムを		
		道筋をつけることを目指す		対象とした「未踏チャレンジ2050」の		
		「エネルギー・環境新技術先		スキーム構築に向けた検討を開始。		

		導プログラム」を実施する。 平成28年度は、新たに研究 開発を開始するテーマを採択 し、実施するとともに、継続 分のテーマの研究開発を実施 する。		
の貢献、内外のエネルギー・ 環境問題を始めとする社会 的課題の解決への貢献(い わゆる「社会実装」の程度)、 費用対効果などの観点か ら、事前評価を行うことと する。	の外部の下、特別の大学の外部の下、場別の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の	果が見込まれるかどうかの費用対効果等の観点も含めた事前評価を実施する。	平成29年度新規事業4件について、平成28年7月11日及び12月5日の研究評価委員会において外部事前評価を実施し、その結果を公表した。また、評価結果は、新規基本計画策定に反映した。	
	見(パブリックコメン反限として、アリックコメン反便及本 とりまたののでは、本でのでは、本でののでは、本でのでは、本でのでは、本でのでは、本でのでは、本でのでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は	画国術見の換意1事をる 点明をる 期視期ず5業3で変の動や専及見回業規。基で確明。基間点中柔年に年の下外れの意集ンさ内策 終的メの 術期、らすす画間がとい外れの意集ンさ内策 終的メの 術期、らすす画間を策調業家広パ上目す 計最記に でて必標適のは途標 まにりとうのしたが見しいとを標計 、を出す め、に間に間基してのた外見しいとで表 業量イも 技長じと定要計中的に、後知部交たを、等す 時つジす 発な3れ。事、点明を	事前評価の後、実施することとなった 4件全てについて、外部の専門ッククラックを 4件全で高見交換結果やパブリップロローンで 表見を反映し、プロローンで 2010年であり、 2010年で 2010年	
(b)公募 円滑かつ迅速な事業実施を図るため、客観的な採択 基準を策定・公表し、早期 に公募を開始することとする。	(b)公募 基本計画策定後、円滑か 可迅速な事業実施、推進を 図るため、極力多くの事業 について、政府予算の成立 を条件として、実施年度の 前年度の3月までに公募 を開始する。公募は、ホー	(b)公募 基本計画策定後、円滑かつ 迅速な事業実施、推進を図る ため、新規事業のうち9割以 上の事業について、政府予算 の成立を条件として、実施年 度の前年度の3月までに公募 を開始する。公募は、ホーム ページ等のメディアの最大限	(b) 公募 新規研究開発プロジェクトの基本計画 策定において、技術戦略を策定する過程で 収集した技術・市場動向の情報を活用する ことにより、昨年度までのプロセスに比 べ、達成目標の設定及び実施方法に関する 検討・検証が深化するとともに、公募を行った事業5件すべてについては、公募スケ ジュールの大幅な前倒し(前年度末までの	

最大限の活用等により	採│の活用等により採択基準を公	新規プロジェクトの公募開始率は平成2	
する。また、公募に際し は、機構のホームページ に、公募開始の1ヶ月	で あって事前の周知が不可能な 可 ものを除く。) には公募に係る 公 事前の周知を行う。	6年度約60%に対し、平成27、28年度平均で約94%に向上)を実現するなどの効果を創出した。また、公募を行った11件全て公募開始の1ヶ月前には事前周知を行った。	
利便にも配慮し、地方を含む公募説明会の一層の充実を図るとともに、採択件数の少ない事業を除き、制度運用状況等を踏まえつつ、年度の枠にとらわれない随時の応募相談受付と年間複数の採択を行うものとする。	便は、地方の提案者の利便にも 配慮し、地方を含む公募説明 会の一層の充実を図る。また、 事業運用の状況や予算状況も 踏まえつつ、年度の枠にとら われない随時の応募相談受付 と2回以上の採択を行う。	実用化促進事業においては、地方の提案者の利便にも配慮し、地方を含む公募説明会の一層の充実を図った。具体的には、「平成28年度中堅・中小企業への橋渡し研究開発促進事業」においては、地方の規案崎、和剛便にも配慮し、全国13ヶ所(川崎、札幌、仙台、さいたま、名古屋、金崎、和歌山、広島、高松、福岡、、東題解決型福祉用具実用化開発支援事業においては、地方からの提案者も説ができるよう川崎、大阪でそれぞいと、地方からの提案者も説ができるよう川崎、大阪でそれぞれと回、仙台でも公募説明会を行った。なお、「中堅・中小企業への橋渡し研究開発促進事業」においては平成28年度中公募を2回実施した。	
(c) 選定・採択 事業実施審等の採択基準 たっよう等等が経現基準 たっよう等では、、NEDO等等者 のの別、学育、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育識、YEDOの別、学育、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDOの別、YEDON YEDON YED YEDON YEDON YED YEDON YED YEDON YED YEDON YED	形等と観づをつに・分・業係担企最切を者機すとす選た制なこな実産ものに、定案を実施している。という。というでは、に加の協力、最近のででである。というでは、に加の協力、最ないに対しるののででである。というでは、に加の協力、最ないに対して、大学をでいるが、は、に加の協力、最ないに対しるのででは、に加の協力、して、大学を工作しる。の学識をでは、に加の協力、最ないででででは、に加の協力で、切う間が真能しるの業な門とされて、に加の協力、最ないででである。といば、大学の大学の大学の大学をでいる。といば、大学の大学のでは、大学の大学の大学の大学の大学をでいる。といば、大学の大学をでいる。といば、大学の大学をでは、大学の大学をでいる。といば、大学の大学をでいる。といば、大学の大学をは、大学の大学をは、大学の大学をは、大学の大学をは、大学をは、大学をは、大学をは、大学をは、大学をは、大学をは、大学をは、	(c)選定、採択 実証事業については、産業界・学術界等の外部の専門家・有識者から構成される委員会を開催し、客観的な審査・採択基準に基づく公正な選定、採択審査を実施した。 選定、採択にあたっては、プロジェクト終了後の追跡調査を通じて得られたデータを用いて、これまでの実用化・事業化に係る実績を十分踏まえた参加企業の選定・採択を行い、適切な技術開発体制の構築を行うべく実施者の決定を行った。	

いても、その点を一定程度評価する。			
また、実用化促進事業については、事業実施者の経営能力を審査過程で重短視するとともに、主教的短時間で成場到に高い市場別は、名が長さいた、早期にの効果を行う短期間の高いの高いの高いの高いの高いの高いの高いの高いの高いの高いの高いの高いの高いの	短知を知る。 短期を対している。 を実している。 を実している。 を実している。 を実している。 を表している。 をましてい	実用化化・東京 は、たっことで、大きない。 実用化・東京では、たっことで、大きない。 実性の変素を指している。 実性のできなが、は、ないのででは、は、ないのでででは、は、ないのでででは、ないのででは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、は、でいて、でいないでは、でいて、いいでは、でいて、いいでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないでは、でいないないでは、でいないないでは、でいないないでは、でいないないでは、でいないないでは、でいないないでは、でいないないでは、でいないないでは、でいないないないでは、でいないないないでは、ないないないないないないないでは、ないないないないないないないないないないないないないないないないないないない	
選定結果は公開し、不採 択案件応募者に対する明 確な理由の通知を行う。十 分な審査期間を確保する ことに最大限留意の上、応	案件応募者に対する明確な理 由の通知を行う。十分な審査 期間を確保することに最大限 留意の上、応募総数が多い場	平成28年度に行った公募に対し選定 結果を機構のホームページ上で公開した。 また、不採択案件応募者に対しては、明確 な理由を附して、結果の通知を行った。 平成28年度の研究開発プロジェクト	
募総数が多い場合等、特別の事情がある場合を除き、公募締切から採択決定までの期間をそれぞれ以下の日数とすることにより、	合等、特段の事情がある場合 を除き、公募締切から採択決 定までの期間をそれぞれ以下 の日数とすることにより、事	等の受託者・交付先の採択(全45件)については、条件付き採択等を受けた企業側との実施内容・技術要件・研究体制等の調整、確認に時間を要した案件(7件)を除き、事業区分毎に掲げる公募締切から採択	

	事務の合理化、迅速化を図	• 実証事業:原則45日以內	決定までの目標期間以内で採択決定を行	
	る。	(ただし、エネルギー等関連	一 った。(以下内訳)	
	• 実証事業:原則45日以	業務の実証業務等:原則60	・ナショナルプロジェクトについては、期	
	内	日以内)	間内で採択決定を行った事業は37件	
	(ただし、エネルギー等関		中31件(83.8%)	
	連業務の実証業務等:原則	日以内	・エネルギー等関連業務の実証業務等に	
	60日以内)		ついては、期間内で採択決定を行った事	
	・実用化促進事業:原則7		業は5件中5件(100%)、	
	0日以内		・実用化促進事業については、期間内で採	
			択決定を行った事業は3件中2件(6	
			6. 7%))	
(ii)評価(Check)/	(ii)評価/反映・実行	(ii) 評価/反映・実行	- (ii) 評価/反映・実行	
		個々の事業に係る中間評	個々の事業に係る中間評価、事後評価及	
反映・実行 (Action)				
		価、事後評価及び追跡評価に	び追跡評価については、産業界、学術界等	
		ついては、産業界、学術界等	の外部の専門家・有識者を活用し厳格に実	
び追跡評価)については、		の外部の専門家・有識者を活	施した。また、これらの評価結果から得ら	
外部の専門家・有識者を活	識者を活用し厳格に行う	用し厳格に行うものとする。	れた、技術開発マネジメントに係る多くの	
用し厳格に行うものとす	ものとする。また、これら	また、これらの評価結果から	知見、教訓、良好事例等を蓄積し取りまと	
3.	の評価結果から得られた、	得られた、技術開発マネジメ	め、機構内で共有することにより、マネジ	
	技術開発マネジメントに		メント機能全体の改善・強化に反映を行っ	
から得られた、技術開発マ			た。さらに、各評価結果については、技術	
ネジメントに係る多くの知		より、マネジメント機能全体	情報等の流出等の観点に配慮しつつ、機構	
		の改善・強化に反映させる。	ホームページ上で公表を行った。	
することにより、マネジメ				
ント機能全体の改善・強化	せる。さらに、各評価結果	は、技術情報等の流出等の観		
に反映させることとする。	については、技術情報等の	点に配慮しつつ、可能な範囲		
	流出等の観点に配慮しつ	で公表するものとする。		
いては、技術情報等の流出				
等の観点に配慮しつつ、可				
	1 80/2 9 0°			
能な範囲で公表するものと				
する。				
する。 (a)中間評価等	(a)中間評価等	(a)中間評価等	- (a) 中間評価等	
する。 (a) 中間評価等 事業実施期間を5年以上	産業界、学術界等の外部	産業界、学術界等の外部の	平成28年度は、実施予定期間が5年以	
する。 (a)中間評価等	産業界、学術界等の外部			
する。 (a) 中間評価等 事業実施期間を5年以上	産業界、学術界等の外部 の専門家・有識者を活用	産業界、学術界等の外部の	平成28年度は、実施予定期間が5年以	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェ クトについては、数値化さ	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を用	産業界、学術界等の外部の 専門家・有識者を活用し、数 値化された指標を用いて中間	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェクトについては、数値化された指標を用いて中間評価	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を用 いて中間評価を、厳格に適	産業界、学術界等の外部の 専門家・有識者を活用し、数 値化された指標を用いて中間 評価を、厳格に適切な手法で	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・ 有識者を活用し、数値化された指標を用い	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェクトについては、数値化された指標を用いて中間評価を厳格に実施し、中間目標	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を用 いて中間評価を、厳格に適 切な手法で実施する。特に	産業界、学術界等の外部の 専門家・有識者を活用し、数 値化された指標を用いて中間 評価を、厳格に適切な手法で 実施する。特に5年間程度以	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・ 有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェクトについては、数値化された指標を用いて中間評価を厳格に実施し、中間目標達成度を把握するととも	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を用 いて中間評価を、厳格に適 切な手法で実施する。特に 5年間程度以上の期間を	産業界、学術界等の外部の 専門家・有識者を活用し、数 値化された指標を用いて中間 評価を、厳格に適切な手法で 実施する。特に5年間程度以 上の期間を要する事業につい	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・ 有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェ クトについては、数値化さ れた指標を用いて中間評価 を厳格に実施し、中間目標 達成度を把握するととも に、その結果に基づき、事	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を用 いて中間評価を、厳格に適 切な手法で実施する。特に 5年間程度以上の期間を 要する事業については、3	産業界、学術界等の外部の 専門家・有識者を活用し、数 値化された指標を用いて中間 評価を、厳格に適切な手法で 実施する。特に5年間程度い 上の期間を要する事業につい ては、3年目ごとを目途とす	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・ 有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技	
する。 (a) 中間評価等 事業実施期間を5年以上 とするナショナルプロジェクトについては、数値化された指標を用いて中間評価を厳格に実施し、中間目標達成度を把握するとと、こ、その結果に基づき、まの加速化(年度途中にお	産業界、学術界等の外部 の専門家・有識者を活用 し、数値化された指標を いて中間評価を、厳格に適 切な手法で実施する。特に 5年間程度以上の期間を 要する事業については、3 年目ごとを目途とする	産業界、学術界等の外部の 専門家・有識者を活用して中間 値化された指標を用いて中間 評価を、厳格に適切な手法度 実施する。特に5年間程度い 上の期間を要する事業につい ては、3年目ごとを目途とす る中間評価を必ず行う。中間	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・ 有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直	
する。 (a) 中間評価等 事業実施期間を5年以上とするナショナルプロジェクトについては、数値化で中間評価を開いて中間目標を厳格に実施し、中間とと、定成度を把握すると、まの加速化(年度途中における開発成果創出促進制度	産業界、学術界等の外部 の専門家・有識者を標を し、数値化された指標を し、数値化された指標を いて中間評価を、厳格に 切な手法で実施する。 特別で 事業についてはる 要する事業についてする 要する事業についてする 要する事業についてする 要する事業についてする 要する事業についてする 要する事業についてする 要する事業についてする。 中間評価を必ず行う。	産業界、学術界等の外部の 専門家・有識者を活用いて 専門なれた指標を用いて手法で 証価を、厳格に5年間程で 実施する。特に5年間程で以 上の期間を要する事業にと 中間評価を必ず行う。 は、1 では、1 では、1 では、1 では、1 では、1 では、1 では、1	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点	
する。 (a) 中間評価等 事業実施期間を5年以上とするナショナルプロジェクトについては、数値化でのおいた指標を用していてがでいた指標を施し、中間目標を厳格に実施とするとき、に、の加速化(年度途中におり、はる開発成果創出促進制度の適用等)・縮小・中止・見	産業界、学術界等の外部 の専門家・有識者を標をの り、数値化された指標を いて中間評価を、厳格に いて中間評価を、厳格に りな手法で実施する。 も間 もでまたする。 も間 もでまたしいでする を ものでする を ものでする ものでする ものでする。 ものでする は、る ものです。 ものでものでものでも ものでものでものでも ものでも ものでものでも もの も も も も	産業界、学術界等の外部の 専門家・有識者を用いて出標を用いて指標を用いて非標を用いて手法度 値化を、厳格に5年間な手程度のよる。 実施期間を要する事業にないする中間を要するとを ものよりではいました。 は、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、これに、 では、 では、 では、 では、 では、 では、 では、 では、 では、 では	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点検等により常に的確に事業の進捗状況を	
する。 (a) 中間評価等 事業実施期間を5年以上 とするコールプログロルがである。 (a) 中間評価等 事業をありまたがでは、1000000000000000000000000000000000000	産業界、学術界等の外語 の専門を主に、 の専門値化された指標を いて中間評価を、厳格 いて中間評価を、厳格 の事と がな手間程度以上のでは を も も も も も も も も も も も も も も も も も も	産業界、学術界等の外部の 専門なれた指標を用いて手法度 では一個では一個では一個では一個では一個では一個では一個では一個では一個では一個	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点	
する。 (a) 中間評価等 事業実施期間を5年以上とするナショナルプロジェクトについては、数値化でのおいた指標を用していてがでいた指標を施し、中間目標を厳格に実施とするとき、に、の加速化(年度途中におり、はる開発成果創出促進制度の適用等)・縮小・中止・見	産業界、学術界等の外語 の専門を主に、 の専門値化された指標を いて中間評価を、厳格 いて中間評価を、厳格 の事と がな手間程度以上のでは を も も も も も も も も も も も も も も も も も も	産業界、学術界等の外部の 専門家・有識者を用いて出標を用いて指標を用いて非標を用いて手法度 値化を、厳格に5年間な手程度のよる。 実施期間を要する事業にないする中間を要するとを ものよりではいました。 は、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、3年間を必ず行っては、 では、これに、 では、 では、 では、 では、 では、 では、 では、 では、 では、 では	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点検等により常に的確に事業の進捗状況を	
する。 (a) 中間評価等 事業実施期間を5年以上 とするプロジャでは、数値に対していている。 れた指標を開まれて、数値に評価を厳格に変がです。 などはできる。といる。 (a) 中間では、一つでは、大力では、大力では、大力では、大力では、大力では、大力では、大力では、大力	産業界、学術界等の外語 の専門を主された指標を の専門値化されたが ができたされたが ができた。 ができた。 ができる。 ができるが ができるが ができるが ができるが ができるが ができるが ができるが がいてする。 はいてする はいでする。 はいでする。 はいでする。 はいでする。 はいでする。 はいでする。 はいでする。 はいでする。 はいではないでする。 はいではないです。 はいではない。 はいでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	産業界、学術界等の外部 専門を発表を用いて手法を 専門化を 事値に が、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点検等により常に的確に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進捗	
する。 (a) 中間評価等 事業実施期間を5年以上 とするついて、数値に対して、数値に評価を厳格にで、数値に評価を厳格にで、のではでででは、でいて、ないででではでいる。 ながいではできる。 特に、中間目標に対し、 ないないでは、ないでは、では、では、では、では、では、では、では、では、では、では、では、では、で	産業界、学術職者を 学有識者を 学有識者を を 等を で を で を で を で を の の も に に に に に に に に に に に に に	産業界、特別を 事情を 事情を 事情を 事情を 事情を 事情を 事情を 事情	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な点検等により常に的確に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進捗の把握結果等を基に、開発成果創出促進制	
する。 (a) 中間評価等 事業実施期間を5年以上 とするついていて、数値に評価を表すといていて、数値に評価を表すといては、中間間といて、ないで、中間間とをでは、ではではできる。というでは、では、では、では、では、では、では、では、では、では、では、では、では、で	産業界、学術界等を標準の専門を主要を表す。 を業界、学術ではない。 を実別をできれた。 をできれたが、できれたができれたができる。 をできるできれたができるができるができるができるができるができる。 をできるではいったができるができる。 ではいったができるができるができる。 ではいったができるができるができる。 ではいったができるができるができますができます。 ではいったができますができますができますができますができますができますができますができます	産業界、有籍を 事情を 事情を 事情を 事情を 事情を 事情を 事情を 事情	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見直しを的確に行った。機構による自主的な完全の強により常に的確に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制の把握結果等を基に、開発成果創出促進制度の活用等により、プロジェクト内又はプ	
する。 (a) 中間評価等 事業実施期間を5年以上 りかに開いている。 (本) 中間評価等 事業をかっている。 いっているでは、では、大力に指標を変がです。 ながれた指標を変ができる。 ながいるでは、では、大力をでは、では、大力をでは、では、では、では、では、では、では、では、では、では、では、では、では、で	産業界、学術と 等を有識を 等を 事専門値化された が大きれた が大きれた が大きれた が大きれた が大きれた が大きな が大きな が大きな が大きな が大きな が大きな が大きな が大きな	産業界、有能標準 等所用いて 等所用いて 等所用いて 等で 等が を 等が を 等が を 等が を 所に が が が が が に が が が が が が が が が が が が	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標達成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、見で、現代のでは、現代のでは、というのでは、というのでは、というのでは、というのでは、というのでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	
する。 (a) 中間評価等 事業実施期間を5年以上 事業をプロ値に評価等 事業をプロ値に対して、数中間でのででででででででででででででででででででででででででででででででででで	産業界、学術職者指標格。 等者を標格。 等者を標格。 等者を標格。 が一次では一手では一点では一点では一点では、 を必ずしいでは、 が一方できをと をと をと をと をと をと をと をと をと をと	乗ります。 東京を 東京を 大学で で で で で で で で の の の の の の の の の の の の の	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間目標を成度等を評価した。また、中間評価の結果及び社会経済情勢の変化等を踏まえて、境開発内容やマネジメント等の改善、見直しをの確に行った。機構による自主が況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制度の活用等により、プロジェクト間において、配分予算の調整を行う等、事業の加速化又は見直しを迅速に	
する。 (a) 中間評価等 事業を 5年以上では一個等 事業をプロ値に対して、では、では、では、では、では、では、では、では、では、では、では、では、では、	産業界、学術識を標準の を標準の を標準の を標準の を標準の を標準を が、する では では では では では では では では では では	要素の 素が 素が 素が 素が 素が 素が 素が 素が 素が でが でが でが でが でが でが でが でが でが で	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間研究を選済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改きを、見直しをの確に行った。機構によるもり常にもの確に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制度の活用等により、プロジェクト間において、配分予算の調整を行う等、事業の加速化又は見直しを迅速に行うとともに、以降の事業実施及び予算要	
する。 (a) 中間評価等 事業を 5年以上では一個に対して、では、では、では、では、では、では、では、では、では、では、では、では、では、	新用用適にを3中評技、ンり標もまや見 部用用適にを3中評技、ンり標もまや見 のしい切ったでは一点では一点では一点では一点では一点では一点では一点ででは一点では一点では一	産業界等の 所表をを 等所用いな で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 でのものは では、 では、 では、 では、 では、 では、 では、 では	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間の結果及び社会経済情勢の変化等を踏まえて、技術開発内容やマネジメント等の改善、見点を設備により常に的確に事業の進捗状況を設階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制度の活用等により、プロジェクト間において、配分予算の把握結果等を基に、開発成果創出及の活用等により、プロジェクト間において、配分予算の調整を行う等、事業の加速化又は見直しを迅速に行うとともに、以降の事業実施及び予算要求プロセスに反映を行った。	
する。 (a) 中間評価等 事業を5年以近化評価等 事業のでは、では、では、では、では、では、では、では、では、では、では、では、では、で	無業界、学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 が一手間で 大中手間、 のでとってに がで度に といてない で度に といてとってに がで度に といてとってに がいてない で度に といてとってに がいてとってに がいて、 でのでと のでと のでと のでと のでと のでと のでと ので	東京では 東京では 東京では 東京では 東京では 東京では 東京では 東京では 東京では 大力で でで 大力で 大力で 大力で 大力で 大力で 大力で	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間画のた。また、中間評価ので実施で実施した。また、中間部まえて、特開発内容やマネジメント等の改善、見点を経済情勢の変化等を踏まえて、見られている。機構に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制度の活用等により、プロジェクト間において、配分予算の把握結果等を基に、開発成果創出度の活用等により、プロジェクト間において、配分予算でで、事業の加速化又は見直しを迅速に行うとともに、以降の事業実施及び予算で、事業の加速に入りに、以降の事業実施及び予算でで、以降の事業実施及び予算でで、以降の事業とでで、よるに、以降の事業とは、以降の事業とは、以降の事業とのでは、目覚までは、100円においては、目覚までは、100円においては、目覚までは、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対して、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対して、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対して、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しが、100円に対しで、100円に対しで、100円に対しで、100円に対しが、100円に対しが、100円に対しで、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円	
する。 (a) 中間評価等 事業を5年以近化評価等 事業のでは、では、では、では、では、では、では、では、では、では、では、では、では、で	無業界、学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 が一手間で 大中手間、 のでとってに がで度に といてない で度に といてとってに がで度に といてとってに がいてない で度に といてとってに がいてとってに がいて、 でのでと のでと のでと のでと のでと のでと のでと ので	産業界等の 所表をを 等所用いな で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 で表示され、 でのものは では、 では、 では、 では、 では、 では、 では、 では	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間画の結果及び社会経済情勢の変化等を踏まえて、東西の変化等を踏まえて、境開発内容やマネジメント等の改造、見しを的確に行った。機構による連携を関係では、明確において、配分の調整を設め、中間評価や随時では、プロジェクト間において、配分予算の調整を行うとともに、以降の事業として行うとともに、以降の事業実施及び予算では、平成28年度においては、目覚ましい成果を挙げている研究開発テーマ3	
する。 (a) 中間評価等 事業を5年以近化評価等 事業を5プ値間関連を5プ値間関連を5プ値間関連を5プ値間間とをではではではではではではできまれた。ではではではではできまれた。ではではではではではではではではではではではではではではではではではではでは	産業界、学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 学有れた、 が一手間で でで でで でで でで でで でで でで でで でで	東京では 東京では 東京では 東京では 東京では 東京では 東京では 東京では 東京では 大力で でで 大力で 大力で 大力で 大力で 大力で 大力で	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間画のた。また、中間評価ので実施で実施した。また、中間部まえて、特開発内容やマネジメント等の改善、見点を経済情勢の変化等を踏まえて、見られている。機構に事業の進捗状況を段階ごとに一層詳細に把握し管理するよう努め、中間評価や随時行われる事業進制度の活用等により、プロジェクト間において、配分予算の把握結果等を基に、開発成果創出度の活用等により、プロジェクト間において、配分予算でで、事業の加速化又は見直しを迅速に行うとともに、以降の事業実施及び予算で、事業の加速に入りに、以降の事業実施及び予算でで、以降の事業実施及び予算でで、以降の事業とでで、よるに、以降の事業とは、以降の事業とは、以降の事業とのでは、目覚までは、100円においては、目覚までは、100円においては、目覚までは、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対して、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対して、100円に対して、100円に対しで、100円に対して、100円に対して、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対して、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しで、100円に対しが、100円に対しで、100円に対しで、100円に対しで、100円に対しが、100円に対しが、100円に対しで、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円に対しが、100円	
する。 (a) 中間 等	新用用適にを3中評技、ンり標もまや見。点事 部用用適にを3中評技、ンり標もまや見。点事 部用用適にを3中評技、ンり標もまや見。点事 部用用適にを3中評技、ンり標もまや見。点事 のしい切らとのではがずいかでは がでな年す目評の開口の点成、たえいを ではずりにる間、えメよ目と踏容、くなに のしい切らとのではがでいた。 のしい切らを のしい切らを のしい切らを のしい切らを のしい切らを のしい切らを のしい切らを のしい切らを のしい切らを のにした。 のにした。 のにした。 のにのでは のにした。 のにのでは のにした。 のにのでは のにる にるに のにる にるに のにる にるに のにる にるに のにる にるに のにる にる にる にる にる にる にる にる にる にる	東京 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間価の結果及び社会経済情勢の変化等を踏まえて、境開発内容やマネジメント等の改善、見はを的確におり常による自主が状るといるのでは、時間ではいて、機構に事業し管理するといれて、時間では、プロジェクトでは、開発成果創出では、別で、大力を関係では、別では、関係のにおいて、、配分では、といい、といい、といい、といい、といい、といい、といい、といい、といい、とい	
する。 (a) 中間 等	新用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、ンり標もまや見。点事と 部用用適にを3中評技、シリ標もまや見。点事と を進れた。 本のでとる。 ないのではのとい切らのでは、 まずのに、 まずのに、 まずのに、 まずのに、 まずのに、 まずのに、 まずのに、 まずのと、 まがりのと、 まずのと、 まがりのと、 まがりのと、 まがりの。 まがりのと、 まがりのと、 まがりのと、 まがりのといりのと、 まがりのと、 まがりのといりのと、 まがりのと、 まがりのといりのと、 まがりのといりのと、 まがりのと、 まがりのといりのと、 まがりのと、 まがりのというがりの。 まがりのと、 まがりのといりのと、 まがりのといりのというがりのというがりのというがりのといりのといりのといりのというがりのというがりのといりのといりのといりのというがりのといりのといりのといりのといりのといりのといりのといりのといりのといりのとい	東京 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門門家・有識者を活用し、数値化された指門目の結果で、数値で実施した。また、中間評価の結果を設け、事業の変化等を踏まえて、見直しをいる。機構による。機等により常による。機構に非なるを設け、の把握結果等を基に、開発が、中間評価や随時行われる事業の把握結果等を基に、開発が、中間での活用等によいて、配分予算の地理結果等を基に、別のの事業を行うきとともに、以降の事業を行うきとともに、以降の事業を行うきとともに、以降の事業を行うきとともに、以降の事業を行うきとともに、以降の事業を行った。なお、平成28年度においては、目覚ましい成果を挙げている研究開発テーマる件に対して開発成果創出促進制度の通用等を行い、事業の加速化、見直し等を迅速	
する。 (a) 中間 (b) を (b) を (b) を (c) を	本学のしい切ち要年間価術プト重達にえマ直 検業に を標格。期はす中は加ジ、間とを内善い的確階に を標本のしい切ち要年間価術プト重達にえマ直 検業に が、てな年す目評の開口の点成、たネし機等の一 を標格。期はす中は加ジ、間とを内善い的確別 ではませい。では、スメよ目と踏容、くなにご管 のしい切ち要年間価術プト重達にえマ直 検業に 部用用適にを3中評技、ンり標もまや見。点事と理	東京では 東京では 東京では 東京では 大力で 大力では 大力で 大力で 大力で 大力で 大力で 大力で 大力で 大力で	平成28年度は、実施予定期間が5年以上のナショナルプラト12件についで、産業界、学術界等の外部の専門用いて、産業界、学術界等の外部の専門用で産業活用し、数値化された指標を用標を活用な手法で実施した。また、中間経済に適価にた。また、中間の結果及び社会経済情勢の変化等を踏まえて、見しを経済をいる。機構によるの変化等をの改善、見しをのより常によるの進程に担保して、記録を行った。機構に担保して、記録を、中間評価や随時行成より、中間評価や随時行成果の連出では、中間が表別を表別において、配分手直しをでいるが、中間において、配分手直して、記述を行うとともに、反映を行った。ともに、反映を行った。 なお、平成28年度においては、目覚ましい成果を挙げている研究開発テーの適用等を行い、事業の加速化、見直し等を迅速に行った。	
する。 (a) 中等 (a) 中等 (a) 中等 (b) 中部 (b) 中部 (b) 中部 (c)	本 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	東京 東京 東京 大大 大大 大大 大大 大大 大大 大大 大大 大大 大	平成28年度は、実施予定期間が5年以上のナショナルプリジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適可した。また、中間目標はで東方で、東京では、東京では、東京では、東京では、東京では、東京では、東京では、東京で	
する。 (a) 中等 (a) 中等 (a) 中等 (b) 中部 (b) 中部 (b) 中部 (c)	本のしい切5要年間価術プト重達にえマ直 検業にす随 産専、ないで度業を必に進り性き把経、ン確より状細タれる。 大・・とで度業を必に進り性き把経、ンでより、大細胞でで度がある。 では、すのでとってにネで中る等発改でものとり、 では、すのでとうってにネで中る等発改でものとり、 では、すのでとうった状・のつす対解等行自にを把中事である。 が、すのでとうった状・のつず対解等行自にを把中事である。 が、すのでとってにネで中る等発改でもの段屋間を が、これにいいる。 が、これにでできる。 が、これにでできる。 が、これにできる。 は、これにできる。	東京では、 東京では、 大力では、	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適回な手法で実施し、中間回の結果及び社会内容の変化等を踏まき、中間部まえが、大きるのででは、大きのでは、いきのでは、いきいは、いきのでは、いきのでは、いきのでは、いきのでは、いきいは、いきのでは、いきいは、いきのでは、いきいは、いきいは、いきいは、いきいは、いきいは、いきいは、いきいは、いき	
する。 (a) 中等 (a) 中等 (a) 中等 (b) 中等 (b) 中等 (c) 中 (c	本のしい切5要年間価術プト重達にえマ直 検業にす随把 業門が同法程業を必に進夕性き把経済です。 のしい切5要年間価術プト重達にえマ直 検業にす随把 がすれた、すのでと。でにネで中る等発改でものといる時間は、 のでと。でにネで中る等発改でものとが、 がいる間、 る間、 るり、 でとを抱いが、 のしい切5要年間価術プト重達にえマ直 検業にす随把 外活をに特間、 る間、 えメよ目と踏容、 くなにご管価捗発 部用用適にを 3中評技、 ンり標もまや見。 点事と理やの成	正 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間福の活果及び社会経済情勢の変化等を踏まえて、見直しをいる。また、中間が高速をできる。 横等により常にいる。 大道をいる。 大道をできるをできる。 大道をできる。 大道をできる。 大道をでき	
する。 (a) 中等 (a) 中等 (a) 中等 (b) 中海 (c) 中 (c)	東京では、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学のは、大学の	本 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適回な手法で実施し、中間回の結果及び社会内容の変化等を踏まき、中間部まえが、大きるのででは、大きのでは、いきのでは、いきいは、いきのでは、いきのでは、いきのでは、いきのでは、いきいは、いきのでは、いきいは、いきのでは、いきいは、いきいは、いきいは、いきいは、いきいは、いきいは、いきいは、いき	
する。 (a) 事等に (本) を (a) を (b) を (b) を (c) を (d) を (e) を	本 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	東京では、大学では、大学では、大学では、大学では、大学では、大学では、大学では、大学	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間福の活果及び社会経済情勢の変化等を踏まえて、見直しをいる。また、中間が高速をできる。 横等により常にいる。 大道をいる。 大道をできるをできる。 大道をできる。 大道をできる。 大道をでき	
する。 (a) 事事は (事) 事まは (事) 事まれ (本 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	本 東京 東京 大 大 大 大 大 大 大 大 大 大 大 大 大	平成28年度は、実施予定期間が5年以上のナショナルプロジェクト12件について、産業界、学術界等の外部の専門家・有識者を活用し、数値化された指標を用いて厳格に適切な手法で実施し、中間福の活果及び社会経済情勢の変化等を踏まえて、見直しをいる。また、中間が高速をできる。 横等により常にいる。 大道をいる。 大道をできるをできる。 大道をできる。 大道をできる。 大道をでき	

	1					
体制の見直し等を柔軟に図 るものとする。	等、事業の加速化(開発成	直し等を迅速に行うととも				
	果創出促進制度の適用 等)、縮小、中止、見直し等	に、以降の事業実施及び予算 要求プロヤスに反映する。				
	を迅速に行うとともに、以	中間時点での評価結果が一				
		定水準に満たない事業につい				
	求プロセスに反映する。 中間時点での評価結果	ては、抜本的な改善策等がない場合には原則として中止				
	が一定水準に満たない事					
	業については、抜本的な改	事業に充てることとする。				
	善策等がない場合には原 則として中止し、その財源					
	を加速化すべき事業に充	1				
	てることとする。	のステージに移行する毎に、				
	ただし、非連続ナショナルプロジェクトについて					
	は、ステージゲート方式に					
	おいて次のステージに移					
	行する毎に、技術の取捨選 択や技術の融合、必要な実					
	施体制の見直し等を柔軟					
	に図るものとする。					
(b) 事後評価 ナショナルプロジェクト	(b) 事後評価 事業終了後、産業界、学	(b)事後評価 事業終了後、産業界、学術	_	(b)事後評価 平成28年度においては、平成27年度		
		事業終「仮、産業系、子州 界等の外部の専門家・有識者		一学成28年度においては、平成27年度 に全部または一部が終了したナショナル		
ては、各事業の終了後、外	識者を活用し、数値化され	を活用し、数値化された指標		プロジェクト10件の事後評価及び平成		
		を用いて、技術的成果、実用		28年度に終了するナショナルプロジェ		
	果、実用化・事業化の見通し、マネジメント等を評価			クト1件の前倒し事後評価を、産業界、学 術界等の外部の専門家・有識者を活用し、		
事業化の見通し等の観点か	項目とした事後評価を実	後評価を実施するとともに、		数値化された指標を用いて、技術的成果、		
	施するとともに、その結果			実用化・事業化見通し、マネジメント等を		
	を以後の機構のマネジメントの改善に活用する。	ジメントの改善に活用する。		評価項目として実施した。その結果から、 機構のマネジメントの改善に資する点を		
ものとする。				抽出して活用を図った。		
ただし、非連続ナショナルプロジェクトについて		ただし、非連続ナショナルプロジェクトについては、上	_	今年度、評価対象となる非連続ナショナルプロジェクトはない。		
		記の評価項目において、技術		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
たな知見の獲得、獲得され	て、技術的成果では、最終	的成果では、最終目標の達成				
た知見の他の技術や用途への波及効果等の観点から、		度に留まらず、設定された目標以外の技術成果、世界初の				
その成果を評価するものと		知見の獲得、新たな技術領域				
する。	得、新たな技術領域の開拓	の開拓等がある場合は積極的				
	等がある場合は積極的に 評価する。また、実用化・	に評価する。また、実用化・事業化の見るしては、計画に必				
		業化の見通しでは、計画に沿った実用化・事業化の見通し				
	に沿った実用化・事業化の	に留まらず、他の技術や用途				
		への展開、新たな市場の創造 の見通し、社会的な効果等が				
		ある場合は積極的に評価す				
	的な効果等がある場合は					
ZOWY NIEDOZYMY	積極的に評価する。	東京 0 6 左岸 2 ウナッキ			● 市公亚压 1 1	
	ナショナルプロジェクトにおいては、技術的成	平成28年度に予定する事 後評価対象のナショナルプロ	-	平成27年度に終了したプロジェクト 10件の事後評価及び平成28年度に終	●事後評価11件実施し、10件(91%) が合格、合格のうち9件(82%)が優良	
ナルプロジェクトについて	果、実用化・事業化の見通	ジェクトにおいては、技術的		了したプロジェクト1件の前倒し事後評	となり、合格率を80%以上、優良率を6	
		成果、実用化・事業化の見通		価を行ったところ、10件(91%)が合	0%以上とする第3期中長期計画期間の	
	項目とし、別途公表される 計算式に基づき8割以上			格であり、このうち9件(82%)は優良 に該当、1件(9%)が不合格となった。	目標を上回る水準の評価結果を得た。	
ては、6割以上が順調との	が「合格」、6割以上が「優	点法を用いて「優良」又は「合		本結果については、ホームページ等を通じ		
評価を得ることとする。	良」との評価を得る。	格」(*)との結果を得たプロジャルが		て対外的に公表した。		
		ジェクトがどの程度あるかを年度内に把握し、速やかに対				
	1					

	T	Late the second second	ı	T.	1	
		外(位③事(Cのいしの4と) はの事果等がる向とた強もて 関達事項を点のいしのに別すとのでは、シーのでは、カーのでは、		実用化促進事業においては、技術的成果、実用化・事業化の見通し等を評価項目とした事後評価を実施しており、これまで71.2%(225件/316件)が順調と評価された。 なお、平成28年度は事後評価対象事業なし。		
(c)追跡評価等	(c)追跡評価等	する。 (c)追跡評価等		(c)追跡評価等	●平成28年度のアンケートによる追跡調	
ナショナルプロジェクト	ナショナルプロジェク	ナショナルプロジェクトに		ナショナルプロジェクトについては、事	査の回答率は前年度(97.5%)を上回	
では、事業終了後事業終了後事業終了後事業終了後事業終する事業をする。 参加企業を始めけを行い、 実施者に働きかけを事業化とを推進するため、これの を推進するため、のか調査に、追跡評価(追跡評価(追跡部を実施である。	トについては、事業終とすけるというでは、事業終とすけるというでは、事業を始めたがない。事業に働きたが対したというでは、事業をはないが対したというでは、事業にはないが対した。というでは、これが対したというでは、これが対したが、事業には、これが対したが、は、というでは、これが対したが、事業には、またが、は、というでは、これが対しては、事業には、事業には、事業には、事業には、事業には、事業には、事業には、事業に	り、 ・、実口・そ推技に的際・ を大力の ・、実力・を ・、実力・を ・、実力・を ・、実力・を ・、実力・を ・、実力・を ・、大学を ・、大学で ・、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		業終了後も、参加企業を始めとする事業実施者に働きかけを行い、プロジェクトが及ぼした経済的・社会的効果等をフォローし、その成果の実用化・事業化を推進するとともに、機構の技術開発マネジメントの	り、98.2%を達成。 ●海外類似機関における追跡調査手法・結果の調査による国際的ベンチマークを実施。●NEDOの評価手法に、フランスのファンディング機関ADEMEが注目。ADEMEが比較分析を実施。●NEDOインサイド製品について、既存製品の精査・統合と6製品の追加を実施し、対象製品の合計を115製品に拡充。	

活用しつつ、必要な場合には上記ナショナルプロジェクトよりも長期的に、追跡評価を実施することとする。 (d)技術開発マネジメントに係る知見、教訓の蓄積 PDCAサイクルの一層の深化と確実なのと表記であるでく、中間評価の各結果から得られた知見、教訓を引き続き組織知として蓄積するとともに、機構内	追跡評価の各結果から得られ た知見、教訓を引き続き組織	(d) 技術開発マネジメントに係る知見、 教訓の蓄積 PDCAサイクルの一層の深化と確実 な定着を図るべく、中間評価、事後評価及 び追跡評価の各結果から得られた知見、教 訓を引き続き組織知として蓄積するとと もに、プロジェクト・マネジメント室と情 報を共有し、マネジメントガイドラインの 新訂に寄与した。また、新規着任者に対し その内容を共有するための研修を7回実	
は、実用化・事業化の見通 は、実用化・事業化状況等し、獲得された知見の他の 技術や用途への波及効果等 が領域の開拓、他の技術やの観点から多面的に評価す 用途への展開、新たな市場ることとし、専門分野の外 の創造の見通し、社会的な	ただし、非連続ナショナル プロジェクトについては、実 用化・事業化状況等の把握に 加えて、新たな技術領域の開 拓、他の技術や用途への展開、 新たな市場の創造の見通し、 社会的な効果等の多面はなる観	平成28年度に実施する追跡調査対象 事業に非連続ナショナルプロジェクトは 含まれない。	
		選定し、評価システムの調査、比較を実施した。 追跡調査から得られた機構の成果については、上市した主要112製品に関する 売上げや費用対効果について、「NEDO インサイド製品」として平成27年度に試算した結果を、機構ホームページを通じて情報発信。平成28年度は試算対象となる製品を精査・統合の上、6製品を新たに追加し、対象製品の合計を115製品に拡充するとともに、費別対果の分析精度の向とや幅広い波及効果の収集・把握で要素に無点をいて改28年度は、機構の事業に参画した中堅・中小・ベンチャーの場所発成果が社会にもたらす効果・便益の可視化及び体系化を試みた。また、追跡調査から得られた結果については、機構内部の研修で役職員とので意見交換、米国評価学会(2件発表)などで積極的に情報発信を行うとともに、関係機関とので・イノベーション学会(3件発表)などで積極的に情報発信を行うとともに、平成28年度に開催された研究・イノベーションのPDCA」というセッション企画を行い、7件の講演・報告及び7件の研究発表を通じて国内研究者との議論を実施した。	
調査から得られた機構の		を採用した。平成27年度からの継続2チームを含めて7チームの研究グループと、 先行研究・調査手法・調査結果・NEDO 追跡調査方法へのフィードバックに関す る意見交換を14回実施し、平成28年度 のアンケート調査票設計にも反映した。海 外については、NEDOと類似のファンディング機能をもつ欧米の9ヶ国、9機関を	

	L 2	I > 2- 5 (>)	1	I a a a a a a a a a a a a a a a a a a a		
	を実施する。	を行う。さらに、機構内で知見、教訓がより一層活用されるよう5回以上の機構内の共有活動を実施する。		バックをしたほか、定例会議においても共有した。		
その際、様々な角度からとの際、様々な音行うがとりき続き行いがよりまたなりによりでは、実続にない。のによりでは、またいの実施では、では、ないでは、では、ないでは、では、ないでは、ないでは、ないでは、ないで	データの分析を引き続き 行い、新たなプロジェクト (非連続ナショナルプ採リジェクトを除く。)の実 時等に、これまでの実用 化・事業化に係る実績を関 にを行う。その際、成功 でのみならず、非継続、中	ータの分析を引き続き行い、 新たなプロジェクト(非連続 ナショナルプロジェクトを除 く。)の採択時等に、これまで の実用化・事業化に係る実績 を十分踏まえた参加企業の選 定を行う。その際、成功事例 のみならず、非継続、中止と		さらに、新たなプロジェクトの採択時には、プロジェクト終了後の追跡調査・評価を通じて得られたデータを用いて、過去の実用化・事業化に係る実績を十分踏まえた上で参加企業の選定を行った。その際、成功事例のみならず、非継続、中止となった事業の要因の分析等を行うことも含め、これまでのナショナルプロジェクトに係る総合的、定量的な評価を行った。		
量的な評価を行うこととする。 さらに、委託先に帰属する特許権等について、委託 先における事業化の状況及 び第三者への実施許諾の状況等につき引き続き毎年調 査し、適切な形で対外的に 公表することとする。	さらに、委託先に帰属す る特許権等について、委託 先における事業化の状況	特許権等について、委託先に おける事業化の状況及び第三 者への実施許諾の状況等につ き引き続き調査し、適切な形		バイ・ドール条項の適用により委託先に 帰属する特許(バイ・ドール特許)について、利活用状況調査を行い、機構のホームページ上で対外的な公表を行った。		
ために導入した「複数年度 契約」や、技術開発のニー ズに迅速に応える「年複数 回採択」等の制度面・手続	予進をし技応のを者度をい目なら年、国資、つた実る予進をし技応のを者度をい目なら年、国資、つた実る予進をし技応のを者度を対して標当れ間交かとそも柔施をなにと数二複差に明う営事を応と数二複差に明う営事を応と数二複差に明う営事をした。 事も執導や速」改実毎付にか明が長契るをでえ応事業に記りである。 事を応と数二複差に明う営事にといるである性関をできる。 事を応と数二複差に明う営事をした。 事を応と数二複差に明う営事をした。 事を応と数にのを者度を対してできる。 事をの、行入、に等善施年金つら確得3約。原はつじ業よの、行入、に等善施年金つら確得3約。原はつじ業よの、対している。 事業による程付らすの、軟シーでは、 事業をした。 事業をある。 の、行入、に等・ の、行入、に等・ をできるとい目なら年、国資、つた実るをできる。	年度実施の案件が大宗であることを踏まえ、複数年度契約・ 交付決定を極力実施する。また、制度面、手続面の改善を 行うとともに、事業実施者に対する説明会を全国延べ15		(iii) その他 (a) 主な制度運用 技術開発については、複数年実施の案件 が大宗であることを踏まえ、複数年実施の実施 約・交付決定を極力実施した。平等を対して、大学等を加力実施として、大学等を対して、大学等を対して、大学等を対して、大学を対して、大学を対して、大学を対して、間接経費率をも最大30%である。 を書業とは大きのの間にはいる。またのでは、大学生のの間には、大学等をがられて、大学をでは、各種説ののでは、大学をでは、各種説のでは、大学をでは、大学をでは、大学をは、大学をは、大学をは、大学をは、大学をは、大学をは、大学をは、大学を	●他機関に先駆けて大学等に対する間接経費率の上限引き上げを実施。	

-					
	目が事業実施の上での不必要な障壁となることのないよう、利用者本位の制度運用を行う。	鑑み、技術開発アロジェター が開発をする。 大関のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 が関連のでは、 があるができるができるができまされます。 をは、 は、 は、 は、 は、 は、 は、 は、 は、 は、			
	者の利便性の低下にも	また、事業実施者に対して アンケートを実施し、制度面、 手続き面の改善点等につい て、8割以上の回答者から肯 定的な回答を得るという中長 期計画の達成を目指す。	事業実施者に対する制度に係る説明会 を延べ20回開催し、1,102人の事業 実施者に対して説明を行い、改善事等に ついて更なる周知を行うとともに、事業・ 施者の利便性を更に高めるため、制度・ 続き等の改善事項の検討を行ってきた。 また、平成28年度の機構の制度な一トを また、平成28年度の機構の制ケートを また、平成28年度の機構の制度を 係る全体的な取組についてアンケートと ら「満足している」との回答が約9割余ら における労働時間証明書提出の省略、 における労働時間証明書提出の改善を における労働時間証明書提出の改善を における労働時間証明書提出の改善を た。		
事業の実施に当たり、引き続き、交付申請・契約・検査事務などに係る事業実施者の事務負担を極力軽減するとともに、委託事業においては技術開発資産等の事業終了後の有効活用を図るものとする。	務等に係る事業実施者 の事務負担を極力軽減 するとともに、委託事業 においては技術開発の 産等の事業終了後の 効活用を図る。 ・第3期中期目標期間中	業務への共用を終了した技 術開発資産の譲渡手続に要す る期間を平均3ヶ月以内とす	平成28年度における資産の有効活用については、他の委託事業及び助成事業への転用が520件、公共機関や大学等への無償譲渡は1,611件、委託先等への有償譲渡は813件であった。また、事業終了から有償譲渡が完了するまでの期間については、事業期間中から手続きを開始するなど処分手続きの早期化を図った結果、平均3ヶ月を下回った(平成29年3月末時点)。		
事業実施者間における知的 財産権の取扱いに関するや、 一ル化(合意文書策をを 一ル化(合意文書策を 一ル化的財産権に係わる委員を 一ル的財産を制整備さるの 設置等のととおいるの がよっている のは、知 がより、 の関連を がより、 の関連を がより、 の関連を がいた。 の関連を がいた。 の関連を がいた。 の関連を がいた。 の関連を がいた。 の関連を がいた。 の の の の の の の の の の の の の の の の の の の	日本版、原加さいでは、 「関連をは、 「のが産よりに対して、 には、 にはは、 にはは、 にはは、 にはは、 にはは、 にはは、 にはははははははははは	(b) 知的財産権 機構は、アニニュニュニュニュニュニュニュニュニュニュニュニュニュニュニュニュニュニュニ	(b) 知的財産権 プロジェクトを支える効果的な知財マネジメントを実施するため、「NEDOプロジェクトにおける知財マネジメント基本方針」(以下「NEDO知財方針」という。)を44プロジェクトに適用。公募段階から知的財産マネジメントの基本方針を提示し、PMの主導の下、プロジェクト実施者に対して各プロジェクトの趣旨・目的に応じた知的財産マネジメントを推進した。	●平成28年度は44プロジェクト(うち新規12プロジェクト)に「NEDO知財方針」を適用。さらにこれまでの知財マネジメントの取組を研究・イノベーション学会や広報誌「Focus NEDO」を通じて情報発信。	

果を最大限事業化に結び			
つけるため、公募段階から	!		
	!		
以下の方針を踏まえた知	!		
的財産マネジメントの方	!		
針を提示するほか、機構が	!		
各プロジェクトの趣旨・目	!		
	!		
的に応じた知的財産マネー	!		
ジメントを主導する。	!		
・自ら事業化(成果を第三	!		
者に移転することによ	!		
り事業化を図る場合も	!		
	!		
含む。)することに意欲	!		
的な技術開発の受託者	!		
に対しては、優先的に知しては、優先的に知しては、	!		
的財産権を保有させる。	!		
HJ内/生催で休行でせる。 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			
・事業化に際し関係する知	!		
的財産権を効率的に活し			
用できるよう、プロジェー			
クト参加者間で保有す			
る知的財産権を相互に			
合理的な条件で実施許	!		
諾し合えるルールを定し	!		
める。	!		
・長期に亘り未活用な知的	!		
	!		
財産権を、国等の求めに	!		
応じ第三者に実施許諾	!		
するために、政府におい	!		
て策定される運用ガイ	!		
ドラインを十分に活用し	!		
	!		
する。	!		
・必要に応じ機構へのサブ	!		
ライセンス権の付与等	!		
を通じ、プロジェクトの	!		
成果を第三者に広く実	!		
	!		
施許諾する。	!		
・技術開発の受託者に知的			
財産権を帰属させても			
成果の事業化が見込ま			
れない場合など個別の	!		
事情に応じ、帰属先を柔			
軟に選択する。			
・優れた成果は国際的に展			
開すべきであることに			
鑑み、成果を日本で権利			
	!		
化する場合は、並行して	!		
市場展開を見込む諸外			
国でも権利化すること			
を原則とする。			
・権利化と同時に標準化を			
図る、権利化と秘匿化と			
を適切に組み合わせる			
などプロジェクトの計			
画段階から戦略を考え	!		
て対応する。			

者に対して知的財産権 取りの合きをという。 取策定を促すととる委権に関連を が設定を権に関整備を が設定を権に関整備を が設置等のらいる。 ののもでいる。 を ののもでのでいる。 ののでは、 がでいる。 ののでは、 がでいる。 ののでは、 がでいる。 とっと。 がでいる。 とっと。 とっと。 とっと。 とっと。 とっと。 とっと。 とっと。 とっ	施の書和会進じ支 口産 構と施の書い書和会進じ支 口産 構と施の書の書を集成の知道とのを ごをと政(「口るメンカーを関するを関するが、でるをでは、一方ので	「NEDO知財方針」適用プロジェクトについて、知的財産権の取扱いに関する合意文書の策定や知財運営委員会機能の整備を促進するともに、事業実施者における強い知的財産権の取得を奨励し、必要に応じて特許取得費用に対する支援を行った。また、適切な知的財産マネジメントを実施するため、必要に応じてINPIT知財プロデューサーの派遣依頼を行うことにより体制整備を図った。	
	また、事業実施者の事務負担を極力軽減することを目的として開始した機構への知的財産権に係る通知のオンライン手続について、利用拡大に努める。	機構への知的財産権に係る通知のオンライン手続の利用拡大化を図るため、事業者向け説明会での周知、アンケート調査を実施した。	
また、各年度期末における運営費交付金債務について、その発生要因等を厳格に分析し、減少に向けた努力を行うとともに、不正事案の発生を抑制するため、事業者側に不正に関するリスク管理等についての啓蒙の徹底を図るなど、不断の取組を一層強化するものとする。			
(c) 基盤技術研究促進事 基盤技術研究促進事 については、収益・売上 付の回収、管理費の低減 努め、欠損金の減少を進 る。第3期中期目標期間 においては、現在実施中 事業の終了後は、新たな 業の実施は行わないこ とする。	基盤技術研究促進事業については、収益・売上納付の回収、管理費の低減に努め、欠り損金の減少を進める。また、対策を対象を進める。また、対策を対象を進める。また、対策を対象を進める。また、対策を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を	(c) 基盤技術研究促進事業 基盤技術研究促進事業については、研究 成果の事業化の状況や売上等の状況につ いて95件の報告書を徴収し、研究委託先 等への現地調査を21回実施し、売上等の 納付の慫慂を行った。その結果、12件の 収益実績を確認し、総額約14百万円の収 益納付があった。	
ては、「好循環実現のた の経済対策」の競争力強 策のために措置された	金 平成28年度補正予算(第2号)により追加的に措置された交付金については、「21 世紀型のインフラ整備」の生産性向上へ向けた取組の加速のために措置されたことを認い、研究開発型ベンチャー・企業等の支援のために活用す	(d) 追加的に措置された交付金平成28年度補正予算(第2号)により追加的に措置された交付金については、21世紀型のインフラ整備のために措置されたことを踏まえ、「研究開発型ベンチャー支援事業」及び「中堅・中小企業への橋渡し研究開発促進事業」のために活用した。	

	平成26年度補正予算			
	(第1号)により追加的に			
	措置された交付金につい			
	ては、「地方への好循環拡			
	大に向けた緊急経済対策」			
	の現下の経済情勢等を踏り			
	まえた生活者・事業者への			
	支援、地方が直面する構造			
	的課題等への実効ある取			
	組を通じた地方の活性化			
	のために措置されたこと			
	を認識し、資源・エネルギ			
	一の安定供給、中小企業・			
	小規模事業者等の支援の			
	ために活用する。			
	平成27年度補正予算			
	(第1号)により追加的に			
	措置された交付金につい			
	ては、「一億総活躍社会の			
	実現に向けて緊急に実施			
	すべき対策」の一環として			
	生産性革命の実現のため			
	に措置されたことを認識			
	し、研究開発型ベンチャ			
	一、中堅・中小企業への研			
	究開発促進支援のために			
	活用する。			
	平成28年度補正予算			
	(第2号)により追加的に			
	措置された交付金につい			
	ては、「未来への投資を実			
	現する経済対策」の21世			
	紀型のインフラ整備のた			
	めに措置されたことを認			
	識し、研究開発型ベンチャ			
	一企業等の支援のために			
	活用する。			
			以上の内容を踏まえ、顕著な成果が出てい	
			ることから、本項目の自己評価をAとした。	
1				

<課題と対応>※独立行政法人通則法第二十八条の四に基づく評価結果の反映状況			
平成27年度評価における指摘事	項 平成29年度計画等への反映状況		
	(平成28年度における取組・平成29年度計画への反映)		
○平成27年度からPM(プロジェク	ト・マ ○平成28年4月から技術戦略研究センターとプロジェクト		
ネージャー)の権限強化による更	なるマ マネジメント室を統合するとともに、これまで個別作成さ		
ネジメント機能の強化、技術戦略	#究セ れていた研究開発プロジェクトのマネジメントに関連する		
ンターを設置したことによる技術	開発戦 複数のガイドライン等を整理・統合し、平成28年度に		
略及びこれらに基づき重要なプロ	ジェク は、プロジェクト・マネージャー (PM) に求められる機		
トを企画・立案・提示する等、引き	売き的 能や役割、過去の事例等を整理したPM「マネジメントカ		
確に実施していくことが必要である	イドライン新訂第1版」を作成。平成29年度は機構内で		
	普及、啓発を図る。また、技術戦略に基づくプロジェクト		
	については、内部事前評価に加えて外部事前評価も開始、		
	ナショナルプロジェクトの中でも非連続なイノベーション		
	の創出を目的とした特にリスクの高い事業を非連続ナシ		
	ナルプロジェクトとして選定する等、マネジメントの更		
	る高度化を平成29年度も引き続き行っていく。		
	(平成28年度における取組・平成29年度計画への反映		
○単なるプロジェクトマネジメント	Dみな ○平成26年4月に技術戦略研究センターを設置し、戦略		
らず、戦略策定から社会実装まで	と含め な研究開発プロジェクトを立案するため、新規予算要求		
た高度かつ広義の研究開発マネジ	メント 前段階から技術戦略を策定し、研究開発プロジェクトを		
を意識し、実行する組織への進化	が求め 想している。各プロジェクトの実施部署においては、新		
られる。	プロジェクトの構想段階からプロジェクトマネージャー		
	(PM) 候補を選定し、体制を整え、研究開発プロジェ		
	トの実施準備をしている。平成29年度は、現在実施中の		
	エネルギー・環境新技術先導プログラム等の先導研究と		
	連携を強めるなどして、研究開発プロジェクトの一層の		
	度化を進める。また、平成28年度からはプロジェクトの		
	運営に必要な知識やスキルを体系的に学べるPM育成講際		
	を新たに開始。 PM人材育成を図るため、職員向けに PM		
	育成講座や各種セミナーを引き続き開催。		
	○また、技術開発と標準化の一体的な推進や、追跡調査によ		
	りプロジェクトの実用化状況の把握に努めるとともに、つ		
	ッチング支援や成果情報発信等、プロジェクトの社会実績		
	を支援。		
	○特に人工知能の分野では、平成28年4月に、人工知能打		
	術に関するナショナルプロジェクト等の成果を、戦略的に		
	社会実装につなげることをミッションとする「AI社会写		
	装推進室」を設置するとともに「次世代人工知能技術社会		
	実装ビジョン」を公表し、社会実装に向けた目標の可視化		
1.1	を行った。また、総理指示により設立された「人工知能技		

術戦略会議」の下で、人工知能技術の社会実装を加速する
具体的な取組に着手している。
(平成28年度における取組・平成29年度計画への反映)
○技術開発プロジェクトの実施にあたって ○平成16年から研究開発プロジェクトの追跡調査を実施
は、成功事例だけではなく、失敗事例を踏し、成功要因や失敗要因の分析を実施している。なお、得ら
まえたフィードバックができるような工 れた結果を活用し、「マネジメントガイドライン新訂第1
大が必要ではないか。 版」を平成28年度内に作成し、平成29年度は機構内で普
及、啓発を図っていく。
(平成28年度における取組・平成29年度計画への反映)
○機構の支援を受けた中小・ベンチャー企 ○これまでは、NEDOインサイド製品においてNEDO事
業に焦点を当て、その開発成果が社会に 業の効果・便益の可視化及び体系化の調査を行ってきた
もたらす効果・便益の可視化及び体系化 が、対象が大企業中心であったため、平成28年度から、
を行うことが必要である。 中小・ベンチャー企業に焦点を当てた効果・便益の可視化
及び体系化の調査を実施し、調査対象とした645社の累
積売上高等を算出。
○平成29年度は、引き続き体系化に向けて、平成28年度
の調査結果に基づき、特に売上を伸ばしている成功事例の
調査分析等を実施。

I(イ)技術開発型ベンチャー企業等の振興

中長期目標	中長期計画	、業務実績等、年度評価に係 年度計画	主な評価軸(評価		:績等・自己評価	主務大臣による評
中政朔日倧	中区朔可凹	十度可凹 	の視点)、指標等	主な業務実績等	自己評価	土物八里による計
			2 DENIM (14 M. d	工作和分类的	<自己評価> A	評定
② 技術開発型ベンチャー	(イ) 技術開発型ベンチャ	(イ)技術開発型ベンチャー		(イ)技術開発型ベンチャー企業等の振	<自己評価の根拠>	HI/C
企業等の振興	一企業等の振興	企業等の振興		興		
経済の活性化や新規産	経済の活性化や新規産				●「シード期の研究開発型ベンチャー(ST	
		雇用の創出の担い手として、 新規性、機動性に富んだ技術		ムの発展を後押しするため「研究開発型ベンチャー支援事業」の中で以下の4事業を		
		開発型ベンチャーの振興が一		実施した。	追加認定した。認定VCの数は合計25	
一企業」等の振興が一層重	ーの振興が一層重要にな	層重要になってきていること		① 「NEDO Technology Commercialization	社・チームとなり、前年度比の2倍以上と	
		にも鑑み、ベンチャー企業へ		Program(TCP)」(平成26年度~)	なった。	
		の実用化助成事業における取 組等を一層推進し、必要な者		大学・企業等の研究者を対象としたビジネスプラン構築支援とマッチング機会の	┃ ●SCAに対する事業化支援制度を新たに	
		紅寺を一層推進し、必要は有 に対する専門家による海外を		イヘノノン構衆又仮とマッテング機会の 提供を組み合わせた研修プログラムとし	開始し、研究開発型ベンチャーに対するシ	
	者に対する専門家による			て実施。58件の応募から36件が書類審	ームレスな支援制度の拡充を行った。	
		介、知財戦略の策定等、機構		査を通過し、集合研修やメンタリングを受		
		による技術、経営両面での支		け、ピッチ形式でビジネスプランを発表		
など、NEDOによる技術・ 経営両面での支援機能を強		接機能を強化するとともに、事業者と政府系金融機関や民		(二次審査を東京及び大阪で、最終審査を 東京で実施)。	企業のうち、平成28年度は新たに3社が 上場。累計で19社が上場し、平成28年	
		間ベンチャーキャピタル等と		②「起業家候補(SUI)支援事業」(平		
		の一層の連携を通じて、資金		成26年度~)	億円を達成。	
		面での支援も図り、実用化・		事業化の専門家(起業家やVC等)であ		
ては、我が国におけるベン	との一層の連携を通じて、	事業化を一層推進する。		る事業カタライザーがビジネスプラン構		
デャー・エコンステムの情 築が重要であることに鑑	資金面での支援も図り、実 用化・事業化を一層推進す	上記事業の実施に当たって は、我が国におけるベンチャ		築に係る支援を行いつつ、研究開発に係る 資金的な支援を実施。55件の応募があ	中小企業等の採択額の割合は24.8% (新規採択額264.1億円のうち中堅・	
み、諸外国の先進的な取組		ー・エコシステムの構築が重		り、7件を採択し、支援を実施。	中小企業等の採択額65.4億円)となり、	
も参考にしつつ、海外から	上記事業の実施に当た	要であることに鑑み、諸外国		③「シード期の研究開発型ベンチャー(S	目標を上回る実績を達成。	
のベンチャーキャピタルや				TS) に対する事業化支援」(平成27年		
	ンチャー・エコシステムの 構築が重要であることに			度~) 機構が認定した民間ベンチャーキャピ		
ード・アクセラレーター等				タル等(認定VC)からの出資を条件とし		
		行うシード・アクセラレータ		て、機構からの研究開発に係る資金的な支		
	らのベンチャーキャピタ			援と認定VCによるビジネスプラン構築		
ルやシード・アクセラレー		我が国のベンチャーキャピタルやシード・アクセラレータ		の支援を提供する、VCとの協調支援を実		
	行うシード・アクセラレー			施。26件の応募があり13件を採択・交 付決定し、支援を実施。		
チャー企業等への支援を行		形で、技術開発型ベンチャー		また、国内外のVC、シード・アクセラ		
うものとする。		企業等への支援を行う「研究		レーター等を募集し、平成28年度には1		
		開発型ベンチャー支援事業」		5件を追加認定し、認定VCの数を25		
	セラレーター等の育成につながるような形で、技術			社・チームに拡充 (平成27年度3月時点 で12社・チーム)。		
		開発型ベンチャー企業を支援		④「企業間連携スタートアップ(SCA)		
		する国内外のベンチャーキャ		に対する事業化支援」(平成28年度~)		
	5.	ピタル、シード・アクセラレ		事業会社と共同研究等を行う研究開発		
	具体的には、創業期の技術開発型ベンチャー企業	ーター等を認定し、それらに よる出資を条件とした技術開		型ベンチャーに対して支援事業を創設。平成28年度新規事業として、72件の応募		
		発型ベンチャー企業への助成		放20年度利税事業として、72件の応募 から12件を採択・交付決定し、支援を実		
		事業を実施する。これによ		施。		
		り、我が国において、国内外		新規事業(「企業間連携スタートアップ		
		のベンチャーキャピタル、シ		(SCA) に対する事業化支援」) の創設		
	を条件とした技術開発型ベンチャー企業への助成	ード・アクセラレーター等が 活発に活動する状況を作り出		により、「研究開発型ベンチャー支援事業」 として、シーズ発掘から民間リスクマネー		
		し、それにより技術シーズを		の獲得、事業化の支援に至るまでのシーム		
	り、我が国において、国内	基にしたベンチャー企業が創		レスな支援環境の構築と強化を実現し、べ		
	外のベンチャーキャピタ	出され、その状況が更なる投		ンチャー・エコシステムの構築を行った。		

	各ガのな な施。 額の 8% う	加えて、キャラバン活動等による全国 地での説明会や、新大国コンソーシア のスキームを活用した公募情報の共有 ど、積極的な案件の掘り起こしを実 。この結果、平成28年度の新規採択 に占める中堅・中小・ベンチャー企業 採択額の割合は、目標を上回る24. %(新規採択額264.1億円の ち中堅・中小企業等の採択額6	以上の内容を踏まえ、顕著な成果が出ていることがなった項目の自己証価をAとした。
を目指す。	う t 5. での		以上の内容を踏まえ、顕著な成果が出ていることから、本項目の自己評価をAとした。

I (ウ) オープンイノベーションの推進

3. 中長期目標、中長期計画	3. 中長期目標、中長期計画、年度計画、主な評価軸、業務実績等、年度評価に係る自己評価及び主務大臣による評価					
中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	注 績等・自己評価	主務大臣による評価
			の視点)、指標等	主な業務実績等	自己評価	
					<自己評価> A	評定
も外部の技術・知識等を活 用する「オープンイノの が世界的 ション」の企業ので 進展し、企業ので 進展し、となって 当要とながの 大、重要め、 イベースと で がの で 、 の た、 を 、 の た、 を 、 り 、 り 、 り 、 り 、 り 、 り 、 り 、 り 、 り	ョ かいつをべ的争い業ョ産援マ中新化機と行いいた。 とめいつをがいつをがいの事性のようでは、これののは技がのないで知り、要のがはないで知り、要のがはないで知り、要のがはないで知り、要のがはないであるがでである。 これののののはないで知り、要のがはないがは、つばいるののののののでは、これののののののでは、これのののののでは、これのののののでは、これののでは、これのでは、	ンでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなでは、大きなが、大きなでは、大きなでは、大きなでは、大きなが、大きなが、大きなが、大きなが、大きなが、大きなが、大きなが、大きなが		より、技術のでは、はないでなになるになるになるになるになるになるになるになるになるになるになるになるになる	件を新規採択。また、平成28年度末時点で橋渡し研究機関として192機関を確認。 ●新輸出大国コンソーシアムの関連施策として192機関をである。 新輸出大国コンソーシアムの関連施策としての専力のでは、力を主力では、新輸出大国連携のでは、新輸出なりのでは、新聞のでは、一のシアムの推進を受けた17件をです。 ●をおり、17件をでは、アークショーのが、アークショーのが、18年度をでは、アークショーのが、19により	

展開等我が国全体の動きに繋げていくことが重要である。 用の場 産学官連携協議会」との相互協力を表明し、NEDOビッチアグリテック特集を開催。また、地方展開については、オープンイノベーション協議会の活動として、関西経済同友会等の関係機関と連携し、マッチングイベントである「NEDOドリームピッチ in 関西」を平成29年1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 「オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 「平成28年度における取組・平成29年度計画への反映」 「オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失	<課題と対応>※	独立行政法人通則法第二十月	\条の四に基づく評価結果の反映状況
○オープンイノペーション協議会の活動を 更に活発化し、関係機関と連携の上、地方 展開等我が国全体の動きに繋げていくことが重要である。 ○機構が事務局を努めるオープンイノペーション協議会に、 平成28年10月に農林水産省所管の「「知」の集積と活 用の場 産学官連携協議会」との相互協力を表明し、NE DOビッチアグリテック特集を開催。また、地方展開については、オープンイノペーション協議会の活動として、関 西経済同友会等の関係機関と連携し、マッチングイペントである「NEDOドリームビッチ・前関西」を平成29年 1月に大阪にて開催。NEDOとしては、平成29年1月に大阪にて開催。NEDOとしては、平成29年0月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノペーション協議会は、平成29年度は、オープンイノペーション・ベンチャー創造協議会として、マッチングイペントやワークショップ等の取組を推進していく (平成28年度における取組・平成29年度計画への反映) ○オープンイノペーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 ・グオープンイノペーション自書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行	平成27年度	評価における指摘事項	平成29年度計画等への反映状況
更に活発化し、関係機関と連携の上、地方 展開等我が国全体の動きに繋げていくことが重要である。 DOピッチアグリテック特集を開催。また、地方展開については、オープンイノベーション協議会の活動として、関 MEDOドリームピッチ in 関西」を平成29年 1月に大阪にて開催。NEDOとしては、平成29年 1月に大阪にて開催。NEDOとしては、平成29年 1月に北海道経済産業局と「No Maps NEDO Dream Pitch」を 開催。 ・オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していて、は、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 「本ープンイノベーション協議会は我が国のオープンイノーションの推進事例等をまとめ、成功要因等を分析・提示を行うことが必要ではないか。 「本ープンイノベーション自書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			(平成28年度における取組・平成29年度計画への反映)
展開等我が国全体の動きに繋げていくことが重要である。 用の場 産学官連携協議会」との相互協力を表明し、NE DOピッチアグリテック特集を開催。また、地方展開については、オーブンイノベーション協議会の活動として、関西経済同友会等の関係機関と連携し、マッチングイベントである「NE DOドリームピッチ in 関西」を平成29年1月に大阪にて開催。NE DOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 「オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショッブ等の取組を推進していく。 「平成28年度における取組・平成29年度計画への反映」のオープンイノベーション的推進を対する取組・平成29年度計画への反映」のオープンイノベーション的機会は我が国のオープンイノバーションの推進事例等をまとめ、成功要因等を分析・提示したオープンイノベーション自書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行	○オープンイノ〜	ベーション協議会の活動を	○機構が事務局を努めるオープンイノベーション協議会は、
とが重要である。 DOピッチアグリテック特集を開催。また、地方展開については、オープンイノベーション協議会の活動として、関西経済同友会等の関係機関と連携し、マッチングイベントである「NEDOドリームピッチ in 関西」を平成29年1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 Oオープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) Oオープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 大力・プンイノベーションの推進事例等をまとめ、成功要因等を分析・提示になって、大力・プンイノベーションの推進事例等をまとめ、成功要因等を分析・提示になって、大力・プンイノベーションの推進事例等をまとめ、成功要因等を分析・提示になって、大力・プンイノベーションの推進事の場合をは、アク析を行うこととし、平成29年度中にとりまとめを行うたととし、平成29年度中にとりまとめを行	更に活発化し、	関係機関と連携の上、地方	平成28年10月に農林水産省所管の「「知」の集積と活
いては、オープンイノベーション協議会の活動として、関 西経済同友会等の関係機関と連携し、マッチングイベントである「NEDOドリームピッチ in 関西」を平成29年 1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 にオープンイノベーション自書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行	展開等我が国金	全体の動きに繋げていくこ	用の場 産学官連携協議会」との相互協力を表明し、NE
西経済同友会等の関係機関と連携し、マッチングイベントである「NEDOドリームピッチ in 関西」を平成29年1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 で分析を行うこととし、平成29年度中にとりまとめを行	とが重要である	5.	DOピッチアグリテック特集を開催。また、地方展開につ
である「NEDOドリームピッチ in 関西」を平成29年 1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 で分析を行うこととし、平成29年度中にとりまとめを行			いては、オープンイノベーション協議会の活動として、関
1月に大阪にて開催。NEDOとしては、平成28年10月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 「はないか。 1月に大阪にて開催。NEDOとしては、平成28年3月に公表の財産場合きであり、平成29年度計画へのを開発した。 「本のである。」では、中央では、東のでは、東のでは、大り事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			西経済同友会等の関係機関と連携し、マッチングイベント
月に北海道経済産業局と「No Maps NEDO Dream Pitch」を開催。 ○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 「本ープンイノベーション協議会は我が国のオープンイノベーションの推進事例等をまとめ、成功要因等を分析・提示したオープンイノベーション自書を平成28年7月に公表。次期自書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			である「NEDOドリームピッチ in 関西」を平成29年
開催。			1月に大阪にて開催。NEDOとしては、平成28年10
○オープンイノベーション協議会は、平成29年3月にベンチャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 で分析を行うこととし、平成29年度中にとりまとめを行			月に北海道経済産業局と「No Maps NEDO Dream Pitch」を
チャー創造協議会と合併したところであり、平成29年度は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 (本のでは、実験事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			開催。
は、オープンイノベーション・ベンチャー創造協議会として、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) (オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 はないか。 (本のでのでは、大り多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			○オープンイノベーション協議会は、平成29年3月にベン
て、マッチングイベントやワークショップ等の取組を推進していく。 (平成28年度における取組・平成29年度計画への反映) (オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 (本オープンイノベーション協議会は我が国のオープンイノベーションの推進事例等をまとめ、成功要因等を分析・提示をオープンイノベーション自書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			チャー創造協議会と合併したところであり、平成29年度
で分析を行うこととし、平成29年度中にとりまとめを行			は、オープンイノベーション・ベンチャー創造協議会とし
 ○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 (平成28年度における取組・平成29年度計画への反映) ○オープンイノベーション協議会は我が国のオープンイノベーションの推進事例等をまとめ、成功要因等を分析・提示したオープンイノベーション白書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行うたととし、平成29年度中にとりまとめを行る。 			て、マッチングイベントやワークショップ等の取組を推進し
○オープンイノベーションの推進については、具体的ビジネス(成功例)の創出や失敗事例の分析・提示を行うことが必要ではないか。 ○オープンイノベーション協議会は我が国のオープンイノベーションの推進事例等をまとめ、成功要因等を分析・提示したオープンイノベーション白書を平成28年7月に公表。次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行			ていく。
は、具体的ビジネス(成功例)の創出や失 敗事例の分析・提示を行うことが必要で はないか。 にはないか。 にはないか。 にないか。 にないが。 にないが。 にないが。 にないが、 にはいが、 にないがはいが、 にはいが、 にはいがはいがはいが、 にはいがはいがはいがはいがはいがはいがはいがはいがはいがはいがはいがはいがはいがは			(平成28年度における取組・平成29年度計画への反映)
敗事例の分析・提示を行うことが必要で たオープンイノベーション白書を平成28年7月に公表。	○オープンイノ	ベーションの推進について	○オープンイノベーション協議会は我が国のオープンイノへ
次期白書については、失敗事例も含めて、より多角的な視点で分析を行うこととし、平成29年度中にとりまとめを行	は、具体的ビシ	ジネス (成功例) の創出や失	ーションの推進事例等をまとめ、成功要因等を分析・提示し
で分析を行うこととし、平成29年度中にとりまとめを行	敗事例の分析	・提示を行うことが必要で	たオープンイノベーション白書を平成28年7月に公表。
	はないか。		次期白書については、失敗事例も含めて、より多角的な視力
う。			で分析を行うこととし、平成29年度中にとりまとめを行
			う。

I(エ)国際共同事業の推進

3	3. 中長期目標、中長期計画、年度計画、主な評価軸、業務実績等、年度評価に係る自己評価及び主務大臣による評価							
	中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	績等・自己評価	主務大臣による評価	
				の視点)、指標等	主な業務実績等	自己評価		
						<自己評価> B	評定	
	術を持つ内外の企業によるト国際共同研究アロロのがアロロのがアロロのがアロロのがアロロのがアロロのがアロロのがアロロの	に技力の機実で端業ロがメフ金試進国に技力の機関をつれて、外研が記述のののののののののののののののののののののののののののののののののののの	我外情では、全国の大学を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を表示を		(エ) 東京 (本) 東京	◇自己評価の根拠> ●コファンド事業の対象国・案件の拡大を図り、平成29年3月にドイツ連邦経済エネルギー省(BMWi)と「研究・開発及びイノベーションに関わる相互協力に係る共同声明」に調印。		

I	よた 流外機関しの国際	よち 海外機長
	また、海り、Windows を 連次で係とび等十換構ざ化事扱整。 を関いて係とび等十換構ざ化事扱整。 を関いて係とび等十換構ざ化事扱整。 を関いて係とび等十換構ざ化事扱整。	携に関とくてた協をさいる。 りW、に等分定け、の時間では、のは、ののでは、のは、のでは、のでは、のでは、のでは、のでは、のでは、ので

関との国際連 にとってのW 関係を構築す と相手国双方 く可能性のあ て、その有効 た上で、情報 協力関係の構 を推進する。 ざる技術流出 図る観点か の実施者の成 いての仕組み るものとす

平成28年度においては、事業に係る 協力協定 (MOU) を16件、国際機関 等との協力関係構築に係るMOUを2 件、合計18件を締結した。

事業に係るMOU16件については、 これを締結することにより、相手国事情 により遅延等が発生しやすい国際事業の 進捗を後押し、事業を着実な実施へと導 いた。また、当該MOUにて成果の取り 扱いに関しても取り決めることにより、 技術流出の防止に努めた。

国際機関等との協力関係構築に係るM OU2件では、チェコ技術庁(TAC R) 及びロシア連邦技術発展庁(AT D) との協力に向けた情報交換に関する 覚書を締結。特に後者は、ロシアの産業 近代化・効率化を目指し海外からの技術 導入を進めるためにプーチン大統領が今 年5月に設立した機関であり、当該機関 と協力関係を築くことで、ロシアにおけ る日本の先進的技術の普及と課題解決に 貢献することが期待される。

その他、従前から協力協定を締結して いる機関との関係については、アジア開 発銀行(ABD)からは、平成28年6 月にACEF (Asia Clean Energy Forum) セミナーに招待され、機構のイノ ベーションに関する取組について講演を 行った。

国際連合工業開発機関(UNIDO) との関係では、第6回アフリカ開発会議 (TICADVI) サイドイベントにて講 演を行い、国際的な場においてNEDO 及び日本のエネルギー技術普及に向けた 取組の訴求に貢献した。

第3回ICEFでは、従前からのMO U締結による協力関係を活用し、ADB 総裁、UNIDOエネルギー部部長、I EA等、エネルギー・環境分野について 国際的に権威ある機関による講演を実 施。低炭素社会実現に向けた国際連携の 深化に貢献した。

- ●安倍総理大臣の訪露に伴い、ロシアのプー チン大統領が、海外からの技術導入を進め るために平成28年5月に設立したAT DとMOUを締結(日本は初の締結国の一 つ)。ロシアでの日本の技術普及への貢献 が期待される。
- ●日本政府が主導し、国連等が共催するアフ リカ開発会議 (TICAD) について、U NIDOとの協力関係に基づき、第6回ア フリカ開発会議(TICADVI)で講演を

以上の内容を踏まえ、着実な業務運営がな されていることから、本項目の自己評価をB とした。

I(オ)技術開発成果の事業化支援

3.	. 中長期目標、中長期計画、年度計画、主な評価軸、業務実績等、年度評価に係る自己評価及び主務大臣による評価							
	中長期目標	中長期計画	年度計画	主な評価軸(評価の	法人の業務実	経績等・自己評価	主務大臣による評価	
				視点)、指標等	主な業務実績等	自己評価		
						<自己評価> A	評定	
	成果を事業活動において 活用しようとする者に対 する出資(金銭の出資を除 く。)並びに人的及び技術 的援助を行う。加えて、産	ーションの創出を図の成語の の研究開発の研究開発の の研究開発の の研究開発の の成話 ののの のの のの のの のの のの のの のの のの	究開発の成果を事業活動において活用しようとする者の出資(金銭の出びに入め及びに入め及びに入り及びに入り及びに入りででは、一次のでは、一次では、一次では、一次では、一次では、一次では、一次では、一次では、一次		(オ)技術開発成果の事業化支援 中堅・中小・ベンチャー企業に対する事 業化支援の一環として、金融機関への仲立 ちを行うことによる連携支援を実施した。 具体的には、資金需要のあるNEDO事業 者を(株)産業革新機構(INCJ)や(株) 日本政策金融公庫(JFC)への推薦を行 うことで、出資や融資の実行につな資推薦を ネス展開を後押し。INCJへ出資推薦案 件を7件推薦し、平成28年度は2件の出 資が決定。さらに、JFCへ融資推薦案件 を3件推薦し、平成28年度は2件の融資 が決定した。	薦。また、平成27年度に23社の事業者を推薦し、2社が出資を獲得していたが、平成28年度に新たに2社が出資を獲得した。また、JFCに対しては、3社の事業者を推薦。また、平成27年度に10社の事業者を推薦し、1社が融資を得ていた		
	がるよう、NEDOとして 事業者に対し、技術開発成 果を経営において有効に	がるよう、機構として事業 者に対し、技術開発に 、技術開効に 、技術開効に がて有効に がの効果的方策、 で 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	技術・は 大術に 大術に 大術に 大術に 大術に 大術に 大術に 大名対に 大名対に 大名対に 大名が 大名が 大名が 大名が 大名が 大名が 大名が 大名が		技術開発の成果を速やかに実用化・事業化につなげられるよう、提携先とのマッチングが重要であることから、採択時に後の成果の事業化に向けた方向性を確認するとともに、中間評価での有識者か事業化に向けた方向性を修正するなど、実用化・事業化に向けた取組を推進した。また、新輸出大国コンソーシアムの関連施策として、JETRO等との連携とのて、「平成28年度中堅・中小企業への下平成28年度中堅・中小企業への共享といる。	MapsやNEDOドリームピッチin 関西など、これらの取組を地方にも展開。		
		実現に資するものとして 実施する事業については、 事後評価等により得られ た知見を基に、技術経営力 の強化に関する助言業務	術経営力の強化に関する助言 業務の観点も踏まえ、事業実 施者に対して必要なアドバイ		事業者の抱える経営面での課題等を解決し、成果の最大化を図るため、事業実施者への技術経営力の強化に関する助言業務を13社に対し31回のアドバイスを実施した。	ライザー)からの助言を13社に対し延べ 31回実施。事業化・資金調達の達成、事		
		また、事業者の技術経営 力の強化に向けた業務の 一環としての観点も踏ま えつつ、良質な技術シーズ	また、事業者の技術経営力 の強化に向けた業務の一環と しての観点も踏まえつつ、良 質な技術シーズを発掘するた め、機構の事業に対する応募	_	また、事業者の技術経営力の強化に向けた業務の一環としての観点も踏まえつつ、 良質な技術シーズを発掘するため、機構の 事業に対する応募に係る相談対応を10 回(120組)以上実施し、全国の公設試験			

談対応を毎年度2回以 実施する。	相 に係る相談対応を6回以上実 上 施するとともに、全国の公設 試験研究機関等での出張説明 会(キャラバン活動)を積極 的に行う。	研究機関等での出張説明会(キャラバン活動) を積極的に行った。	
	準基化準	に係る取組を含んだ基本計画数:30件・機構の事業におけるISO・IEC・JIS等の国内審議団体又はISO・IE	 ●標準化に係る取組について、平成28年度は30件(目標値30件程度)のプロジェクト基本計画に記載。 ●プロジェクトの成果に係る標準案について、平成28年度は8件(目標値5件程度)を提案。目標を上回って達成するなど、技術開発成果を普及させるための国際標準化の取組を積極的に推進。
ザーにサンプル提供し、その評価結果から課題を抽出するサンプルマッチングを行う等、技術開発の別知に係る支援を行うものとする。 ボーにサンプルマッチングを行う等、技術開発の開拓に係る支援を行うをより多く、迅速には一を変異をして、技術開発がある。 ボーにサンプルマッチングを行う等、技術開発の関拓に係る支援を行うをより多く、迅速果発の成を変として、技術開発の成をより多とともに、技術開発の成をよりるとなるという。 なより多く、迅速果発の成を変として、技術開発の成をは、一ずのよりのがである。 ボーにサンプルマッチングを行う等、技術開発にして、技術開発の関係を変える。成果のののでは、大きなのでは、大きなのでは、大きないのではないのでは、大きないのでは、ないのでは、ないのでは、大きないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのでは、ないのではないのでは、ないのではないのではないのではないのではないのではないのではないのではないのでは	開く行果に事果提課マク環事制実課係でと場場が行果に事果提課マク環事制実課係でといる、に結加業」連実、用がにたッ普技なととりる、に結加業」連実、用がにたッ普技なととりる、に結加業」連実、用がにたッ普技なととりる、に結加業」連実、用がにたッ普技なととりる、に結加業」連実、用がにたッ普技なととりる。に結加業」連実、用がにたッ普技なととりる。に結加業」連実、用がにたッ普技なととりる。に結加業」連実、用がにたッ普技なととりる。に結加業」連実、用がにたッ普技なととりる。に結加業」連実、用がにたッ普技などとりる。に結加業」連実、用がにたッ普技などとりる。に結加業」連実、用がにたッ普技などとりる。には加業」連実、用がにたッ普技などとりる。には加業」連実、用がにたッ普技などとりる。には加業」が表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表	技術開発成果をユーザー・市場・用途開拓に係る支援を行うため、「追加実証・用途開拓研究支援事業(サンプルづくり支援と開拓研究支援事業)」を実施し、平成28年度はイノベーションリーが、下のKYOイノベーションリーがサミット等の展示会で1,236件、マッチング会・ピッチイベントで76件のマッチングをアレンジした。	

平成27年2月に日本経済 再生本部が決定した「ロボット新戦略」を具現化するため、 その推進主体である「ロボット革命イニシアティブ協議 会」の中の「ロボットイベーションWG」の運営や、同 戦略において2018年及び 2020年に実施が掲げられているロボットの国際競技大会の開催に向けた準備を実施する。これらの取組を通じ、ロボット及びその要素技術の研究開発の加速及び社会実装に寄与する。		回開催した。平成27 書は、「ロボット活用 発プロジェクト」、「ロ 及び「World Robot ボットの国際競技大 た映した旨を会員に報 けた準備については、 に9回の実行委員会 開催して具体的な開 定した。平成28年 業大臣が当該大会の いて記者会見で発表。 ては、機構の委託事業 の管理運営を行う資	
	 <課題と対応>※独立行政法人通則法第二十/		
	平成27年度評価における指摘事項	平成29年度計画等への反映状況	
		(平成28年度における取組・平成29年度計画への反映)	
	○中堅・中小・ベンチャー企業の技術の実用	○事業会社と共同研究等を行う研究開発型ベンチャー企業に	
	化支援については、大企業と中小・ベンチ	対する助成事業(企業間連携スタートアップ(SCA)に	
	ャー企業の連携強化への取組が必要では	対する事業化支援)を新たに開始(平成28年10月3日	
	ないか。	公募開始)。平成29年度は、経済産業省が5月にとりま	
		とめた「事業会社と研究開発型ベンチャー企業の連携のた	
		めの手引き(初版)」を活用しつつ、大企業を含む事業会	
		社と研究開発型ベンチャー企業の連携強化及び研究開発型	
		ベンチャー企業の事業化の促進を実現していく。	
		○オープンイノベーション・ベンチャー創造協議会の活動の	
		中で、オープンイノベーションを推進。「NEDOピッ	
		チ」への参加により、具体的な事業連携事例(エネフォレ	
		スト(株)と(株)白青舎の事業連携等)が創出されてお	
		り、引き続き具体的な連携事例(事業提携・資金調達等)	
		を創出することを目的に「NEDOピッチ」を原則毎月第	
		4 火曜日に継続して開催。	

I(カ)情報発信等の推進

3	中長期目標、中長期計画	、年度計画、主な評価軸	、業務実績等、年度評価に係	系る自己評価及び主務	大臣による評価		
	中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	績等・自己評価	主務大臣による評価
				の視点)、指標等	主な業務実績等	自己評価	
						<自己評価> A	評定
	Rを行うなど、産業界、Nれのリンスをといる。 を行うなど、対り得成により得成により得成により得成により得成により得成になりのは、ののののでは、ののののでは、では、では、では、では、では、では、では、では、では、では、では、では、で	持る国か事成ここるに選をを機たのき信のそ版を製作る国か事成ここるに選をを機たのき信のそ版を製作ると、でをにま術るしうめの体えかに告と、でをにま術るしうめの体えかにという要成さい開す構でと、でをにま術るしうめの体えかにを、でをにまがあるり、情ーとじんのより、でをにまがあるり、情ーとじんのより、でをにまがあるり、情ーとじんのより、でをにまがるしたののは、こ、事的化やソう要国とにをがした。でをにまがるしたののは、こ、事的化やソう要国とにあると、でをにまがると、でをは、発うがいトく信界、れ果続発ン。語体世のを点、発るがいトく信界、れ果続発ン。語体世のを点、発るがいトく信界、れ果続発ン。語体世	きわかりやすい情報の発信、 幅広いソリューションの提供 を行うこととする。その際、 必要に応じ、英語版を含む外 国語版の媒体を製作すること により、世界への情報発信を 行う。		(カ)情報発信等の推進 平成28年度は、NEDOプロジェクトの成功事例を紹介するWebコンテンツ「NEDO実用化ドキュメント」に中小・ベンチャー企業案件を中心に5事例を選定してきた。 規掲載。また、新たに7事例を選定に、過去作成29年度の公開を予定。さらに、過去作成29年度の公開を予定。さら語)し、展示会等で配布した。 機構がこれを第一で配布した。 機構がこれを第一で配布した。 機構がこれを第一で配布とでするが、大人でである。 世界への情報発信を強化し、「Focal ととする。世界への情報発信を強化し、「Focal ととということとである。世界への情報発信を強化し、「Focal とということとである。世界への情報発信を強化し、「Focal とということとである。」106件、ニューの6件の方に表現し、英語版Webサイトのコンカーである。 「世界への情報発信を強化し、「Focal によって、表情である。」106件、ニューの6件のコンカーである。 「世界への情報発信を強化し、「Focal によって、表情である。」106件、ニューの7年によって、表情である。	<自己評価の根拠> ●「NEDO実用化ドキュメント」については、平成28年度から、今後、活躍が見込まれる中小・ベンチャー企業の実用化の促進を目指し、それらを中心に掲載することを開始。また、これまでの掲載案件を、「NEDO研究開発マネジメントガイドライン新訂第1版」において、マネジメントの成功事例として紹介。(平成28年度)	
	また、特に産業界との関係にでは、NEDOのうでは、NEDOのうでは、NEDOううでは、NEDOううで、NEDOうでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、では、のでは、というでは、というでは、ないでは、というでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ない	層深めてもらうとともに、 産業界のニーズや経営方 針を反映するため、最高経 営責任者(CEO)をはじ めとする企業経営層との 一層の連携強化を図り、終	特に、産業界との関係にで を業界の関係にで を業界の認識を一産業界の関係に を関係に を関係に を関係に を関係に を関係に を関係に を関係に を対象に を対象を を対象を を対象を を対象を を対象を を対象を を対象を のったの のったの のったの のったの のったの をのったの をのったの をのったの をのったの をのったの をのったの をのったの のったの		可能な限り機構と委託先企業の経営層が直接会い、組織レベルで事業を継続的平 実施することの確認を行った。また、 28年度においては、機構の認識・一 で事業ともに、産業界のに対してもらうとともに、産業界のに対してもらうとともに、産業界のに対して、産業経営層をでは、 営方針を反映するため、る企業経営層をでは、 登場を事業をでする。 で、との、とはじめとする企業経営層をで、 で、との、とはじめとする。 で、との、とはじめとする。 で、との、とはじめとする。 で、との、とはじめとする。 で、との、との、との、との、との、との、との、との、との、との、との、との、との、		

(i) 国民へのわかりやす い成果の情報発信、提供の ため、対象に応じた、成果 の映像、印刷物、ホームペ ージ等の媒体の製作、提 の開催及び出展等を行う。

特に、機構の最新の取組 媒体については、必要に応 版を作成する。

国民一般を対象とした 広報、情報発信について は、特に、記者発表回数や 現行水準以上とする。

象とした広報、情報発信に ついては、特に、科学技術 実施する。また、アンケー 果に応じて内容を見直す。

(i) 広報誌として、技術開 発成果の最新情報や機構が取 り組む様々な活動の紹介など をわかりやすく掲載した「F ocusNEDO」を4回発 供、成果発表会、展示会等 | 行するとともに、英語版につ いても作成する。

国民への情報発信及び国内 等を紹介する機関誌につり外で実施する事業の社会的貢 いては年4回以上発行す 献、意義を伝えるために、報 るとともに、分野ごとのパ┃道機関に対し積極的アピール ンフレットについては定しを行うべく、各部門の技術開 期的に更新する。これらの | 発成果についてニュースリリ | 一スを実施する。加えて、記 じて英語版を含む外国語 | 者会見や報道機関に対して実 際の研究内容又は研究現場を 公開して理解を深めてもらう 現場見学会を計10回以上実 施する(うち3回以上を現場 来場者1万人超の一般向 | 見学会とする)。また、トップ け展示会出展数を毎年度 広報の一環として理事長等の 出席する記者懇談会を2回以 我が国の次世代の技術 | 上実施する。さらに、機構が 開発を担う小中学生を対 取り組んできたエネルギー・ 環境技術開発、産業技術開発 の社会への貢献を広く国民に 館の展示内容の充実を図 | 理解してもらえるよう、各種 るとともに、子ども向け啓 成果報告会の開催、セミナー・ 発事業を毎年度3回以上 シンポジウムの開催、来場者 1万人紹の展示会を中心に出 ト等を通じてこれらの効 展等を行う。また、地域にお 果について検証し、その結 | いて事業の成果や事業活用事 例等の紹介を行うため、全国 5か所でNEDOフォーラム を開催する。一般国民への分 かりやすく迅速な情報発信と して、ホームページのコンテ ンツについて、随時アップデ ートを行う。また、ニュース リリース等の英文での発信を 積極的に実施するなど、海外 向けの英語コンテンツの充実 を図る。

> おいて積極的に展開するほ か、小中学生向けのイベント 等、啓発事業を3回以上行う。 受け手に分かりやすい情報 発信を行うよう引き続き広報 部から各部への業務支援等を 行い、機構全体での広報活動

の強化を図る。

我が国の次世代の技術開発

を担う小中学生を対象とした 情報発信は、科学技術館等に

(i) 広報誌として、技術開発成果の最新 情報や機構が取り組む様々な活動の紹介 などをわかりやすく掲載した「Focus NEDO」を4回発行した。また、平成2 7年度発行分も含め翻訳作業を行い、英語 版を5回発行した。

国民への情報発信及び国内外で実施す る事業の社会的貢献、意義を伝えるため に、マスメディアに対し積極的アピールを 行うべく、各部門の技術開発成果等に関し ては156件のニュースリリースと、10 件の記者会見、17件の現場見学会等を実 施した。また、トップ広報の一環として理 事長が出席する記者懇談会を4回実施し

さらに、機構の成果を国民、社会へ還元 する観点から、9件の成果報告会、70件 のセミナー・シンポジウムを開催し、来場 者1万人超の展示会を中心に15件出展 も実施した。その他にも、中小企業をトピ ックとした「NEDOフォーラム」を全国 の9ヶ所で開催し、各地域における企業・ 大学等にNEDOの存在を示した。また、 継続的に科学技術館で展示を実施した。

子ども向け啓発事業としては、「経済産 業省子どもデー」、「さいわい子どもエコフ ェア」、及び「科学とあそぶ幸せな一日」 においてソーラーカー工作教室を実施し た。さらに、川崎市立小倉小学校において 出前授業を開催した。

また、平成28年5月に開催された伊勢 志摩サミットにおいて、国際メディアセン ターに設置された展示スペースでの展示 協力を実施。「インフラ・交通カテゴリー」 でセルロースナノファイバーや人工クモ 糸などの革新材料分野の成果を展示し、 「医療・保健」カテゴリーでは、ロボット スーツやパーソナル・モビリティといった 介護ロボットを展示・デモ等を行った。さ らに、平成29年3月にドイツで開催され たドイツ国際情報通信技術見本市(CeB IT 2017) に出展。センサーやスマ ートデバイスといった Io Tやロボット、 AIに関する次世代の最新技術や、ドイツ で実証を行っているスマートコミュニテ ィ・プロジェクト等を紹介した。

- ●第2期中期計画最終年度(平成24年度: 69件)に比較し、ニュースリリースは 年々増加(平成25年度:75件、平成2 6年度:101件、平成27年度:145 件、平成28年度:156件)しており、 発信する情報量を充実させている。
- Innovation for Cool Earth Forum(ICE F)や伊勢志摩サミット、CeBITなど、 政府と一体となったイベント開催・出展を 行い、広報効果の最大化を目指した。

	ギー及び環境分野へのでは、中長期な視野で様々とその幅広い波とでり、担握することでは、中長を収集、把握することでは、独身の、により、、毎年度、特報発信を行う。	とした産業技術、エネルギー及び環境のでは、工業では、工業では、工業では、一長期に、工業のでは、一長期に、一人のではないのではないのではないのではないのでは、一人のでは、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	要112製品に関する売上げや費用対効果を平成27年度に試算した結果について、機構ホームページ及び評価ワークショップを通じて広く情報発信を実施。さらに、機構ホームページ及び評価を実施ときるいで、平成28年度は試算対象の主要製品を112製品から115製品に拡大し、金利等による割引処理や物価変動も考慮した上で、売上げ、市場シェア、一次エネル度とする評価を実施した。さらに平成28年とする評価を実施した。さらに平成28年に参画した中堅・中外・ベンチャー企業に焦点を当て、その開化化及び体系化を試みた。 具体的には、NEDO事業に参画した延、水経関に対して、実用化達成の事例に対して、実用化達成功して、実用化達成功とであるとともに、別を関連を行うとともに、別を関連を行うとともに、別を関連を行うとともに、別を関係のファンディング機能をもつ欧米の9年、10機関から17件のインパクトにより、次年度以降の調査を行うとでの有益な視点を抽出した。それらの結果は、機構ホームページを通じて広く情報発信を実施。	ディング機関ADEMEが注目。先方が比較分析を実施。 ●中小・ベンチャー企業にフォーカスした調査を開始。842件を分析し高い実用化率の達成と経済効果を把握。
に発表することによ 業とのマッチングの	を積極的 性、学会等との連携によるを では、事業を でのののののののののののののののののののののののののののののののののののの	政府の施策、学会等との連携等の施策、学会等との実施策の施策、学会等の実施で得られた。 一個では、事業をはいる。 一個ででは、事業をはない。 一個では、事業をはない。 一個では、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、の	- (iii) 国内では「Japan Robot Week 2016」 (平成28年10月)、「nano tech 2017」 (平成29年2月)等の大規模展示会を含め、計21件の展示会に出展し、広く取組や成果を紹介した。また、中小・ベンチャー企業等の成果普及の一貫として、ビジネスマッチングを目的とした「イノベーション・ジャパン2016」(平成28年8月)をJSTと共同で開催した。	
	(iv) 内外の技術開発マネジメント機関との情報交換を実施するとともに、イノベーション、技術開発マネジメント及びプロジェクト・マネジメント関係の実践的研究発表として、セミナー、学会、シンポジウ	メント機関との情報交換を実施するとともに、イノベーション、技術開発マネジメント及びプロジェクト・マネジメント関係の実践的研究発表として、セミナー、学会、シンポジウム、内外の学会誌、専門誌等に機構自身として20本	- (iv) イノベーション、技術開発マネジメント及びプロジェクト・マネジメント関係の実践的研究発表として、セミナー、学会、シンポジウム、内外の学会誌、専門誌等に機構自身として28本の発表を行った。	

(v) これまでに蓄積され た技術開発プロジェクト ける採択審査委員会、プロ ジェクトの途中及び事後 における評価委員会等を 関係やその他の関係各方 用し、技術経営力の強化を テーマとしたシンポジウ 部の専門家・有識者のネッ 等の成果を、社会人向け公 | 当者等に発信する。 開講座等を活用して、企業 の技術開発部門や企画部 門の担当者等に発信する。

(v) これまでに蓄積された 技術開発プロジェクトの実施 の実施体制等の決定にお 体制等の決定における採択審 査委員会、プロジェクトの途 中及び事後における評価委員 会等を通じた産業界、学術界 通じた産業界、学術界等の 等の外部の専門家・有識者と 外部の専門家・有識者との一の関係やその他の関係各方面 とのネットワークを活用し、 面とのネットワークを活し技術経営力の強化をテーマと したシンポジウム等を1回以 上開催すること等により、そ ム等を毎年度1回以上開 の知見を産業界等に発信す 催すること等により、その | る。また、技術経営力に関す 知見を産業界等に発信す | る産業界、学術界等の外部の る。また、技術経営力に関
専門家・有識者のネットワー する産業界、学術界等の外 / クを構築し、このネットワー クを活用しつつ技術経営力に トワークを構築し、このネー関する知見を深化させ、その ットワークを活用しつつ 成果を産業界に発信する。技 技術経営力に関する知見 術開発マネジメントのノウハ を深化させ、その成果を産り等の成果を、社会人向け公 業界に発信する。技術開発 | 開講座等を活用して、企業の マネジメントのノウハウ 技術開発部門や企画部門の担

(v)機構が主催した展示会「イノベーシ ョン・ジャパン2016」において、NE DOセミナー「オープンイノベーションを 刺激する『Tech系ベンチャー起業成功 への鍵』」を実施し、オープンイノベーシ ョン推進の啓発・普及を行った。

また、技術戦略研究センターが産業技術 分野やエネルギー・環境技術分野の技術動 向等についてまとめたレポート「TSC Foresight」を刊行した(平成28年度7 分野を機構ホームページで公開中)。「TSC Foresight」の公表に伴い、平成28年度 は「太陽光発電、地熱発電」「メタルリサ イクル、化学品製造プロセス、自己組織化 応用プロセス」「無人航空機(UAV)シ ステム、生物機能を利用した物質生産」を テーマにした「TSC Foresight セミナー」 を計3回開催した。

これらの取組を通じ、産業界、学術界等 との情報交換等により構築した外部の専 門家・有識者とのネットワークを深化、拡 大し、機構の技術開発マネジメントに活用 した。

また、「NEDOプロジェクトを核とし た人材育成、産学連携等の総合的展開」に おいて、1講座を実施することで、技術開 発マネジメントのノウハウ等の成果を、企 業の技術開発部門や企画部門の担当者等 に発信した。

●平成28年度は7分野の「TSC Foresight」 を公表。各界を代表する計17名の有識者 を迎えて、「TSC Foresight セミナー」を3 回開催し、平成27年度を上回る参加者 (約800名)を得た。平成28年度第2 回のセミナーでは、(株)産業革新機構と連 携し、産業化を見据えたパネルディスカッ ションを行うといった新たな取組を実施。

以上の内容を踏まえ、顕著な成果が出てい ることから、本項目の自己評価をAとした。

I(キ)人材の流動化、育成

3.	中長期目標、中長期計画	、年度計画、主な評価軸	、業務実績等、年度評価に係	系る自己評価及び主務	大臣による評価		
	中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	績等・自己評価	主務大臣による評価
				の視点)、指標等	主な業務実績等	自己評価	
						<自己評価> A	評定
	⑦ 人材の流動化促進、育成 技術開発マネジメン育び 技術開発部人がのの ではないでででは でででででででででででででででででででででででででででででで	育成 技術開発マネジメント について、内部人材の育成 を図るとともに、プロジェ クト管理等に係る透明性 を十分に確保した上で、一 定の実務経験を有する優 秀な人材など、外部人材の	(キ)人材の流動化促進、育成 成 技術開発マネジメントについて、研修等を通じて、機構 員の育成を図るととほる透り ロジェクト管理等に係る透り 性を十分に確保した上で、 定の実務経験を有する外で 材を中途採用等を通じて確保 する。		(キ)人材の流動化促進、育成 技術開発マネジメントに関して、研修等 を通じて内部人材の育成を図るとともに、 企業や大学での実務経験を有する外部人 材を、技術戦略の検討を行う研究員(3名) や、プロジェクトの企画・運営等を担う者 (8名)として、計11名を中途採用した。	<自己評価の根拠>	
	等的一P、採積・究技績すりも	民間企業や大学等の技 術開発において中核的人 材として活躍しイノーションの実現に貢献する PM人材の育成を図るため、将来のPM人材の候補 を受け入れて多様な実践			民間企業や大学等の技術開発においっとで活躍しイノで育躍しイノで育躍して、大学・研究開発法人を明確ない。このでは、クロスアポイントトのでは、クロスアポイントト制度のでは、クロスアポインでは、大学を創出するため、クロスアポインとでは、クロステポーンのでは、クロステポーンを創出するに、クロンがでは、クロンがでは、クロンがでは、クロンがでは、クロンがでは、大学を創出するが、クロンがでは、クロンがでは、大学を創出するが、クロンがでは、大学では、大学では、大学では、大学では、大学では、大学では、大学では、大学	●NEDOにおいて初めて体系的にプログラムされたPM研修を実施。年間8回の目標を上回る全18回の講義を開催し、延べ約700名のNEDO職員が研修に参加。	

また、民間企業や大学等 において中核的人材とし て活躍し、イノベーション の実現に貢献する技術者 の養成事業の質的強化を の技術開発プロジェクト 術開発等に携わらせるこ 人材を育成するとともに、 機構の技術開発プロジェ 特別講座について効率的、 効果的な実施方法の工夫 | 開する「NEDO特別講座」 を図りつつ実施する。

これらの活動を通じ、民一施方法の工夫を図りつつ実施 間企業や大学等においてしてる。 中核的人材として活躍す 状況、政府予算の状況その 他適当な条件を加味した 上で、第2期中期目標期間 と同等程度養成する。

また、民間企業や大学等に一 おいて中核的人材として活躍 し、イノベーションの実現に 貢献する技術者の養成事業の 質的強化を図る。具体的には、 図る。具体的には、産業技 | 産業技術の将来を担う創造性 術の将来を担う創造性豊 豊かな技術者、研究者を機構 かな技術者、研究者を機構 | の技術開発プロジェクトや公 的研究機関等の最先端の研究 端の研究現場において技力らせること及び大学等の研 究者への支援をすることによ と及び大学等の研究者へしり人材を育成する。加えて、 の支援をすることにより「大学等が研究の中核として、 新しい産業技術を生み出しつ つあるプロジェクトを対象と クトに併設するNEDO し、大学等に拠点を設けて人 材育成、人的交流事業等を展

これらの活動を通じ、民間 る技術者を、高齢化の進展 │ 企業や大学等において中核的 人材として活躍する技術者 を、高齢化の進展状況、政府 予算の状況その他適当な条件 を加味した上で、第2期中期 目標期間と同等程度養成す

について効率的、効果的な実

1講座1拠点において「NEDO特別 講座」を実施。参加型オンライン動画学 習サービスを初めて活用。5回の講義を 開催。生放送時に延べ430名以上が受 講、録画した動画の再生回数が2,10 0回以上(1,800アカウント以上から のアクセス)となり、1講座当たりの受 講者数が増加。

民間企業や大学等において中核的人材 として活躍し、イノベーションの実現に 貢献する若手研究者を養成。平成28年 度は1,376人の若手研究者を養成し、 第3期中長期計画における目標(第2期 中期計画と同等程度)を4年目で前倒し 達成。

- ●平成28年度は1講座1拠点において「N EDO特別講座」を実施。参加型オンライ ン動画学習サービスを新しく導入し、5回 の講義を開催したことにより、生放送時に 延べ430名以上が受講、録画した動画の 再生回数が2,100回以上(1,800 アカウント以上からのアクセス)となり、 1講座当たりの受講者数が増加。
- ●1,376人の若手研究者を養成し、第3 期中長期計画における目標(第2期中期計 画と同等程度)を4年目で前倒し達成。

以上の内容を踏まえ、顕著な成果が出てい ることから、本項目の自己評価をAとした。

1. 当事務及び事業に関	1. 当事務及び事業に関する基本情報						
I - 2	技術分野ごとの目標						
関連する政策・施策	_	当該事業実施に係る根拠(個	国立研究開発法人新エネルギー・産業技術総合開発機構法第15条				
		別法条文など)					
当該項目の重要度、難易		関連する研究開発評価、政策	0426国立研究開発法人新エネルギー・産業技術総合開発機構一般管理費				
度		評価・行政事業レビュー	0432国立研究開発法人新エネルギー・産業技術総合開発機構一般管理費				
			(エネルギー需給勘定)				

2. 主要な経年データ ① 主な参考指標情報 基準値等 25年度 26年度 27年度 28年度 29年度

<u> </u>	© 7 % AND							
	基準値等	25年度	26年度	27年度	28年度	29年度	30年度	3 1 年度

②主要なインプット情報(財務情報及び人員に関する情報)							
	2 5年度	26年度	27年度	28年度	29年度	30年度	3 1 年度
予算額(千円)	123, 907, 032	153, 598, 478	136, 594, 901	133, 326, 650			
	の内数	の内数	の内数	の内数			
決算額(千円)	98, 011, 031	136, 812, 173	153, 744, 124	156, 143, 614			
	の内数	の内数	の内数	の内数			
経常費用(千	98, 259, 557	136, 858, 535	153, 670, 307	156, 028, 110			
円)	の内数	の内数	の内数	の内数			
経常利益 (千	3, 624, 169	3, 786, 034	2, 226, 767	1, 630, 556			
円)	の内数	の内数	の内数	の内数			
行政サービス	93, 996, 323	134, 568, 343	148, 504, 321	156, 427, 389			
実施コスト (千	の内数	の内数	の内数	の内数			
円)							
従事人員数	774 の内数	832 の内数	887 の内数	923 の内数			

注)予算額、決算額は支出額を記載。人件費については共通経費分を除き各業務に配賦した後の金額を記載

I (ク) 技術分野ごとの計画 (エネルギー分野)

3. 中長期目標、中長期計画	「、年度計画、主な評価軸、	業務実績等、年度評価に	係る自己評価及び主務	大臣による評価		
中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の訓	業務実績等・自己評価	主務大臣による評価
			の視点)、指標等	主な業務実績等	自己評価	
					<自己評価> A	評定
(す) 主統 は は で は で で で で で で で で で で で で で で で	に及子我の今供源の府模をス立様こい イ安る 大第八一へ政規入コ、ど、て テ、するのの 大道の という に で いった	(i) 新エネルギー分野		(i) 新工ネルギー分野	<自己評価の根拠 >	

a. 太陽光発電 太陽光発電の大量導入に 向け、長期的に太陽光発電 の発電コストを基幹電源 並みに低減させるため、低 コスト化に係る技術開発及 び太陽光発電の導入拡大の 析し、導入ポテンシャルの 拡大に貢献する技術開発等 を行うものとする。また、技 術の差別化による競争力強 化、高付加価値化による用 途拡大・新たなビジネス創 出を図るための取組を行う こととする。さらに、諸外国 の関係機関との間で戦略的 な提携関係を構築し、人材 育成、共同技術開発、実証事 業、情報交換等多様なツー ルを活用して支援すること とする。

(a) 太陽光発電

太陽光発電は資源ポテ ンシャルが大きく、また設 置のリードタイムが短い ことから、今後大量導入が 領域である。

一方、太陽光発電の大量 導入に向けては、高い発電 コスト、立地制約、リサイ クル等様々な技術的課題 | 多用途化実証事業 があり、これらを克服して 模の拡大と、それに伴う市 況の低迷により、国際的な 競争が激化しており、技術 の差別化による競争力強 化、高付加価値化による用 | 設備への応用開発 途拡大、新たなビジネス創 | 出が求められている。今後 は我が国技術の海外市場 への展開が必要となって いる。

第3期中期目標期間に おいては、導入目標の達成 に向けた技術課題の克服 として、長期的に太陽光発 電の発電コストを基幹電 源並みに低減させるため、 システム構成やコスト構 造に留意して、変換効率の 向上を含めた低コスト化 に係る技術開発を行う。ま た、太陽光発電の導入拡大 の障害となっている要因 を分析し、立地制約を解消 していくため、導入ポテン シャルの拡大に貢献する 技術開発を行う。

さらに、太陽光発電の大 量導入に伴い必要となる 太陽電池のリサイクルシ ステムの確立に向け、必要 な技術開発を行い、また、 高信頼性等に関する標準・ 規格の整備に資するデー タ取得等を行う。

太陽光発電産業の競争 力強化については、203 0年以降に変換効率4 0%を達成するといった 飛躍的に高い変換効率、新 規用途の開拓など太陽電 池の付加価値を高め、新た な市場開発につながる技 術開発を行うとともに、発 電事業への展開やサービ ス産業との連携強化等の 川下展開支援のための技

(a) 太陽光発電

1. 太陽光発電多用途化実証 プロジェクト [平成25年 度~平成28年度]

将来的な市場拡大または市 期待されている。また、我 | 場創出が見込まれる未導入分 が国電機・電子産業の技術 | 野に対して、普及拡大を促進 障害となっている要因を分 | 的蓄積が活かされる技術 | する技術を開発・実証し、太 陽光発電の導入分野の拡大を 加速することを目的に、以下 の研究開発を実施する。

研究開発項目① 太陽光発電 |

導入量が大きい、市場規模 いくことが必要である。ましの創出・効果が大きい等の導 た、海外企業による生産規 | 入価値が高いと考えられる以 下の分野について、研究開発 を実施する。

- (1) 簡易的太陽追尾型太陽 光発電システムの営農型発電
- (2) 米と発電の二毛作

研究開発項目① 太陽光発電多用途化

1. 太陽光発電多用途化実証プロジェク

将来的な市場拡大または市場創出が

見込まれる未導入分野に対して、普及拡

大を促進する技術を開発・実証し、太陽

光発電の導入分野の拡大を加速するこ

とを目的に、以下の研究開発を実施し

ト 「平成25年度~平成28年度〕

(a) 太陽光発電

実証事業

- (1)農作物を栽培・収穫しながら発電 コスト目標27円/kWhを実現する ことを目的に営農型発電システムの開 発を行った。制御パラメータの最適化、 及び信頼性の確認を行い、発電コスト2 6. 7円/kWhの試算結果を得た。ま た、追尾機構を改善し、営農型発電シス テムを機構面において完成させた。
- (2)スパン20m×8mの架台間に柱 がない空間確保を特徴とし、発電コスト 27円/kWhの実現を目指した営農 型発電システムの開発を行った。台風等 強風に対する信頼性の確認、稲の生育へ の影響について確認し、発電コスト2 0.96円/kWhの試算結果を得た。 また、稲作の収穫量は、周辺地域の収穫 量と比較して82%となり、農水省の定 めるソーラーシェアリングの許可条件 である80%以上となることを確認し

術開発を行う。			
加えて、我が国の新エネ			
ルギー技術の海外展開を			
積極的に後押しすべく、諸			
外国の関係機関との間で			
戦略的な提携関係を構築し			
し、人材育成、共同研究、			
実証事業、情報交換等多様			
なツールを活用して支援			
する			
	研究開発項目② 太陽光発電	研究開発項目② 太陽光発電多用途化	
	多用途化可能性検討事業	可能性検討事業	
	平成26年度終了。	平成26年度終了。	
 	I		
	研究開発項目③ 太陽光発電	研究開発項目③ 太陽光発電高付加価	
	高付加価値化技術開発事業	値化技術開発事業	
	太陽光発電システムに断熱	(1)発電部の裏面に、特殊カーボンブ	
	機能、遮光機能等の発電以外	ラック添加エラストマー材料で包み込	
	の機能を付加する、又は他の	んだ40m長の架橋ポリエチレン管を	
1	製品等に太陽光発電を付加す	配した両面ガラス構造で1m角の太陽	
	ることで、生活環境や各種サー	熱・光ハイブリッド太陽電池モジュール	
1	ービス環境に対して利便性、	を開発し、実証場所に本モジュール14	
	性能向上等を提供するような	0枚からなる実証設備設置を完了し、実	
	高付加価値製品・事業を創出	証データを取得した。	
	することにより、新たな用途	(2) 熱電ハイブリッド集光システムの	
	が期待できる新市場の開拓を	開発では、電気及び熱エネルギーを合計	
	行う。また、開発した技術の	した総エネルギーにおいて、全天日射量	
	評価や高付加価値に対してユ	に対して快晴時で約57%、雨天、曇天	
	ーザーの評価を行い、市場規	時も含めた総平均として約43%の変	
	模や実用化に向けての技術的	換効率を得た。軽量ムーバブル低倍率集	
	課題を明らかにし、その対策	光太陽光発電システムの開発とその農	
	案を抽出するため、以下の研	業利用開発では、温水散布による土壌消	
	究開発を実施する。	毒において、立ち枯れ病を引き起こす病	
	(1)太陽熱・光ハイブリッ	原菌における温水の消毒効果を確認し	
	ド太陽電池モジュールの開発	た。また、電気を利用した窒素肥料節減	
	(2) 熱電ハイブリッド集光	においては、通電によりある程度の脱窒	
	システム技術の開発	抑制効果があることを確認した。	
	(3)集光型太陽光発電/太	(3)「軽量化、自立・自律、高性能・低	
	陽熱温度成層型貯湯槽コジェ	価格ミラー」という特徴を持つ、Gyr	
	ネレーションシステムの開発	o集光型発電装置(1kW×9台)、及び	
1	(4) E-SEG (緊急時自	太陽熱温度成層型貯湯槽を実証場所に	
1	(4) E 3 E G (系 応	設置し、発電/太陽熱回収と冷却水昇温	
	(5) グリーン晴耕雨読型分	について評価を行い、所定の発電量(1	
	散サーバーの開発	kW)が得られることを確認した。また、	
		太陽熱と太陽光発電とを利用するソー	
		ラーコジェネレーションシステムの、植	
		物工場や陸上養殖への適用、および医療	
		施設への適用について事業化の可能性	
		を見出した。	
		(4) 開発した誘導照明E-SEGの商	
		品化・事業化に向けて課題を明確にする	
		ことを目的とし、実証試験サイトにおい	
		て、引き続き実証試験を継続し、取り付け出来の選字、四大仏な行う符の問題な	
		け場所の選定、防水化を行う等の課題を	
		明らかにした。	
		(5) グリーン晴耕雨読型分散サーバー	
		の開発をおいて、各種ソフト開発、小型	
		可搬型サーバーの開発を行うとともに、	
		実証サイト3拠点を用いて、引き続き実	
		証試験を継続し、ビジネスモデル構築に	
		必要な要素技術の開発、検討を実施し	
		た。	
		100	

(2) 人類となる。大学への中 開き、また。 1923 日 には、1923 日 の 1923 日		
回 1 2 2 2 2 2 2 2 2 2	2. 太陽光発電システム効率	2. 太陽光発電システム効率向上・維持
ディント [144 2 年度 中央		
大型		
大田東田の 10 日本 10		年度~平成30年度」
(4)	平成30年度]	
(4)	大陽雷洲以外 (BOS) の	大陽雲洲以外(BOS)の発電コスト
下のの報告を出しています。		
		仏滅を目的に、以下の研究開発を表施し
マスト公共の一次 (1) 数十分のできる。 イン・コーツ (1) 数十分のできる。 自選を受け、自選を受け、自選を受け、 (2) 女子のできる。 (3) ないまた。 (3) ないまた。 (4) ないまた。 (3) ないまた。 (5) ないまた。 (4) ないまた。 (6) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (8) ないまた。 (4) ないまた。 (9) ないまた。 (4) ないまた。 (1) ないまた。 (4) ないまた。 (2) ないまた。 (4) ないまた。 (3) ないまた。 (4) ないまた。 (4) ないまた。 (4) ないまた。 (5) ないまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (8) はいまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。 (8) はいまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。<	下の研究開発を実施する。	た。
マスト公共の一次 (1) 数十分のできる。 イン・コーツ (1) 数十分のできる。 自選を受け、自選を受け、自選を受け、 (2) 女子のできる。 (3) ないまた。 (3) ないまた。 (4) ないまた。 (3) ないまた。 (5) ないまた。 (4) ないまた。 (6) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (8) ないまた。 (4) ないまた。 (9) ないまた。 (4) ないまた。 (1) ないまた。 (4) ないまた。 (2) ないまた。 (4) ないまた。 (3) ないまた。 (4) ないまた。 (4) ないまた。 (4) ないまた。 (5) ないまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (8) はいまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。 (7) ないまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。 (8) はいまた。 (4) ないまた。 (6) はいまた。 (4) ないまた。 (7) はいまた。 (4) ないまた。<	研究開発項目① 太陽光発電	研究開発項目① 太陽光発電システム
(1) 銀行 2年		
おから、		
第4:		() () () () () () () () () ()
第4:	台等の周辺機器の高機能化、	部部品の動作温度を10℃低減するこ
### ### ### ### ### ### ### ### ### ##		
接続 (
及び人類を記憶をジェール取付 (1) 技術の場所を動き、高さな (2) を世代を寿命・高から (3) 技術の場所を対している。 (4) という。 (5) タル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
対表面を支援する。	技術開発、基礎・架台の施工	の最適化を凶った。その結果、ファンレ
対表面を支援する。	及び太陽電池モジュール取付	ス化を実現すると同時に、PCSの内部
(1) 次世代式から、高の時代 (2) 次世代式から、高の時代 (3) 次世代式から、高の時代 (4) 次世代式から、高の時代 (5) 次世代式から、西の時代 (6) 3 高級 特権を対象が支援会 の国民による時期やの単位。 (7) 大株元度対もの用いた シンスー よの情報を対象が表し、表しませて C Sの 情報を対象が表し、表しませて C Sの 情報を対象が表し、表しませて C Sの 信報を対象が表し、表しませて C Sの 信報を対象が表し、表しませて C Sの 信報を対象が表し、表しませて C Sの 高級 特権に対象が表して N 表した A S A S A S A S A S A S A S A S A S A		
(2) 本民 大年 (2)		
(2) 次形状容系金、素効中 (3) 金面粉 自立可変式発音 が開発とは、大きないでは、 (4) 大東 東 大		
(3) 電影的 食食質で変大染色 (3) 電影的 食食質でない (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	パワーコンディショナの開発	5℃下げる必要があるため、長寿命電解
(3) 電影的 食食質で変大染色 (3) 電影的 食食質でない (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(2) 次世代長寿命・高効率	コンデンサ、長寿命リレー、高効率磁性
(3) 秋価格角度可変次定台 の開幕取よる創門中の教育政 車向上 (4) 太信州政体布を用いた (4) 太信州政体布を用いた (5) 高州政 編載の主 (5) 高州政 編載の主 (6) 高州政 編載の主 (7) 上版 表示 成立 大		
中国	* **	
本中点	, , , , , , , , , , , , , , , , , , , ,	
本中点	の開発による積雪時の発電効	評価の準備を進めた。また量産PCSの
(4) 太陽海疾所者を用いた ソーラーンとチリング書店所 システムのからしたの報告報 (5) 新術なした。 (2) 目は上なる報告では、従来シス ウ部所が利益なスト交 台閣がと放蕩薬職所達通用研 (5) 新術な自動ななり、 大き、大き、基本国際に有法の話とすられ たまた。基本国際に有法の話とすられ たまた。基本国際に有法の話とすられ たまた。基本国際に有法の話とすられ たまた。基本国際に有法の話とすられ たまた。基本国際に有法の話として 開すっと対し、カカー 前中に及びローンタイを開達を発し、大寿 命中に及びローンタイを開達を発し、大寿 命中に及びローンタイを開達を発し、大寿 のかいたを注した。とで のかいた。とでは参与ストの場合が、1、25年 のかいては、10 東京というとは開議し、 開き出版がでが解析的のようとも同意として は、10 東京というには、中 間 2 回の事例を依頼とついては、中 間 2 回の事例を依頼というには、中 間 2 回の事例を依頼というには、中 間 2 回の事例を依頼というには、中 間 2 回の事例を作るを発した。とで も 2 と体験である。全電量については、中 間 2 回の事例を依頼と同りた。それ以 外 3 の (2) を行った事 音・報告地域は解 のないた。とでを書き、レージに、中 間 2 回の事例を作るが、2 を電量については、中 間 2 回の事例を作るを見な、またました。 (4) の事目にするから、全電量については、中 間 2 回の事例を作るを見な、またました。 (4) の事目にするからないた。を電量については、中 間 2 回の事例を信息がとからないた。 (4) の事目にするからないた。変更を のないた。として、大部大乗り、変した。) の 5 からないためら必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれた。 第 シー・ノン (4 り の り の からないため) 必要 のないれたことも、またなり、 またなり、		市場運転宝績 現行PCSの性能評価結
(2) 日応なる環境とでは、発来システムの場合にの実施を開発 (2) 日応なる環境とでは、発来システムの中の上の研究研究 (2) 日応なる環境とでは、発来システムの中の上のでは、発来システムの中の上のでは、日本の		
(2) 日於たなる薄薄では、後来シス (5) 高剛な軽量性スト級		
(3) 高耐久胚瓜飲っストダ カがシステム効果 10 %以上地上生る 2 がシステム効果 10 %以上地上生る 2 とがシミストの カルシステムの カルシステムの カルシステムの 2 ルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルージュファリの高力な 2 水平の 2 水平の 2 ペース・ファファリの高力な 2 水平の 2 水平の 2 ペース・ファファ 3 水平の 2 水平の 3 水平の 4 水平の 3 水平の 3 水平の 4 水平の 3 水平の 4 水平の 3 水平の 4 水平の 4 水平の 3 水平の 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4		
(3) 高耐久胚瓜飲っストダ カがシステム効果 10 %以上地上生る 2 がシステム効果 10 %以上地上生る 2 とがシミストの カルシステムの カルシステムの カルシステムの 2 ルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルーション 3 辞集で得られた 2 とがシミュルージュファリの高力な 2 水平の 2 水平の 2 ペース・ファファリの高力な 2 水平の 2 水平の 2 ペース・ファファ 3 水平の 2 水平の 3 水平の 4 水平の 3 水平の 3 水平の 4 水平の 3 水平の 4 水平の 3 水平の 4 水平の 4 水平の 3 水平の 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4	システム効率向上の研究開発	(2)日陰となる環境下では、従来シス
(*** * * * * * * * * * * * * * * * * * *	
変 た。また、死生間にである ・ なまた、死生間にする命格品である ・ は解アンデンやを使用サポ、アクアマイ アンフ 同路 方とを基本同路として接 用するとまに、長期常開作を保ら水分の (個人をプロック する情報を決定し、長寿 命令中及びド11種 (数配金) の小ない 部品を提出したことで部外も削減、		
か。また、裏本回路に有金倉部品である 温線エンデンサを使用サポーステア・イ バッファ回路方式を基本回路として採 用かると共に、共麻 命とは、共麻 一 の小さい 部品を採用した共麻の型のマイクロイ ンパータの家体を近てした。 (3) 角度可変式家やつ連絡方式を前後 から機に変更したことで部がを削減。更 に回転部を除く名部材の形がどの開端し、 積雪地域での破験者の小きな自復虚定 、 で終行に大いな分の、 の発度のマイト の の の の の の の の の の を の の の の の の の の の		
無解シンデンサルを使用せず、アクティブ パンファ回路をして採 用すると共に、長期窓間性を依ら水分の (社をガコックする構造を洗にし、長寿 命半出及びF1T値(旅降料)の小さい 器高を採用した。長寿・電のマイクロイ ンバータの試作を完了した。 (3)角度可変染如の運動方式を前後 から標に変更したことで部材を削減、更 に動転動を係へを割材の形と採用品。 を使用することで型やコストを削減し、 報道地域での観解角の大きの機関固定 式架にに比べて約30%程度のコスト 削減に目処を付けた。架台の度速更に ついては、10kWシステムに対して2 人が手動で10分配度で再発を完了で 書る仕様である。発電点については、年間 辺回の手動で後期のし戻・それ以 外30回を行った場合。20歳 高温については、年間 辺回の手動で後、40歳 10歳 10歳 10歳 10歳 11歳 11歳 11歳 11歳 11歳 1	究	
無解シンデンサルを使用せず、アクティブ パンファ回路をして採 用すると共に、長期窓間性を依ら水分の (社をガコックする構造を洗にし、長寿 命半出及びF1T値(旅降料)の小さい 器高を採用した。長寿・電のマイクロイ ンバータの試作を完了した。 (3)角度可変染如の運動方式を前後 から標に変更したことで部材を削減、更 に動転動を係へを割材の形と採用品。 を使用することで型やコストを削減し、 報道地域での観解角の大きの機関固定 式架にに比べて約30%程度のコスト 削減に目処を付けた。架台の度速更に ついては、10kWシステムに対して2 人が手動で10分配度で再発を完了で 書る仕様である。発電点については、年間 辺回の手動で後期のし戻・それ以 外30回を行った場合。20歳 高温については、年間 辺回の手動で後、40歳 10歳 10歳 10歳 10歳 11歳 11歳 11歳 11歳 11歳 1		た。また、基本回路に有寿命部品である
バッファ回路方式を基本回路として採用者として採用者として採り、更知時間を保られ合の セス・プロックする構造を決定し、長寿 商出長び門した長寿命型のマイクロインバータの就作を完了した。 (3) 角度可要実践中の連結方式を前後、 の一般で変数性を完了した。 (3) 角度可要実践中の連結方式を前後、更 と回転部を除く各部材の形とに引用品 を使用することで製やコストを削減し、 経理地域での傾斜角の大きな角度固定 実践やに大いて約30%程度のコスト 削減に日処を付けた。契合の角度更更に ついては、10 kWジェブームに対して2 人が手動で30 人の発度で作業を示してで 名が手動で30 人の名で更更に ついては、10 kWジェブームに対して2 人が手動で30 人の名でませた。 日間と即の手動可要で各類90度、それ以 今も0度ンイった場合、経電地域上域 の固定式製作50度、60度に比べ手動 可要は半年で13 が発電域が利却する ことを構設した。 (4) 効率向上のための太陽、地尺射赤材 を一動式として実施工機と固消失験を 行った。その部級、長少、反射板 を一動式として実施工機をと固消失験を 行った。その部級、長少、長り、キン ーズン(10 Ho 3 計 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
用すると共に、長寿衛門体を保ら水分の 侵入をプロッカする衛星のマイクロインバータの試作を発了した。 (3) 角度可変式架や可能4 から横に変更したととで部体を発了した。 (3) 角度可変式架や可能4 から横に変更したことで部体を解く 6 部材の 応どに利用品 を使用することで架台コストを削減し、 超音地域での複丝角の大きな角度固定 式架中に比べて約30%程度のコスト 制減に日処を付けた。場合の角度変度に ついては、10 kWンステムに対して2 人が手動で10 分配度で作業を完下で きる仕様である。発電量については、年 間 戸内ラ動可変と解す90度、それ以 外30度)を行った場合、積雪地域化像 の超式変配台50度、60度に比べ事動 可愛は半年で15%発電量が増加する ことを確認した。 (4) 効率向上のための太陽光度対対が をで動式として実証実験と展演実験を 行った。その結果、夏シーズシ(4月 - 9月)は約10分の発電効率向上、冬シーズン (1月 月 - 1月		
(
		用すると共に、長期密閉性を保ち水分の
		侵入をブロックする構造を決定し、長寿
部品を採用した長寿命型のマイクロイ ンバークの状体を発了した。 (3) 角度可変式架台の連結方式を前後 から横に変更したことで部材を削減、更 に同伝都を除く各部材の殆どに汎用品 を使用することで影台コストを削減し、 積雪地域での傾角の大きな角度固定 式架台に比べて約30%起度のコスト 削減に10を付けた、架台の角度の戻すに ついては、10 kWシステムに対して2 人が手助で10 分配変でを完了で きる仕様である。発電量については、年 間2回の手動可変を頻りの度、それ以 外30関)を行った場合、積雪地域仕様 の固定式等を多り、後雪地域仕様 の固定式を15 の後の最近が増加する ことを確認した。 (4) 効率向上のための太陽光反射表材 をアルミ銀面反射板に絞り込み、反射板 を可め、気に加入を移た。 (4) 効率向上のための太陽光反射表材 をアルミ銀面反射板に絞り込み、反射板 を可め式として実施主験を上風の実験を 行った。その結果、夏シーズン(4月~ 9月)に約10 %の発電が増出、多・シーズン(10 月~3 月)は約1 %の発電が向上、多・シーズン(10 月~3 月)は約1 %の発電 効率向上、通でで約6、5 等、必の発電が		
 ンバータの終作を完了した。 (3) 角度可吸式架台の連結方式を削後 から頻に変更したことで部材を削減、更 に同転都を除くを部材の動とに汎用品 を使用することで製台コストを削減し、 積雪地域での傾斜角の火きな角度固定 式架台に比べて傾斜 30%程度のコスト 削減に日処を付けた。架台の角度変更に ついては、10 k Wシンテムに対して2 人が手動で10分程度で作業を完了で きる仕様でもる。発電量については、年 間 2回の一軸可変(条 別 90 度 それ以 外 30 度)を行った場合、滑電地域比解 の関定式架台 50 度、60 度に比べ手動 可変は半年で15 %%電電機が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルス 鍵面反射板に放り込み、反射板 を可動式をして変距薬験と関連薬験を 行った、柔の結果、夏シーズン (4月~ 9月) は約10 %の発電効率向上、冬シーズン (10月~3月) は約4 %の発電 効率向上、近年で約6、5 5 %の発電効 準向上度25を得売。P V バネル2をを 山形に重ね、東西方向に設置することで、P V バネル2をを し地形に重ね、東西方向に設置することで、P V バネル2をを し地形に重ね、東西方向に設置することで、P V バネル2をを し地形に重ね、東西方向に設置することで 		
(3) 角度可変式架合の連結方式を削緩、更に回転部を飲く各部材を削減、更に回転部を飲く各部材の殆どに汎用品を使用することで架合コストを削減し、積電地域での傾斜角の大きな角度固定 式架合に比べて約30%程度のコスト削減に用処合付けた。架台の角度変更については、10kWシステムに対して2人が手動で10分程度で作業を完了できる仕様である。発電量については、年間2回の手動可変(冬場)の度、それ以外30度を行った場合、視電地域止緩の固定式架合も60度、60度を行った場合、視電地域止緩の固定式架合も60度、60度を開加することを確認した。 (4) 分率向止のための太陽光反射素材をアルス鎖血反射に終り込み、反射板を可動式として実証実験と側側実験を行った。その緒以、認り込み、反射板を可動式として実証実験と風洞実験を行った。その指数にといる形式を対し、そのもの10%の発電効率向止、冬シーズン(10月-3月)は約4%の発電効率向上、冬シーズン(10月-3月)は約4%の発電効率向上、冬シーズン(10月-3月)は約4%の発電効率向上、またがの発電効率向上、単純で約6、55%の発電効率向上、場にで約6、55%の発電効率向上、単純で約6、55%の発電効率向上、退止で約6、55%の発電効率向上、退止で約6、55%の発電効率向上、単純で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電力を対したがあります。 (4月 20 元 20		
(3) 角度可変式架合の連結方式を削緩、更に回転部を飲く各部材を削減、更に回転部を飲く各部材の殆どに汎用品を使用することで架合コストを削減し、積電地域での傾斜角の大きな角度固定 式架合に比べて約30%程度のコスト削減に用処合付けた。架台の角度変更については、10kWシステムに対して2人が手動で10分程度で作業を完了できる仕様である。発電量については、年間2回の手動可変(冬場)の度、それ以外30度を行った場合、視電地域止緩の固定式架合も60度、60度を行った場合、視電地域止緩の固定式架合も60度、60度を開加することを確認した。 (4) 分率向止のための太陽光反射素材をアルス鎖血反射に終り込み、反射板を可動式として実証実験と側側実験を行った。その緒以、認り込み、反射板を可動式として実証実験と風洞実験を行った。その指数にといる形式を対し、そのもの10%の発電効率向止、冬シーズン(10月-3月)は約4%の発電効率向上、冬シーズン(10月-3月)は約4%の発電効率向上、冬シーズン(10月-3月)は約4%の発電効率向上、またがの発電効率向上、単純で約6、55%の発電効率向上、場にで約6、55%の発電効率向上、単純で約6、55%の発電効率向上、退止で約6、55%の発電効率向上、退止で約6、55%の発電効率向上、単純で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電効率向上、進化で約6、55%の発電力を対したがあります。 (4月 20 元 20		ンバータの試作を完了した。
から概に変更したことで紹称を削減、更に回転部を除く各部材の殆どに汎用品を使用することで報告コストを削減し、 福雪地域での傾斜角の大きな角度 国工 前線に目処を付けた。架台の角度変更に ついては、10 k W システムに対して2 人が手動で10分程度でも多。発電量については、年 間2回の手動可変(冬期90度、老れ以 外30度)を行った場合、福雪地域仕様 の固定元実合ちの度、60度に比べ手動 可変は半年で15% 発電量が増加する ことを確認した。 (4)効率向上のための太陽光反射表材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として美証表験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の容電のからし、人。 (4)効率向上の3月)は約4%の発電 効率向上、55%の電電 効率向上、55%の電電 効率向上、55%の電電 効率向上、55%の電電 効率向上、55%の電電 効率向上、55%の電電 効率向上、16%の発電 効率向上、16%の発電 効率向上、16%の発電 が中向と、16%の容配 が中向となると、中のからためとなるとなると、中のからためとなるとなると、中のからためとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなるとなると		
に回転都を除く各部材の殆どに汎用品を使用することで張うコストを削減し、 籍雪地域での傾斜角の大きな角度固定 式架台に比べて約30%程度のコスト 削減に目処を付けた、契合の角度変更に ついては、10kWシステムに対して2 人が手動で10分程度で作業を発了できる仕様である。発電量については、年 間2回の手動可変と頻90度、それ以 外30度を行った場合、稍質地域仕様 の周定式架会50度、60度に比べ手動 可変は半年で15%発電量が増加する ことを確認した。(4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 をアルミ鏡面反射板に絞り込み、反射板 を可動式として東正実験と風商実験を 行った。その結果、夏シーズン(4月~ 9月1は約10%の発電効率向上、冬シ ・一ズン(10月~3月)は約10%の発電 効率向上、冬シ ・一ズン(10月~3月)は約10%の発電 効率向上、冬シ ・一ズン(10月~3月)は約10%の発電 効率向上、冬シ ・一ズン(10月~3月)は約10%の発電 効率向上、各シ ・一ズン(10月~3月)は約2%の発電 効率向上のための発電が 地間に直れ、東西方向に設置すること で、PVパネルの射りたたみと、架台の		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
を使用することで架台コストを削減し、 積雪地域での傾斜角の大きな角度固定 式架台に比べて約30%程度のコスト 削減に目処を付けた。架台の角度変更に ついては、10kWシステムに対けて2 人が手動で10分程度で作業を完了で きる仕様である。発電量については、年 間2回の手動可変(冬期90度、それ以 外30度)を行った場合、積雪地域仕様 の固定式架台50度、60度に比べ手動 可変は半年で15%発電点が増加する ことを確認した。 (4)効率向上のための太陽光反射素材 をアルミ鯨而反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏ンーズン(4月~ 9月は約10%の発電効率向上、冬シーズン(10月~3月は約4%の発電効 本間上、過年で等約6.55%の発電効 本向上、通本で約6.55%の発電効 本向上、通本で約6.55%の発電効 本向上、通本で約6.55%の発電効 本向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネル2枚を		
精雪地域での傾斜角の大きな角度固定 式架台に比べて約30%程度のコスト 削減に目処を付けた。架台の角度変更に ついては、10 kWシステムに対して2 人が手動で10 分程度で研究を完了で きる仕様である。発電量については、年 間 2 回の手動可変(を刺 9 0 度、それ以 外 3 0 度)を行った場合、積雪地域仕様 の固定式架台50 度、6 0 度に比べ手動 可変は半年で15 %発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4 月~ 9 月)は約10 %の発電効率向上、条シ ーズン(10 月~3 月)は約4 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、過年で約6.5 %の発電効 歩車向上、過年で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 車向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すると で、PVペネルの折りたたみと、架台の		に回転部を除く各部材の殆どに汎用品
精雪地域での傾斜角の大きな角度固定 式架台に比べて約30%程度のコスト 削減に目処を付けた。架台の角度変更に ついては、10 kWシステムに対して2 人が手動で10 分程度で研究を完了で きる仕様である。発電量については、年 間 2 回の手動可変(を刺 9 0 度、それ以 外 3 0 度)を行った場合、積雪地域仕様 の固定式架台50 度、6 0 度に比べ手動 可変は半年で15 %発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4 月~ 9 月)は約10 %の発電効率向上、条シ ーズン(10 月~3 月)は約4 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、過年で約6.5 %の発電効 歩車向上、過年で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 歩車向上、列車で約6.5 %の発電効 車向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すると で、PVペネルの折りたたみと、架台の		を使用することで架台コストを削減し、
式架台に比べて約30%程度のコスト 削減に目処を付けた。架台の角度変更に ついては、10kWシステムに対して2 人が手動で10分程度で作業を完了で きる仕様である。発電量については、年 間2回の手動可変(冬期90度、それ以 外30度)を行った場合、積雪地域仕様 の固定式架台50度、60度に比べ手動 可変は半年で15%発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可加まとして、実施主験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効率向上、冬シーズン(4月~ 9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電 効率向上の金額である。55%の発電効率向上、冬シーズン(10月~3月)は約5%の発電効率向上、東の一点に設置すること で、PVパネルの折りたたみと、架台の		
削減に目処を付けた。架台の角度変更に ついては、1 0 k Wシステムに対して 2 人が手動で1 0 分程度で作業を完了で きる仕様である。発電量については、年 間 2 回の事動可変(と参切9 0 度、それ以 外 3 0 度)を行った場合、積雪地域仕様 の固定式架台 5 0 度、6 0 度に比べ手動 可変は半年で 1 5 %発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4 月~ 9 月)は約 1 0 %の発電効率向上、冬シー 「2 4 月~ 9 月)は約 1 0 %の発電効率向上、冬シー 「2 5 7 (4 月~ 9 月)は約 1 0 %の発電効率向上、冬シー 「3 5 7 (4 月~ 9 月)は約 2 8 での発電 「3 5 7 (4 月~ 9 月)は約 3 7 (4 月~ 9 月)は約 4 8 の発電 「3 5 7 (4 月~ 9 月)は 2 5 で、P V パネル 2 枚を 山形に重力 ること で、P V パネル 2 枚を 山形に重力 ること で、P V パネル 2 がを		
ついては、10kWシステムに対して2人が手動で10分程度で作業を完了できる仕様である。発電量については、年間2回の手動可変(冬期90度、それ以外30度)を行った場合、積電地域仕様の固定式架台50度、60度に比べ手動可変は半年で15%発電量が増加することを確認とた。 (4)効率向上のための太陽光反射素材をアルミ範面反射板に紋り込み、反射板を可動式として実態と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに重ね、東西方向に設置しまりに表すると、架台の		
人が手動で10分程度で作業を完了で きる仕様である。発電量については、年 間2回の手動可変(冬期90度、それ以 外30度)を行った場合、積雪地域仕様 の固定式架台50度、60度に比べ手動 可変は半年で15%発電量が増加する ことを確認した。 (4)効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効からと、 9月)は約10%の発電力はから発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
人が手動で10分程度で作業を完了で きる仕様である。発電量については、年 間2回の手動可変(冬期90度、それ以 外30度)を行った場合、積雪地域仕様 の固定式架台50度、60度に比べ手動 可変は半年で15%発電量が増加する ことを確認した。 (4)効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効からと、 9月)は約10%の発電力はから発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		一ついては、10kWシステムに対して2
きる仕様である。発電量については、年間2回の手動可変(を期90度、それ以外30度)を行った場合、積雪地域仕様の固定式架台50度、60度に比べ手動可変は半年で15%発電量が増加することを確認した。 ことを確認した。 (4)効率向上のための太陽光反射素材をアルス鏡面反射板に絞り込み、反射板を可動式として実証実験と風洞実験をで可動式として実証実験と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、後シーズン(10月~3月)は約4%の発電効率向上、0%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を出形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
間2回の手動可変(冬期90度、それ以 外30度)を行った場合、積雪地域仕様 の固定式架台50度、60度に比べ手動 可変は半年で15%発電量が増加する ことを確認した。 (4)効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効率向上、冬シーズン(4月~ 9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
外30度)を行った場合、積雪地域仕様の固定式架台50度、60度に比べ手動可変は半年で15%発電量が増加することを確認した。 (4)効率向上のための太陽光反射素材をアルミ鏡面反射板に絞り込み、反射板を可動式として実証実験と風流製と製を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、多シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、通子で約6.55%の発電効率向上、列子で約6.55%の発電効率向上、列子で約6.55%の発電効率向上、列子で約6.55%の発電効率向上、列子で約6.55%の発電効率の対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対		
の固定式架台 5 0 度、6 0 度に比べ手動 可変は半年で1 5 % 発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約1 0 % の発電効率向上、冬シ ーズン(1 0 月~3月)は約4 % の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。P V パネル 2 枚を 山形に重ね、東西方向に設置すること で、P V パネルの折りたたみと、架台の		
の固定式架台 5 0 度、6 0 度に比べ手動 可変は半年で1 5 % 発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約1 0 % の発電効率向上、冬シ ーズン(1 0 月~3月)は約4 % の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。P V パネル 2 枚を 山形に重ね、東西方向に設置すること で、P V パネルの折りたたみと、架台の		外30度) を行った場合、積雪地域仕様
可変は半年で15%発電量が増加する ことを確認した。 (4) 効率向上のための太陽光反射素材 をアルミ鏡面反射板に絞り込み、反射板 を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効率向上、冬シ ーズン(10月~3月)は約4%の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
ことを確認した。 (4) 効率向上のための太陽光反射素材をアルミ鏡面反射板に絞り込み、反射板を可動式として実証実験と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
(4) 効率向上のための太陽光反射素材をアルミ鏡面反射板に絞り込み、反射板を可動式として実証実験と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、多シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
をアルミ鏡面反射板に絞り込み、反射板を可動式として実証実験と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
をアルミ鏡面反射板に絞り込み、反射板を可動式として実証実験と風洞実験を行った。その結果、夏シーズン(4月~9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電効率向上、通年で約6.55%の発電効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		(4) 効率向上のための太陽光反射素材
を可動式として実証実験と風洞実験を 行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効率向上、冬シ ーズン(10月~3月)は約4%の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
行った。その結果、夏シーズン(4月~ 9月)は約10%の発電効率向上、冬シーズン(10月~3月)は約4%の発電 効率向上、通年で約6.55%の発電効 率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
9月) は約10%の発電効率向上、冬シーズン(10月~3月) は約4%の発電 効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
ーズン (10月~3月) は約4%の発電 効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
ーズン (10月~3月) は約4%の発電 効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		9月) は約10%の発電効率向上、冬シ
効率向上、通年で約6.55%の発電効率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置することで、PVパネルの折りたたみと、架台の		
率向上見込みを得た。PVパネル2枚を 山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
山形に重ね、東西方向に設置すること で、PVパネルの折りたたみと、架台の		
で、PVパネルの折りたたみと、架台の		
で、PVパネルの折りたたみと、架台の		山形に重ね、東西方向に設置すること

	省略及び簡易基礎を実現した。この設置
	方法により、ソーラーシェアリング発電
	所において、BOSコストを10%以上
	低減できる見通しを得た。
	(5) 主要な部材構成として板厚2.3
	, ,, , , , , , , , , , , , , , , ,
	mm未満の部材を用いて新架台を開発
	し、施工検証を行った。新架台の重量の
	合計(杭を含む)は既存架台と比べ9%
	減となり、部材点数は20%減となっ
	た。これは施工工数に換算すると、従来
	より30%減が可能となる。遮へい環境
	暴露試験及び土壌界面環境暴露試験を
	全国3ヵ所で開始し、水みち環境暴露試
	験は、液滴衝撃部と水溜り部の2試験を
	弊社発電所内で開始した。
一方。 一方。	
研究開発項目② 太陽光発電	研究開発項目② 太陽光発電システム
システム維持管理技術の開発	維持管理技術の開発
発電機器・設備の健全性の	(1) ストリングの中点電位測定では
>= = 12,444 12,444 13 - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	
自動診断や故障の回避、自動	1.5 V以上の変位が検知可能なセンサ
修復等、発電システムの劣化	と、マルチホップ3段で応答時間ノミナ
予防や長寿命化、人件費の削	ルが300msのRS485通信の無
減等に寄与するモニタリング	線データ収集システムを開発した。遠隔
システム技術やメンテナンス	監視システムでは、ストリング電流も含

技術の開発を実施する。	め時間分解能10分以下でグラフィカ
(1) 新規不具合検出機能を	ルに表示と、10年以上のデータ蓄積が
備えた発電量/設備健全性モ	可能であり、さらに開発した遠隔監視シ
ニタリングシステムの開発	ステムにより、これまで現場点検で実施
(2) HEMSを用いたPV	していた I V 特性の測定やストリング
発電電力量の遠隔自動診断と	検査の省略と、熱画像観察を大幅に時間
故障部位把握方法の開発	短縮することができ、維持管理コストを
	30%以上削減することが可能となっ
	to.
	(2)「HEMSを用いたPV発電電力
	量の遠隔自動診断の開発」については、
	発電性能低下と日影の影響の識別アル
	7- 31-10-10-1 - 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1
	ゴリズムを研究し、日影識別技術を確立
	した。また、PV設置一般世帯にHEM
	S 4 1 7 台を設置完了し実証試験を実
	施した。「故障部位把握方法の開発」につ
	いては、ストリングMPPT制御装置を
	活用したIV測定装置を開発し、パワー
	コンディショナ稼働中の複数ストリン
	グ同時IV測定、IVカーブトレーサ同
	等の測定精度を実現した。また、発電特
	性低下ストリング特定アルゴリズムを
	開発し、故障模擬実験により発電性能が
	20%以上低下したモジュール1枚を
	含むストリングの特定に成功した。
研究開発項目③ 太陽光発電	研究開発項目③ 太陽光発電システム
システムのコスト低減に関す	のコスト低減に関する技術開発動向調
る技術開発動向調査	杏
国内外の技術開発動向、政策	国内外における太陽光発電システムの
動向、市場動向等について調	実態調査、国内外における最先端の太陽
査を実施する。	光発電システム技術開発動向調査、海外
且で天肥りる。	
	諸国の研究開発プログラムに関する動
	向調査等を実施した。また、国の「太陽
	光発電競争力強化研究会」において、ポ
	ストFIT(固定価格買取制度)も見据
	えたコスト競争力の強化や、長期安定的
	な発電事業体制の構築に向けて、具体的
- I	に必要な業界の取組や、政策的措置につ
	に必安は未介の取組で、以来的相直に フ

いて他は下さらか。実施化した。			
# 東京教育知道: 太白党を置		いて検討するため、事務局として発電コ	
## 表記を確認		スト等に関する調査・分析を実施した	
		7 T TICK TOWNE MINE MINE ON	
(1) 人参表分類 正常的 中央 地方	研究開発項目④ 太陽光発電	研究開発項目④ 太陽光発電システム	
(1) 大海学等工程を対す的である。 (2) 大海学等のであってのシング (3) は 20 は 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	システムの安全確保のための	の安全確保のための実証	
(本作版) (上 アリリハハト・イングデ	宝証		
(
(場場) た			
の、人権工等がよっても、200 回 適力を会・確認と、確定・実施上の決し 等する概と、確定・実施上の決し 等する概と、では、大きなは決し をのデータを使い、実施する。とき 目的に企事を作い、実施する。 を指し、シミュレーションの全性(火災 光層・概定施制に関して、北海等が開催 を設定が発生し、シミュレーションの全性(火災 光層・概定施制に関して、北海等が開催 を設定が表現を対して、人工連算 ム 対象が対象が上の大き機能した。高速 需がよる形式を理解の音響を制度を支援した。高速 需がよる形式を理解の音響を制度を支援した。基準の 大層を変更な物の音響を制度と対して、日本情報 における上変けいく及びは、場合・一カ ・カンド・デリター・自然素を (3) 実際が多な場合として、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における一変がある。 (3) 実際が多なに関して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 ・ 大きない。 日本情報を表して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 を実施した。 日本情報を受け、一本情報を を実施した。 日本情報を受け、一本情報を を実施した。 日本情報を を実施した。 日本情報を を変が、といりまままままままままままままままままままままままままままままままままままま	害に対しても安全を確保する	ントに関する情報収集用のサーバーを	
の、人権工等がよっても、200 回 適力を会・確認と、確定・実施上の決し 等する概と、確定・実施上の決し 等する概と、では、大きなは決し をのデータを使い、実施する。とき 目的に企事を作い、実施する。 を指し、シミュレーションの全性(火災 光層・概定施制に関して、北海等が開催 を設定が発生し、シミュレーションの全性(火災 光層・概定施制に関して、北海等が開催 を設定が表現を対して、人工連算 ム 対象が対象が上の大き機能した。高速 需がよる形式を理解の音響を制度を支援した。高速 需がよる形式を理解の音響を制度を支援した。基準の 大層を変更な物の音響を制度と対して、日本情報 における上変けいく及びは、場合・一カ ・カンド・デリター・自然素を (3) 実際が多な場合として、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における上変けいく及びは、場合・一カ ・ 東京 を表して、日本情報 における一変がある。 (3) 実際が多なに関して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 ・ 大きない。 日本情報を表して、日本情報 を実施した。 日外日内高級体がはたい。 で、機能・利力を表して、日本情報 を実施した。 日本情報を受け、一本情報を を実施した。 日本情報を受け、一本情報を を実施した。 日本情報を を実施した。 日本情報を を変が、といりまままままままままままままままままままままままままままままままままままま	評価・設計手法を確立するた	構築した。積雪荷重に関する実証試験に	
は			
日本主義書・研究・実施委員 等を実施することを 同的に効果を行い、実施であることを 同的に効果を行い、実施であることを 同的に効果を行い、実施であることを 同的に効果を行い、実施を使用して、また、現地需要が を変更します。 を発生を発生した。こと、現地需要が を発生した。ことは会社性人民 の家にも心に節いにはして、地球能性の域 等例を必要した。要 書き、実施工業を実施して、また。 を関いまたとなる。 を対した。というのようと 大阪・金貨の大阪工業を実施して、 (2) 中収の大阪工業を実施して、 (3) 中収の大阪工業を実施して、 (4) 中収の大阪工業を実施して、 (5) 中収の大阪工業を実施して、 (6) 中収の大阪工業を実施して、 (7) 中収の大阪工業を実施して、 (8) 中収の大阪工業を実施して、 (9) 中収の大阪工業を実施して、 (1) 中収の大阪工業を実施して、 (1) 中収の大阪工業を実施して、 (2) 中収の大阪工業を実施して、 (3) 東京中となびた、市が一方・10 日間で表しまして、 (3) 東京中となびた、市が一方・10 日間で表しまして、 (3) 東京中となど、市が上の大阪工業を実施して、 (4) 中収の大阪工業を実施して、 (5) 中収の大阪工業を実施して、 (6) 中収の大阪工業を実施して、 (7) 中収の大阪工業を実施して、 (8) 中収の大阪工業を実施して、 (9) 中収の大阪工業を実施して、 (1) 中収の大阪工業を実施して、 (1) 中収の大阪工業を実施して、 (2) 中収の大阪工業を実施して、 (3) 東京中となどが、市が上の大阪工業を実施して、 (4) 中収の大阪工業を実施を実施して、 (5) 中収の大阪工業を実施して、 (6) 中収の大阪工業を実施して、 (7)			
(
等のデータを取得することを 目的に公事を行い、実施する。 の表でも変え、シミューレンションによりで の表ではを確認した。 は実施性 (実施性) をで変え、シミューレンションによりで の表ではを確認した。 は実施性 。 を確認しています。 は実施性 は また 。 本様な原元形態を関連が多を含む。 とは また 。 本語が有しる音楽によいで、人工学編書 、 スペースのという。 は、実施性 に 、	関する調査・研究・実証実験	回路の長期耐久性の検証について、バイ	
等のデータを取得することを 目的に公事を行い、実施する。 の表でも変え、シミューレンションによりで の表ではを確認した。 は実施性 (実施性) をで変え、シミューレンションによりで の表ではを確認した。 は実施性 。 を確認しています。 は実施性 は また 。 本様な原元形態を関連が多を含む。 とは また 。 本語が有しる音楽によいで、人工学編書 、 スペースのという。 は、実施性 に 、	等を実施する。また、耐久性	パス回路長期耐久性試験方法に関する	
同的に決勝を行い、実施する。			
の奏当を推進した。 電気を含む(火災 を譲渡した)型して、減冷を結び(火災 を選及とかか山下に公園の飲た政計・左流 者が大力に変なのかけ、全にで、及ぼす 選が、以下が得点 国際の火油が下に、及ぼす 選が、以下が得点 国際の火油が下に、及び「の場合」といく、フェルター という、ですれる場合を受けれた。 一点でした。 を主なした。 人格大力に立て、が下が得点 という、大力が表面に立て、対した。 を主なした。 人格大力に立て、が下が得点 という、大力が大力に、大力が大力に、大力が表面に立て、大力が大力に、大力が大力に、大力が大力に、大力を大力に、大力にない。 要した。 を主なした。 また、交びの場合に、は、大力に対して 大力に、 また、交びの場合に、 は、大力に対して 大力に、 また、交びの場合に、 は、大力には を行った。 また、交びの場合に、 は、 の大型の変化して、 また、 などの場合に、 は、 の大型の変化して、 また、 などの場合に、 は、 の大型の変化して、 また、 などの場合に、 は、 の大型の変化して、 また、 などの場合には、 は、 の大型の変化して、 また、 などの場合には、 は、 の大型の変化して、 また、 などのようには、 は、 の大型の変化して、 また、 などのように、 は、 の大型の変化して、 また、 などのようには、 は、 を下級した。 おりにかして、 また、 などのようには、 は、 また を下級した。 おりにかして、 また、 などの と を下級した。 というにない ことで また。 というにない ことで を下級していて ことで また。 というにない ことで をいていていて ことで また。 というにない ことで をいていていて ことで また。 というにない ことで をいていていていていていていない。 といいで、 また。 といいで、 また。			
た施・成立企動に単して、一連格部目径域	日的に公券を行い、美施する。		
		の妥当性を確認した。電気安全性(火災	
		危険・威雷危険) に関して、地絡検出保護	
本技術原理の受害性病態を行った。			
 			
#当日 (
本書の表現の計算機とよった一とかっと 本書の表現の計算機とは、高海の 大幅大阪 () 大阪 ()		雷が太陽光発電設備の健全性に及ぼす	
本書の表現の計算機とよった一とかっと 本書の表現の計算機とは、高海の 大幅大阪 () 大阪 ()		影響に関する研究において、人工誘導雷	
について計算条件を明確した。高中の 大国光整電光側の電散であると変地した。 (2) 平成 2 9 年級の電散 ガイドフィン を作成した。大陽光常 印版 、 製台に関 する市場(協) 高の間を P C 及び称、発台 と H A 子 A 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 A 子 B 子 B			
大幅光発電電像の高被害調査企業施し た。(2)甲殻 2 9 年版の部計 ガイドライン 全甲級した。太陽が発電用抗・発音に関 する市場の過点の調査として、自本市場 にあるか多数で見りで加、労争メーカ (4) 2 大海 1 大海 1 大海 2 大海 2 大海 2 大海 2 大海 2 大海			
た。			
(2) 平成29年版の武井ガイドライン を作成した。大幅光発電射法、乗台に間 する市場流画の調査として、日本市場 における主要して及び時、乗台に一 カーへのヒアリンク/アンケート商業を 実施した。耐度を発した。また、乗台3歳数額。 航域線 を行った。また、乗台3歳数額。 航域線 を行った。また、乗台3歳数額。 航域線 を行った。また、乗台3歳数1 向泉 前級柱、大元に、赤木鳴艦2歳41 向泉 前級柱、大元に、赤木鳴艦1 にカレビ 災害調査と行った。赤木泉艦3歳41 向泉 前級柱、大元は由市の3 の場といい で、鉄道。相談活動及がフィールド調査 を実施した。 18 PD 同時総成が設定が、 変施200 にフェールを調査 を実施した。 18 PD 同時総成が設定。 18 を実施した。 18 を関係を対した。 18 を実施した。 18 を関係を対した。 18 を実施した。 18 を関係を対した。 18 を実施した。 18 を関係を対した。 18 を対した。 18 を関係を対した。 18 を関係を対した。 18 を対した。 1		太陽光発電設備の雷被害調査を実施し	
(2) 平成29 年版の変計ガイドライン を作成した。大路光発電射体、発台に間 する市場にはいる事更として、日本市場 における事更として及り体、学台メーカ 一へのとアリンク/アンケート調査を 実施した。制度を実施した。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を行った。また、架台等数数 を表した。間の高 所刻は大きな、地域について 災害調査を行った。地へ原温域町、同島 同島 同島 同島 同島 同島 同島 同島 同島 同島		た。	
を作成した。太陽光第電用が、聚台に関する市場では、原本に関する市場では高の調査として、日本に関しておける主要DPC及び近、梁台メーカーへのとアリン/アンケート間をを実施した。前風安全に関して、予備実験を与った。また、前風安全に関して、予備実験を製造を製作した。 (3) 災事神を使うた。 健本集体動脈、1向貝南河蘇州、大分県市市市の3地域について、被接・和協活助及びソールド調査を実施した。 BPD回総を開対策に関して、計測薄金の具を刺薬にし、満春手順についてのマニュアルを作成した。 調査を除していたでジュールメーカー、公命定格、ストリング構成、設置状況、発電、次し、環接を関して、できュール・カー、公の定格、ストリング構成、設置状況、発電、以、環接が足についても利潤し、BPD回路のサーブと放り、現職が足についても利潤し、BPD回路のサーブと放り、現職が足についても利潤ととこととした。 3 ○ ステム、ア 5 5 モジュール、 例2 ・2 6 5 の クラスタ についての マニアル・約2 ・2 6 5 の クラスタ についての マニアル・約2 ・2 6 5 の クラスタ についての 東京 といて、第一次 日本の 東京 エール をリコース マース マース で 5 こん 国 を別する 大阪 音楽 日本の サース マース で 5 こん といて 日本の 大阪 日本の エース マース マース マース で 5 こん の の 技術を研究 し、 サンイクルに関する 社会システース をリーエース マース マース マース で 5 こん の の 技術を研究 し、 サンイクルに関する 社会システース をリュース マース マース マース で 5 こん の の 技術を研究 し、 サンイクルに関する 社会システース 日本の まっこん タース マース マース で 5 こん の で 5 と 日本の 5 と 日本の で 5 と 5 と 日本の で 5 と 5 と 日本の で 5 と 5 と 5 と 5 と 5 と 5 と 5 と 5 と 5 と 5			
する市場液温舟の調査として、日本市場 におけるモ吸足 FC 及び体、名もメーカ ーへのヒアリング / アンケート調査を 実施した。新た、架合試験変更、抗試験 を行った。また、架合試験変更、抗試験 を行った。また、架合試験変更、抗試験 を行った。また、架合試験変更、抗試験 を行った。那本環域側に、同環 ・			
における主要 FD C 及び杭・突かさーカーへのと「ソング・ト間査を実施した。耐製を全に関して、子倫実験を行った。 また、製造教験を製置を製作した。 また、製造教験を製置を関係した。 また、製造教験を製置を関係した。 また、製造教験を関係した。 実治調査を行った。 能本機造成することでした。 は治療を行った。 能本機造成力して、 実治調査の実施の関係な解対策に関して、 計測値の項目を判解をいいて、 また、製造教化では、 また、関係を関係を関係を関係を定して、 また、製造教化、 また、財力が保険に関して、 計測値の項目を判解をとした。 また、 とない このマニ・アルを作成した。 諸 査に際してはモジュールメーカー、 公布 定格、 ストリン 作成、 政置教化、 及置教化、 及置教化、 及置教化、 及置教化、 及置教化、 及置教化、 及国教化、 及国教化、 及国教化、 及国教化、 及国教化、 及国教化、 及商 ない えん できることとした。 3 のシステム、 7 5 5 七 5 ユール、 約 2 、 2 6 5 の ク フ ス タ について B P D 回路の調査を で 1 件値 認した。 3 、 太陽・光電 で 3 、 太陽・発電・リサイクル技術 阿桑 デンコ・ストの リサイクル 機関係 アロジェクト 佐、 ストの リサイクル 処理技術に加入、 後、 表・ 回収 即連技術等、 使用済み太陽・発電・ 文 アム の 適立 配合 を実現する技術を 「関係・実証し、 また使用済みの 大陽 衛ルモジュールを リュース する ため 改技術を 医解・実証し、 また 使用済み な 版 また 便用済み な 版 また 便用済み な 成 また 便用済み な 成 また 便用済み な 成 また 便用済み な 成 また 便用済み な な な の 技術を 医解・実証し、 また 使用済み な な な の 技術を 医解・実証 し、 また 使用済み な な な な の 技術を 医解・ ジェールを リュース する ため の 技術を 医解・ 実証 し、 また 使用済 み な な な と で 日本 な な な な は また 使用済 み な な また 使用 また シェース よ た を し の 技術を 医解・ ステン る ため 改 な を は する こと を 日			
- へのとアリング/アクート調査を 実施した。また、単名試験装置、桁試験 を行った。また、操名試験装置、桁試験 を変した。 (3) 災事物の検索状況と現場がは次辺 の実施調査を打った。維本児益縁四、同果 所解析が大分保申析画の3 地域について 、教養・相談な動及びフィールと開査を を実施した。 BP PD回路 数配金対策に関して、計測調査ののエミュアルを作成した。調査 を実施した。 BP PD回路 数配金対策に関して、計画調査ののエミュアルを作成した。調査 を実施してはモジイルの選出状況、発展 が現る機能などについても把値し、BP D放停率との信義をとととした。3 のシステス、785 モジュール、約2、 265 のクラスタについてBP D回路のオープン故 関係アロジェクト (平成 金の調査を19、 BP PD回路のオープン故 内に関係の対策が表現しまた。 3、太陽光発電リサイクル技 情報報となることとした。3 のシステス、785 モジュール。 25 を19年後で、BP PD回路のオープン故 地にコストのリサイクル処理技術に加 を1 は、ストのリサイクル処理技術に加 を2 も年後で不成30 年度] 低コストのリサイクル処理 技術に加え、放出・同収関連 技術を開発・実施し、また使用済みの 大版土 同心関連技術等、使用済み大 を2 大子への適味分を実現する技術を開発・実施し、また使用済みの 大版者配子ジュール・30 な技術を開発・実施し、また使用済みの 大版者の関連を分差、実現する な技術を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・シェーレ・19 は を2 は、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・シェーレ・19 は を2 は、また使用済みの 大橋を開発・シェーレ・19 は を3 は、19 は、19 は、19 は、19 は、19 は、19 は、19 は、19		する市場流通品の調査として、日本市場	
- へのとアリング/アクート調査を 実施した。また、単名試験装置、桁試験 を行った。また、操名試験装置、桁試験 を変した。 (3) 災事物の検索状況と現場がは次辺 の実施調査を打った。維本児益縁四、同果 所解析が大分保申析画の3 地域について 、教養・相談な動及びフィールと開査を を実施した。 BP PD回路 数配金対策に関して、計測調査ののエミュアルを作成した。調査 を実施した。 BP PD回路 数配金対策に関して、計画調査ののエミュアルを作成した。調査 を実施してはモジイルの選出状況、発展 が現る機能などについても把値し、BP D放停率との信義をとととした。3 のシステス、785 モジュール、約2、 265 のクラスタについてBP D回路のオープン故 関係アロジェクト (平成 金の調査を19、 BP PD回路のオープン故 内に関係の対策が表現しまた。 3、太陽光発電リサイクル技 情報報となることとした。3 のシステス、785 モジュール。 25 を19年後で、BP PD回路のオープン故 地にコストのリサイクル処理技術に加 を1 は、ストのリサイクル処理技術に加 を2 も年後で不成30 年度] 低コストのリサイクル処理 技術に加え、放出・同収関連 技術を開発・実施し、また使用済みの 大版土 同心関連技術等、使用済み大 を2 大子への適味分を実現する技術を開発・実施し、また使用済みの 大版者配子ジュール・30 な技術を開発・実施し、また使用済みの 大版者の関連を分差、実現する な技術を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・シェーレ・19 は を2 は、また使用済みの 大橋を開発・実証し、また使用済みの 大橋を開発・シェーレ・19 は を2 は、また使用済みの 大橋を開発・シェーレ・19 は を3 は、19 は、19 は、19 は、19 は、19 は、19 は、19 は、19		における主要EPC及び杭・架台メーカ	
実施した。耐風安全に関して、予備実験を行った。また、契合対験装置を製作した。 を行った。また、契合対験装置、			
を行った。また、果全は映装置、杭武験 装置を製作した。 (3) 災害時の被害状況と現場対応状況 の実態調査として、熊生陶能と対して 災害調査を行った。能生陶益域町、同県 市同解解は、大分県は由市の3 建域につい て、被援・相談活動及びフィールド調査 を実施した。BPD関係は対策に関し で、計測調査の項目を問能にし、調査手 順についてのマニュアルを作成した。 選査に際しては干ジュールノーカー、公所 変格、ストリング構成、診置性況、発電 状況・履歴などについても程度し、BP D 数属率との相関をとることとした。3 0システム、75 ミモジュール、約2 2 6 5 のクラスタについて B P D D 関係のオープン を 解答 2 1 年確認した。 3. 太陽光電 3 サイクル技術開発プロジェクト (4 ロストのリサイクル処理 技術に、 旅去・回収関連技術で、使用済み太 トで、 水土のリサイクル処理 技術を、使用済み太陽光発電 システムの適正処分を実現する る技術を開発・実証し、また をの方式の適正処分を実現する る技術を開発・実証し、また使用済みの 大陽電池・ジェールをリニースマるた めの技術を開発し、現ナイクルに関する との方はの適正処分を実現する を関本の本場発電 システムの適正処分を実現する る技術を開発・実証し、また使用済みの 大陽衛池・ジェールをリニースマるた めの技術を開発し、リサイクルに関する との方はの適正処分を実現する る技術を開発し、リサイクルに関する との方はの適正処分を実現する る技術を開発し、リサイクルに関する との方はの適正処分を実現する る技術を開発し、リサイクルに関する 社会システム構築に貢献することを目		1	
装置を製作した。			
(3) 集事時の被害状況と現場対応求況 の実能調査をして、無本味量におして 災害調査を行った。熊本県益城町、同県 闸阿蘇村、大分県由布市の3地域につい で、被援・相談活動及びフィールト調査を を実施した。BPD回路な解対策に関し て、計測調査の項目を明確にし、調査手 順についてのマニュアルを作成した。調 査に際してはまジュールメーカー、公称 定核、ストリング構成、設置状況・避難などについても地獄し、BP D放瞬率との相関をとろこととした。3 のシステム、755モジュール、約2, 265のクラスタについてBPD回路の の調査を行い、BPD回路のホープン故 応差1件施設した。 3. 太陽光発電リサイクル技 病開発プロジェクト [平成 26年度〜平成30年度] 低コストのリサイクル処理 技術等、使用がみ太陽光発電 とジェクト 低コストのリサイクル処理 技術等、使用がみ太 、機大・回収関連技術等、使用済み太 、機大・回収関連技術等、使用済み太 、機大・回収関連技術等、使用済み太 、機大・回収関連技術等、使用済み太 、機大・回収関連技術等、表証し、また使用済みの 太高機・実証し、また使用済みの 太高機・実証し、また使用済みの 大器電池とジェールをリサイクルに向する は会父の天場電池・大き、機大・回収開する となったの選正処分を実現する 表情を開発・実証し、また使用済みの よの選正処分を実現する となったの選正処分を実現する となったの選正処分を実現する。大き使用済みの よの選正を分を実現する。大き使用済みの よの選正を分を実現する。大き使用済みの よの選正を分を実現する。大き使用済みの よの選正を分を実現する。大き使用済みの大き電池と、リサイクルに関する			
の実施調査を行った。熊本県益城町、同県 南阿蘇村、人分県由布市の3地域につい て、救援・相談活動及びフィールド調査 を実施した。BPD回路放除対策に関し て、計測調査の項目を明確にし、調査手 順についてのマニュアルを作成した。調 査に際してはモジュールメーカー、公称 定格、ストリング構成、設置状況、発電 状況・履歴などについても程盤し、BP D が除率との相関をとることとした。3 0システム、755モジュール、約2, 265のクラスタについてBPD回路 の調査を行い、BPD回路のオープン放 降を1件確認した。 3. 太陽光発電リザイクル技 術開発プロジェクト [平成 26年度~平成30年度] 低コストのリサイクル処理技術に加 を第4年代報認した。 第5年代を発表した。第5年代を発表した。 第6年度~平成30年度] 低コストのリサイクル処理技術に加 え、撤去・回収開連 技術に加え、撤去・回収開連 技術に加え、撤去・回収開連 技術等、使用済み太陽・実証し、また 使用済みるの湯と数では、また 使用済みるの湯を調査・実証し、また 使用済みるの活躍が分を実現す る技術を開発・実証し、また 使用済みの、振電池モジュールをリコースするた めの技術を開発・実証し、また 使用済みの、振電池モジュールをリコースするた めの技術を開発し、リザイクルに関する		装置を製作した。	
の実施調査を行った。熊本県益城町、同県 南阿蘇村、人分県由布市の3 地域につい て、救援・相談活動及びフィールド調査 を実施した。B P D 回路 政施 政治		(3)災害時の被害状況と現場対応状況	
南阿蘇村、大分県由布市の3地域について、数様・相談活動及びフィールド調査を変薬施した。BP回路故障対策に関して、計測調査の項目を明確にし、調査手順についてのマニュアルを作成した。調査に際してはモジュールメーカー、公称定格、ストリング構成、設置状況、発電水況・減歴などについても把握し、BP回数には表さととした。30システム、755モジュール、約2、265のクラスタについてBP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の調査を行い、BP回路の表で行いたといるというには、3、太陽光発電リサイクル技術開発プロジェクト「平成26年来の30年度」低コストのリサイクル処理技術に加え、撤去・回収関連技術等、使用済み太、協業発電システムの適正処分を実現する技術を開発を実施し、また使用済みの成面に処分を実現する技術を開発・実証し、また使用済みの成面に処分を実現する技術を開発・実証し、また使用済みのの表面に対し、また使用済みのの表面に対し、また使用済みのの大陽電池モジュールをリコースするための技術を開発し、リサイクルに関する社会システムの適正処分を実現する技術を開発し、リサイクルに関する社会システム構造し、リサイクルに関する社会システム構造に関係した。ととも目			
て、救援・相談活動及びフィールド調査を実施した。BPD回路故障対策に関して、計測調査の項目を明確にし、調査手順についてのマニュアルを作成した。調査に際してはモジュールメーカー、公称定路、ストリング構成、設置状況、発電状況・履鑑などについても把握し、BPD立破庫率との相関をとることとした。30システム、755モジュール、約2,265のクラスタについてBPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路の調査を行び、BPD回路のオープン故障と1年間記した。 3. 太陽光光電リサイクル技術開発では、カールを11年の対策に関策を使用済み太陽光・電いストルの適正処分を実現する技術を使用を表しまた使用済みの大場電池モジュールをリコースするための技術を開発・実証し、また使用済みの大場電池モジュールをリコースするための技術を開発・実証し、また使用済みの大場電池モジュールをリコースするための技術を開発・実証し、また			
を実施した。BPD回路放除対策に関して、計劃調査手順についてのマニュアルを作成した。調査に関してはモジュールメーカー、公称定格、ストリング構成、設置状況、発電状況・履歴などについても把握し、BPD故障率との相関をとることとした。3のシステム、755モジュール、約2。265のクラスタについてBPD回路の調査を行い、BPD回路のオープン故障を1件確認した。3、太陽光発電リサイクル技術開発プロジェクト [平成26年度] 平成36年度] 低コストのリサイクル処理技術に加え、旅去・回収関連技術に加え、旅去・回収関連技術に加え、旅去・回収関連技術等、使用済み大場光発電システムの適正処分を実現する技術等等、使用済み大場光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリュースするための技術を開発し、エル・フェールをリュースするための技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する技術を開発し、アールのは関連な術等に、レリサイクルに関するとを目標があることを目		南阿蘇村、大分県由布市の3地域につい	
を実施した。BPD回路放除対策に関して、計劃調査手順についてのマニュアルを作成した。調査に関してはモジュールメーカー、公称定格、ストリング構成、設置状況、発電状況・履歴などについても把握し、BPD故障率との相関をとることとした。3のシステム、755モジュール、約2。265のクラスタについてBPD回路の調査を行い、BPD回路のオープン故障を1件確認した。3、太陽光発電リサイクル技術開発プロジェクト [平成26年度] 平成36年度] 低コストのリサイクル処理技術に加え、旅去・回収関連技術に加え、旅去・回収関連技術に加え、旅去・回収関連技術等、使用済み大場光発電システムの適正処分を実現する技術等等、使用済み大場光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリュースするための技術を開発し、エル・フェールをリュースするための技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する技術を開発し、アールのは関連な術等に、レリサイクルに関するとを目標があることを目		て、救援・相談活動及びフィールド調査	
て、計測調査の項目を明確にし、調査手順についてのマニェアルを作成した。調査に際してはモジュールメーカー、公称定格、ストリング構成、設置状況、発電状況、発電状況、発電状況、発電がないでも把握し、BPD故障率との相関をとることとした。30システム、755モジュール、約2,265のクラスタについてBPD回路のオープン故障を1件確認した。 3. 太陽光発電リサイクル技術開発プロジェクト [平成26年度]低コストのリサイクル処理技術に加え、6年度]低コストのリサイクル処理技術に加え、施去・回収関連技術等、使用済み大陽光発電システムの適正処分を実現す技術等、使用済み大陽光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリユースするための技術を開発・実証し、また使用済みの太陽電池モジュールをリユースするための技術を開発・実証し、また使用済みの太陽電池モジュールをリユースするための技術を開発・実証し、また使用済みの太陽電池モジューとリユースするための技術を開発・実証し、また使用済みの大陽電池モジューをリエースするための技術を開発・実証し、また使用済みの大陽電池モジューをリエースするための技術を開発・実証し、また使用済みの大陽電池モジューと、大学ステム・機能に貢献することを目			
順についてのマニュアルを作成した。調査に際してはモジュールメーカー、公称 定格、ストリング構成、設置とびについても把握し、BP D故障率との相関をとることとした。3 0システム、755モジュール、約2, 265のクラスタについてBPD回路 の調査を行い、BPD回路の書を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路のの調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の調査を行い、BPD回路の可調を行い、BPD回路の調査を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路の可調を行い、BPD回路のファン故障を1中確認した。 3. 太陽光発電リサイクル技術開発プロジェクト (近コストのリサイクル処理技術に加え、撤去・回収関連技術等、使用済み太大機・使コストのリサイクル処理技術に加え、撤去・回収関連技術等、使用済みな、機・と関系・実証し、また使用済みのシステムの適正処分を実現する技術を開発・実証し、また使用済みのよる技術を開発・実証し、また使用済みの大陽電池モジュールをリユースするための技術を開発し、リサイクルに関する社会システム構築に貢献することを目			
査に際してはモジュールメーカー、公称 定格、ストリング構成、設置状況、発電 状況・履歴などについても把握し、BP D故障率との相関をとることとした。3 0システム、755モジュール、約2, 265のクラスタについてBPD回路のオープン故 障を1件確認した。 3. 太陽光発電リサイクル技 術開発プロジェクト [平成 26年度〜平成30年度] 低コストのリサイクル処理 技術に加え、振去・回収関連 技術等、使用済み太陽光発電 システムの適正処分を実現する技術を開発・実証し、また使用済みの システムの適正処分を実現する技術を開発・実証し、また使用済みの システムの適正処分を実現する技術を開発・実証し、また使用済みの 大陽電池モジュールをリユースするた めの技術を開発・実正し、また使用済みの 大陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
定格、ストリング構成、設置状況、発電 状況・履歴などについても把握し、BP D			
 定格、ストリング構成、設置状況、発電状況、発電状況・履歴などについても把握し、BPDD検障率との相関をとることとした。3 0システム、755モジュール、約2,265のクラスタについてBPD回路の調査を行い、BPD回路の調査を行い、BPD回路のオープン故障を1件確認した。3.太陽光発電リサイクル技術開発プロジェクト [平成26年度~平成30年度] 低コストのリサイクル処理技術に加え、協士・回収関連技術等、使用済み太陽光発電システムの適正処分を実現する技術等、使用済み太陽光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの太陽電池モジュールをリユースするための技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する技術を開発し、リサイクルに関する社会システムの適正処分を実現する技術を開発し、リサイクルに関する社会システムの適正を対象で開発し、リサイクルに関する社会システムの適正を対象で開発し、リサイクルに関する社会システムを関発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リサイクルに関する社会システムを開発し、リナインルに関する社会システムを開発し、リナインルに関する社会システムを開発し、リナインルに関するときないまた。 		査に際してはモジュールメーカー、公称	
大沢・履歴などについても把握し、BP D 放降率との相関をとることとした。3			
D故障率との相関をとることとした。3 0システム、755モジュール、約2,265のクラスタについてBPD回路の調査を行い、BPD回路のオープン故障を1件確認した。 3. 太陽光発電リサイクル技術開発プロジェクト [平成26年度~平成30年度] 低コストのリサイクル処理技術に加え、加去・回収関連技術等、使用済み太陽光発電技術に加え、撤去・回収関連技術等、使用済み太陽光発電システムの適正処分を実現す技術等、使用済み太陽光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリコースするための技術を開発・実証し、また使用済みの大陽電池モジュールをリコースするための技術を開発・実証し、またせ用済みの大陽電池モジューをリコースするための技術を開発・実証し、またせんの方法を開発・リナイクルに関する社会システム構築に貢献することを目			
0システム、755モジュール、約2,265のクラスタについてBPD回路の調査を行い、BPD回路のオープン故障を1件確認した。 3. 太陽光発電リサイクル技術開発プロジェクト [平成26年後~平成30年度] 低コストのリサイクル処理技術に加え、100円サイクル処理技術に加え、拡去・回収関連技術等、使用済み太陽光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの当を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリユースするための技術を開発・実証し、また使用済みの太陽電池モジュールをリコースするための技術を開発・実証し、まための技術を開発・実証し、またとりの技術を開発・実証し、またとりの技術を開発・実証し、またとりの技術を開発・実証し、またとりの表表の大陽電池モジュールをリコースするための技術を開発・実証し、またとりの表表の表表を開発・実証し、またとのの表表を記述されている。			
265のクラスタについてBPD回路の調査を行い、BPD回路の調査を行い、BPD回路のボーブン故障を1件確認した。 3. 太陽光発電リサイクル技術開発プロ			
3. 太陽光発電リサイクル技 術開発プロジェクト [平成 2 6年度~平成3 0年度] 低コストのリサイクル処理 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 システムの適正処分を実現す る技術を開発・実証し、また 使用済みの太陽電池モジュー 3. 太陽光発電リサイクル技術開発プロ ジェクト 低コストのリサイクル処理技術に加 え、撤去・回収関連技術等、使用済み太 陽光発電システムの適正処分を実現す る技術を開発・実証し、また使用済みの 太陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
3. 太陽光発電リサイクル技 術開発プロジェクト [平成 2 6年度~平成3 0年度] 低コストのリサイクル処理 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 システムの適正処分を実現す る技術を開発・実証し、また 使用済みの太陽電池モジュー 3. 太陽光発電リサイクル技術開発プロ ジェクト 低コストのリサイクル処理技術に加 え、撤去・回収関連技術等、使用済み太 陽光発電システムの適正処分を実現す る技術を開発・実証し、また使用済みの 太陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目		265のクラスタについてBPD回路	
第元 本陽光発電リサイクル技術開発プロ 3. 太陽光発電リサイクル技術開発プロ ジェクト 4 6年度~平成30年度] 低コストのリサイクル処理技術に加え、撤去・回収関連技術等、使用済み太陽光発電技術等、使用済み太陽光発電 5 後術を開発・実証し、放大の適正処分を実現する技術を開発・実証し、また使用済みの大陽電池モジュールをリユースするための技術を開発・実証し、リサイクルに関する大陽電池モジュールをリユースするための技術を開発し、リサイクルに関する大場電池モジュールをリエースするための技術を開発し、リサイクルに関する大場電池モジュールをリエースするための技術を開発し、リサイクルに関する大場電池モジュールをリエースするための技術を開発し、リサイクルに関する大場で開発し、リサイクルに関する大場で開発し、リサイクルに関する大場では、リサイクルに関する大場では、カース・アント・アント・アント・アント・アント・アント・アント・アント・アント・アント			
3. 太陽光発電リサイクル技 術開発プロジェクト [平成 2 6年度~平成 3 0年度] 低コストのリサイクル処理 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 システムの適正処分を実現す る技術を開発・実証し、また 使用済みの太陽電池モジュー 3. 太陽光発電リサイクル技術開発プロ ジェクト 低コストのリサイクル処理技術に加 え、撤去・回収関連技術等、使用済み太 陽光発電システムの適正処分を実現す る技術を開発・実証し、また使用済みの 太陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
特開発プロジェクト [平成 26年度~平成30年度] 低コストのリサイクル処理 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 システムの適正処分を実現す る技術を開発・実証し、また 古技術を開発・実証し、また 使用済みの太陽電池モジュー	9 十四小水手は北ノトッサ		
26年度~平成30年度] 低コストのリサイクル処理技術に加え、撤去・回収関連技術等、使用済み太勝光発電技術等、使用済み太陽光発電システムの適正処分を実現する技術を開発・実証し、また使用済みの太陽電池モジューをリユースするための技術を開発し、リサイクルに関する社会システム構築に貢献することを目			
低コストのリサイクル処理 技術に加え、撤去・回収関連 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 技術等、使用済み太陽光発電 る技術を開発・実証し、また使用済みの 本陽電池モジュールをリユースするための技術を開発し、リサイクルに関する せ会システム構築に貢献することを目			
低コストのリサイクル処理 技術に加え、撤去・回収関連 技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 技術等、使用済み太陽光発電 る技術を開発・実証し、また使用済みの 表陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目	26年度~平成30年度]	低コストのリサイクル処理技術に加	
技術に加え、撤去・回収関連 技術等、使用済み太陽光発電 技術等、使用済み太陽光発電 る技術を開発・実証し、また使用済みの 太陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
技術等、使用済み太陽光発電 る技術を開発・実証し、また使用済みの 太陽電池モジュールをリユースするた めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
システムの適正処分を実現す 太陽電池モジュールをリユースするた る技術を開発・実証し、また 使用済みの太陽電池モジュー めの技術を開発し、リサイクルに関する 社会システム構築に貢献することを目			
る技術を開発・実証し、また			
使用済みの太陽電池モジュー 社会システム構築に貢献することを目	システムの適正処分を実現す		
使用済みの太陽電池モジュー 社会システム構築に貢献することを目	る技術を開発・実証し、また		
	ルをリユー入りるにめい技術	別に、以下の岍九開発を夫肔した。	

)	
を開発し、リサイクルに関す	
る社会システム構築に貢献す	
ることを目的に、以下の研究	
開発を実施する。	
研究開発項目① 低コスト撤	研究開発項目① 低コスト撤去・回収・
去・回収・分別技術調査	分別技術調査
平成26年度終了。	平成26年度終了。
研究開発項目② 低コスト分	研究開発項目② 低コスト分解処理技
解処理技術FS(開発)	術FS(開発)
平成26年度終了。	平成26年度終了。
研究開発項目③ 低コスト分	研究開発項目③ 低コスト分解処理技
解処理技術実証	術実証
技術が確立した低コスト分	(1)太陽電池パネルを剥離機に投入す
解処理技術の早期実用化を実	る前処理として金属製の枠を1分以内
現するために、実用化時に近	で外すことが可能なアルミ枠取機を開
い規模、対象に対する実証を	発・製作した。併せて、剥離工程に投入
通して、処理コストやコスト	できないジャンクションボックスを取
削減効果、安全性等の実運用	り外す機能を付加させた。また、昨年度
に重要なデータを蓄積・提供	設置した試作プラントにより150枚
する。そして、目標分解処理	の実証試験を行い、回収物の評価結果か
コストの達成目処や十分なコ	ら経済性を確認した。試作プラントのラ
スト低減効果が確認された技	イン化を目的とした設計を行い、各装置
術については、コスト低減効	間を繋ぐ搬送機器の一部の設計・製作を
果を実証する。	行った。
(1)結晶シリコン太陽電池	(2)課題であったカバーガラスの劣化
モジュールのリサイクル技術	EVA剥離については、ブラシによる物
実証	理力効果によるガラスのテクスチャ内
(2) ウェット法による結晶	EVA除去手法を開発した。回収有価物
系太陽電池モジュールの高度	の価値の向上については、サイクロン効
リサイクル技術実証	果を利用した分離法の開発により、シリ
(3)ホットナイフ分離法に	コン、金属の分離性能の向上と処理時間
よるガラスと金属の完全リサ	の短縮、及びコストの削減が可能となっ
イクル技術開発	た。また、小規模処理でのシリコン純化
(4)合わせガラス型太陽電	プロセスを確立し、純度99%以上を達
池の低コスト分解処理技術実	成した。
証	(3)アルミフレーム除去装置につい
(5) P V システム低コスト	て、様々な結晶系パネルによる取外し試
汎用リサイクル処理手法に関	験を行い、モジュールと装置のコンタク
する研究開発	ト部分の最適化検証を実施した。バック
	シート除去装置は、除去機能を向上させ
	る為の改良を実施し、ガラス分離装置に
	ついては、モジュール分離開始部分の切
	込み装置を追加し、ガラスに対する刃物
	の追従性向上の改良を行うとともに、数
	種類の材質での刃物耐久性試験を実施
	した。ガラス表面EVA除去装置は、金
	属ブラシによる除去装置の開発を実施
	した。除去性能の測定方法として、EV
	A除去後のガラスを2mの高さから落
	下させる粉砕試験を実施し、ブラシ回転
	速度を最適化した。また、プロセス装置
	の処理能力実施試験を行い、ライン化で
	の検証試験を実施した。ガラスカレット
	については、板ガラス原料にするため
	に、ガラスメーカーにて原料投入試験を
	行い、受入条件の明確化につながった。
	EVA/セル層の売却は精錬所数社で
	評価を得た。
	(4)製品パネルを用いて合わせガラス
	パネルのホットナイフ分離法の開発を
	行い、モジュールに与える熱量と基板の

	┃ │ 破断寸法の大きさおよび偏差に相関が ┃
	あることを見出した。また小型パネルを
	用いて封止材EVAの各種有機溶剤に
	よる溶解について調査し、その構造およ
	び性質と溶解性の関連付けを行った。そ
	の際に確認された課題、例えば割れた基
	板ガラスから高収率でCIS粉を回収
	するために、新たにリフトオフ法等の技
	術を開発した。上記の技術を実証するた
	いまり めの設備を完成させ、基本技術の確立が
	望める体制を構築した。
	(5) 連続処理試験に供する P V モジュ
	, , , _ , , , , , , , , , , , , , , , , , , ,
	ール15,000枚を調達し、連続処理
	プロセスに試験用モジュールを投入し、
	多数枚処理試験を進めた。また、分解処
	理コスト低減効果を実証可能な実験計
	画の策定を行い、24時間体制での処理
	試験を開始した。
研究開発項目④ 太陽	光発電 研究開発項目④ 太陽光発電リサイク
リサイクル動向調査	ル動向調査
国内外の技術、普及、	
の動向、実施事例等に	
調査を実施する。	専門家へのヒアリング等を通じ、海外に
(1) 太陽光発電リサ	イクル おける太陽電池モジュールリサイクル
における国内外動向及	
	施されているモジュールリサイクル技
手法に関する調査	
(2) 太陽光発電リサ	
に関する国内動向調査	、分析
調査及び排出量予測	討し、ガイドラインとして取り纏めた。
WALKONIETIK	海外の評価制度、最新のケーススタディ
	のレビュー、既存プロジェクトを対象と
	した予備的な評価により検証を行うと
	ともに、専門家へのヒアリングを実施
	し、ガイドラインに反映した。
	(2) 国内における技術開発動向・政策
	動向・実施事例調査のフォローアップを
	実施し、各動向について俯瞰的な整理を
	行った。昨年度に整理した導入量データ
	の更新・拡充を行い、都道府県別・モジ
	ュール種類別導入量推計について検討
	した。また、昨年度に推計した排出量予
	測の精度向上のために、発電設備の規
	模・設置時期・設置主体により分類した
	上で、各分類の排出判断をモデル化した
	排出量予測手法の検討を行った。
研究開発項目⑤ 使用	
陽電池モジュールの個	コスト ジュールの低コストリユース技術の開
リユース技術の開発	
使用済み太陽電池モ	ジュー
ルをリユースするため	
開発の公募を行い、実	査する。 □ の基本性能試験を実施し、その後の実験 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	結果により、溶剤を使用しない除去方法
	を採用する方針を決定した。修復技術Ⅱ
	(バックシート損傷部位の補修)につい
	て、予備実験としてバックシートの機械
	的剥離を試みたところ、3層バックシー
	トの中間層部位できれいに剥がれるこ
	とが判明し、RTV法による簡易補修が
	EVA法より有効かつ適切であると判し
	断した。修復技術Ⅲ(故障セルの交換):
	EVA溶剤(3種類)の基本性能試験を

	(2) 高性能CIS太陽電池	また、結晶シリコン太陽電池モジュール		
	D開発	においても世界最高の変換効率24.		
	実用化規模の大面積モジュ	4%を達成した。		
	ールの高効率化及び低コスト	(2) 光吸収層表面および光吸収層・バ		
	製造プロセスの実用化に向け	ッファ層界面のパッシベーションとバ		
	た開発を実施する。	ッファ層最適化による再結合抑制技術		
		の開発を行った。さらに、小面積セルで		
		開発した高性能化要素技術のサブモジ		
		ュール構造への移転とセル集積化技術		
		の改善を実施し、電気的・光学的損失両		
		面の低減技術を開発した。また、光吸収		
		層薄膜化技術開発による低コスト製造		
		プロセスの開発を行った。それらの技術		
		を元にCIS系薄膜太陽電池サブモジ		
		ュール (30 c m角) で、世界最高変換		
		効率 1 9. 2 % を達成した。		
	开究開発項目② 革新的新構		●化合物3接合型太陽電池モジュールで世界	
	造太陽電池の研究開発	池の研究開発	最高変換効率31.2%を達成。	
	(1)革新的高効率太陽電池	(1)最適構造の薄膜Ⅲ-V多接合セル		
	の研究開発	の高効率化検証、試作した高速製膜単結		
	変換効率30%以上の薄	晶製造装置を用いて、単接合セルで効率		
	莫化合物の超高効率太陽電池	20% (GaAs, 20μm/h), 1		
	で発電コスト7円/kWhを	2% (In GaP, 10μ m/h) を実		
	達成するために、Ⅲ−V族の	現するための製膜条件検討、2インチ基		
	太陽電池の製造装置、製造プ	板のELOプロセス及び基板再利用に		
	コセス、多接合化のための剥	向けた表面保護層・表面清浄化プロセス		
	雅・接合等の製造コスト低減	の最適化、GaAs系2接合とInP系		
	かための要素技術開発及びモ	の最適化、G a A s 示 2 接		
	ジュール化の要素技術開発を	ウエハ接合条件検討、またIIIーVーon		
	実施する。	-Si成長における低欠陥密度のバッ		
	(2)革新的低製造コスト太	ファ層形成、薄膜Ⅲ−Ⅴ多接合セルにお		
	場電池の研究開発	いて有効な光閉じ込め構造を開発し効		
	モジュール変換効率は20%	率30%(非集光)、低電流・高電圧型低		
	呈度であるが、新材料、新構	倍集光量子ドットセルで効率30%の		
	告を用いることでモジュール 	実現性検討、試作した高許容角の低倍集		
	製造コストを15円/Wまで	光モジュールで効率30%の達成に向		
	革新的に低減することができ	けた光学シミュレーション手法の確立		
	る技術、具体的にはペロブス	による光学設計の改善及び光学部材の		
	カイト系太陽電池等の研究開	材料検討を行った。また、太陽電池モジ		
	発を実施する。	ュールとして世界最高の変換効率31.		
		2%を化合物3接合型太陽電池で達成		
		した。		
		(2)「モジュール製造技術開発」では、	▲の10五本唯上明長とユディン	
			●CIS系薄膜太陽電池サブモジュールで世	
		モジュールプロセス開発、及び小型モジ	界最高変換効率19.2%を達成。	
		ュールの試作に着手した。「塗布製造技		
		術の開発」では、無機陽イオン混合ペロ		
		ブスカイトを用いた小型セル(0.04		
		cm2)で変換効率20.0%を達成し		
		た。20cm角ガラス基板に35直列の		
		集積型モジュールを試作し、モジュール		
		変換効率12.6%を達成した。「超軽量		
		太陽電池モジュール技術の開発 では、		
		短冊形セルを直列に接続した5cm角		
		の集積型モジュールの試作を開始した。		
		ガラス基板モジュールでは変換効率1		
		3. 4%を達成した。PEN基板モジュ		
		ールではメカニカルスクライブに課題		
		があり、変換効率はまだ低いが、太陽電		
		池としての動作を確認した。「低コスト		
		R2R太陽電池製造技術の開発」では金		
		属箔上の小型セル (0.04cm²) で変		

	I the trade of a control of the cont	
	換効率14%を達成した。また、卓上ダ	
	イコーターによる塗工プロセスの検討	
	を行い、ガラス基板上のセルで平均効率	
	10% 、均一性 $3\sigma = 2.0$ を確認した。	
	また、成膜幅250mmのR2R(ロー	
	ルツーロール) 塗工機を用いて超軽量基	
	板への塗工検討を開始した。「高性能・高	
	信頼性確保製造技術の開発」では、ホー	
	ル輸送材料としてフタロシアニン誘導	
	体を用いた小型セルで13.7%の変換	
	効率を確認した。また、大型モジュール	
	への適用が可能な精密スプレーによる	
	電子輸送層の成膜、直列モジュール化の	
	ためのパターニング加工の検討を開始	
	した。「高機能材料・セル製造技術開発」	
	のうち、「高性能材料合成技術の開発」で	
	は、ホール輸送層として現状最高効率が	
	得られるspiro-MeOTADに	
	対し、膜耐湿性で勝るドーパントレスの	
	正孔輸送材料を開発した。また、耐湿性	
	向上のためCH ₃ NH ₃ PbI ₃ のアンモ	
	ニウムカチオンに機能性基を導入する	
	ことにより耐湿性を向上させる表面処	
	理技術を開発した。「基盤材料技術と性」	
	能評価技術の開発」では、ホール輸送材	
	料とセル構成を改良し、小型セル(0.	
	04 c m ²) で 2 0 . 3 %を実証するとと	
	もに、簡便かつ低コストに合成したホー	
	ル輸送材料(層厚み50mmとして材料	
	コスト80円/m ² が見込める)を用い	
	, , , , , , , , , , , , , , , , , , , ,	
	たセルで効率19.4%を達成した。ま	
	た、新規な傾斜へテロ接合構造を開発	
	し、認証データとして1cm²セルで効 │	
	率19.2%を達成した。特性評価法の	
	開発では、電流電圧特性において測定上	
	のヒステリシスを解消する方法を開発	
	した。「新素材と新構造による高性能化	
	技術の開発」では、新規無機陽イオン混	
	合ペロブスカイトを用いた小型セル	
	(0.18cm ²)で効率20.5%を達成	
	し、同時にセルごとのばらつきも大きく	
	改善した(平均19.5%)。臭化ペロブ	
	スカイト系は、Voc1.37Vまで高	
	電圧化することに成功した。また、高電	
	流化を狙ったSn/Pb混合ペロブス	
	カイト系では、J s c 30.02mA/	
	cm ² を達成した。各種無機系導電材料	
	の検討を進めるとともに、ヒステリシス	
	の要因解明、新規組成の提案、界面の接	
	合様式と親和性の関連などを進めた。	
	研究開発項目③ 共通基盤技術の開発	
研究開発項目③ 共通基盤技		
術の開発(太陽電池セル、モ	(太陽電池セル、モジュール開発支援技	
ジュール開発支援技術の開	術の開発)	
発)	(1) 「Cat → CVDなど新手法によ	
(1) 先端複合技術型シリコ	る高性能太陽電池低価格製造技術の開	
ン太陽電池の開発	発」においては、ヘテロ接合バックコン	
太陽電池セル・モジュール	タクト太陽電池の作製プロセスとして、	
の各製造プロセスにおいて、	結晶シリコンウエハのキャリアライフ	
評価解析を行い、得られた知	タイムを数m s と良好な値を維持しな	
見をもとに、原料、結晶、装	がら、p型アモルファスシリコンをn型	
	アモルファスシリコンに変換できるプ	
置、セル、モジュールメーカ		
一の高効率化、低コスト化、	ラズマイオン注入技術を開発した。「薄	
	I919	

高信頼性化に貢献する技術開 型セルを用いた高信頼性・高効率モジュ 発を実施する。 ール製造技術開発」においては、従来の (2) 高性能CIS太陽電池 熱拡散に代わり、イオン注入を用いて表 の開発 面側ボロン、裏面側リンを注入、熱処理 CIS太陽電池モジュール をしたn型両面受光セルを作製し、変換 効率20.0%を達成した。さらに、新 の高効率化および発電コスト 低減を可能とする界面制御技 しい評価技術として、内部量子効率マッ 術、再結合パッシベーション、 ピング法を開発した。「先端複合技術シ バンドプロファイル評価技術 リコン太陽電池プロセス共通基盤に関 等、要素技術の研究開発を実 する研究開発 | の結晶育成技術において 施する。 は、従来CZ育成技術に比べ、抵抗率が 一桁高い極低濃度不純物のCZ結晶育 国際エネルギー機関(IE 成技術の開発に成功した。セル開発にお A) の太陽光発電システム研 いては、次世代ヘテロ接合技術である、 究協力実施協定(PVPS) キャリア選択コンタクト、極薄酸化膜に よるTOPCon技術の開発を実施し での国際協力活動を通じ、調 査・分析を実施するとともに (2) アルカリ金属添加効果のメカニズ 諸外国の技術開発、政策及び 市場動向を把握する。 ムを研究し、高品質なCIGS/CdS 界面を実現する技術の開発を行った。G a/(Ga+In)プロファイル制御を 行い、開放電圧を大きく犠牲にすること なく短絡電流を増大させる技術の開発 を行った。新しいTCO材料をCIS太 陽電池に適用する研究を行った。三段階 法の最終段階制御による表面・界面への Cu欠損層作製技術の開発を行い、変換 効率が顕著に向上する結果を得た。チオ 尿素処理による表面・界面構造解析を行 い、表面・界面構造とCd拡散との関連 解明を行った。CIS表面の前処理技術 とバンド制御したバッファ層を開発し、 変換効率が顕著に向上する結果を得た。 低温バッファ層の導入により結晶粒界 の無いMoエピ膜の製膜技術を確立し、 CISエピ膜の少数キャリア寿命とし て、およそ80ns(300K)という値 を達成した。CIS薄膜中の欠陥準位の 深さ分析を解析し、深い欠陥準位に分布 がある可能性を示した。また、表面硫化 処理およびKFポスト・デポジション処 理による欠陥準位密度分布の変化を確 認した。CIS層表面電子構造、CIS /バッファ層/窓層など複数界面のバ ンドオフセットやバンド湾曲について、 太陽電池特性に関わる試料間分散の評 価、アルカリ金属添加処理がCIS表面 に及ぼす効果、太陽電池全構造を縦貫す るバンドプロファイルの可視化技術の 開発・評価を行った。CuInSe₂-I n 2 S e 3 系およびC u G a S e 2 - G a 2Se3系について、カルコパイライト相 とスタンナイト相の存在領域やそれら の電子構造の変化について理論的に明 らかにした。CuInSe2-In2Se 3系の状態図を理論的に検討してスタン ナイト相が存在しないことを確認し、C uGaSe2-Ga2Se3系についてカ ルコパイライト相とスタンナイト相の 存在領域やそれらの電子構造について 明らかにした。

研究開発項目④ 共涌基盤技 研究開発項目④ 共涌基盤技術の開発 術の開発(太陽光発電システ (太陽光発電システムの信頼性評価技 ムの信頼性評価技術等) (1) 出力等測定技術の開発 (1)「新型太陽電池評価・屋外高精度評 本事業で開発する太陽電池 価技術の開発」において、ペロブスカイ 等、標準化や規格化が進んで ト太陽電池、新型CIGS、新型結晶シ いない太陽電池の出力等を正 リコンを含む各種新型太陽電池80サ しく評価するための測定技術 ンプル以上に対して高精度測定技術の の開発を実施する。 検討・実施・実証を行った。一次基準太 (2) 発電量評価技術 陽電池校正技術の高度化では、基準太陽 NEDO日射量データベー 電池の最高校正能力不確かさ0.6% スについて、データの更新、 (U95) オーダー以内を実現する見込 高精度化及び拡充を進めるた みが得られた。屋外性能高度評価技術の めの技術開発を実施する。 開発では、太陽電池モジュールレベルの (3)信頼性・寿命評価技術 連続屋外高精度IV特性測定において、 の開発 Pmaxについて標準偏差約±0.4% 実際の太陽光発電システム の再現性が得られた。「屋外実性能高能 から発電データを取得、分析 率測定技術の開発」において、開発した 評価し、発電システムの劣化 PVモジュール日射センサーを設置し、 要因の抽出、劣化メカニズム 測定を開始した。日射変動が大きい日は の解明及び劣化予防対策技術 3 m程度距離が離れていても大きな日 射強度の差が生じる瞬間があることが と太陽電池モジュールが設置 される環境を考慮した、長期 わかった。「日射変動解析技術の開発」に 信頼性を評価するための試験 おいて、太陽電池の屋外性能評価でその 方法を開発する。 測定精度に影響を及ぼす可能性のある 日射変動を抽出しその特徴を性能評価 の高精度化の点から解析・整理した。モ ジュールスケールでも空間的な日射ム ラが生じていることを示し、0.1秒程 度の日射変動が1m程度の空間的日射 ムラに対応していることを明らかにし た。日射増強効果は比較的頻繁に発生し ており、全観測期間中の最大値として日 射強度が約1.6倍に増強されたイベン トが計測された。「太陽電池温度の高精 度測定技術開発」において、有風時にお ける太陽電池モジュール内温度分布を 大型風洞実験設備を用いて計測した。そ の結果、モジュール面内の温度分布につ いて定量的に評価することに成功した。 また、モジュール中央の温度が最もモジ ュール面内平均温度からの偏差が少な く、代表値として適していることがわか った。これらの屋内における実験結果 は、屋外における結果とも良好に一致し た。「PV日射計測によるシステム性能 測定手法開発」において、導入した屋外 評価装置に標準試験条件下での出力を 測定したモジュールを設置し、屋外にお いて同モジュールのI-V特性の測定 を行った。これを屋外条件下での同モジ ュールのIV特性の真値とし、同太陽電 池モジュールの銘板値を用いて算出し た同屋外条件下での期待特性と比較す ることで、任意の屋外測定条件下におけ るI-V特性および出力の期待値を算 出する手法の高精度化を図った。結晶シ リコン系太陽電池モジュール、ストリン グにおいて測定値と算出値との誤差± 3.0%以内を得た。「スペクトルを考慮 した屋外実性能評価技術開発」におい て、分光放射計で測定した太陽光スペク I - 2 - 14

T	しょうないはて複数の反対目無し目が目	
	トルにおける複数の短波長帯と長波長	
	帯の二波長帯APEと、350~105	
	0 n m の全域からもとめた広域APE	
	の線形性の解析を行い、線形性の高い短	
	波長帯と長波長帯の組み合わせを明ら	
	かにした。スペクトルミスマッチ (MM)	
	のAPE依存性を用いてMM補正を行	
	うという手法を考案し、基本的な補正手	
	順を確立した。	
	(2)「経年劣化を考慮した各種太陽電	
	池の発電量評価技術の開発」において、	
	福の発電量計画技術の開発」において、「結晶シリコン太陽電池の経年劣化率を、	
	異なる手法においても0.5%以内の差	
	異で高精度に評価できることを屋外デ	
	ータと室内データを用いて検証した。	
	「経年劣化を考慮した各種太陽電池の	
	発電量評価技術の開発/メガソーラー	
	の発電量及び信頼性評価技術の開発」に	
	おいて、メガソーラーの発電データの解	
	析作業を開始した。「日射量データベー	
	スの高度化に関する研究」において、全	
	国5地点の観測データを用いて、既存の	
	日射量推定モデルの検証を行った。その	
	結果、日射量が多い時を中心に過小評価	
	する傾向があった。日射スペクトルに関	
	し、水平面の全天日射から日射スペクト	
	ルを推定するモデルの開発を行った。	
	「ひまわり8号」のデータから日射量デ	
	ータベースの高密度化を検討し、衛星デ	
	ータから日射量を推定する手法につい	
	て、従来モデルでは積雪の影響によって	
	推定誤差が大きくなる傾向が見られた。	
	「アクセシブルな太陽光発電データベ	
	ース構築技術の開発」において、フーリ	
	工変換法をもとにしたストリング電力	
	等の計測の欠損区間を補間・補外するア	
	ルゴリズムを開発し、ソフトウェアに実	
	装した。試験データに対する保管誤差1	
	2. 6%を達成した。	
	(3)「ZEB適用型太陽電池モジュー	
	ルの長期信頼性評価技術の開発」におい	
	て、ZEB適用型で想定される環境負荷	
	のうち、「温度」、「電流」を複合的に負荷	
	できる「電流負荷サイクル試験装置」を	
	用いて、新規の加速評価試験方法を開発	
	した。通常用いられる温度サイクル試験	
	に比べて、4倍加速で評価することがで	
	きた。「ケーシング側から観た太陽電池	
	モジュールの寿命予測検査技術の開発」	
	において、発電劣化メカニズムに及ぼす	
	「酢酸」の影響を明確化し、フィールド	
	とラボモジュールの発電劣化メカニズ	
	ム相違の明確化検討を開始した。実フィ	
	ールドでのラマン分光計測を可能とす	
	る532nmレーザー搭載のモバイル	
	ラマンを開発した。実フィールド経年劣	
	化モジュールの 蛍光強度比(ラマン)と	
	発電劣化率の相関係数から、蛍光強度比	
	の寿命予測指標としての有用性を確認	
	した。環境劣化因子によるラボ加速劣化	
	試験方法の検討を開始した。「標準化を	
	目指した寿命予測検査技術の開発」にお	
	I - 2 - 15	

	リマー型の・上四長沙でのDID四名	$\overline{}$
	いて、p型Si太陽電池でのPID現象	
	のメカニズム解明を行った。過渡吸収分	
	光法およびマイクロ波光導電減衰法を	
	適用し、太陽電池内に発生するキャリア	
	の消滅過程を詳細に評価することによ	
	り、Na拡散による表面再結合が急増	
	し、キャリアのライフタイムが著しく低	
	下することを明らかにした。「太陽電池	
	モジュールの劣化現象の解明、加速試験	
	法の開発」において、モジュールの劣化	
	がセルのフィンガー電極の劣化に基づ	
	くとの知見をもとに、フィンガー電極を	
	短期間で劣化させる酢酸蒸気曝露試験	
	を世界に先駆けて開発した。モジュール	
	に適用する高温高湿試験に対し、70倍	
	の速度で、高温高湿試験と同等の劣化を	
	発現させることが可能となった。「紫外	
	線を含んだ環境因子による複合劣化現	
	象の解析と屋外曝露劣化との相関性検	
	証」において、紫外線照射下において、	
	湿度7%の低湿度条件においても、湿度	
	30%と変わらない量の酢酸が発生す	
	ることを確認し、改めて材料劣化におけ	
	る紫外線劣化の重要性を確認した。 紫	
	外線+湿熱の複合試験では、受光面側、	
	裏面側共に封止材EVAの分解を構造	
	解析より確認した。さらに、封止材EV	
	Aも著しい黄変を示すこと、および紫外	
	線照射単独とは異なるメカニズムによ	
	る劣化を確認した。「屋外暴露モジュー	
	ルの分析による加速試験法の開発」にお	
	いて、水蒸気透過率の異なる裏面材を使	
	用したモジュールに対する光照射と湿	
	熱試験を組み合わせた試験について、出	
	力低下が生じることを確認した。「屋外	
	での電圧誘起劣化の実証研究」におい	
	て、屋外PID加速試験を実施し、4セ	
	ル・モジュールでPID劣化を確認し	
	た。EVAの体積抵抗率を測定し、これ	
	を元にした太陽電池モジュールの2次	
	元シミュレーションモデル作成して、電流の大な網にし、カル州ので気流が焦り	
	流分布を解析し、セル端部で電流が集中	
	することを明らかにした。「電圧誘起劣	
	化が発生した箇所の特定方法、微視的評	
	価手法の開発」において、X線光電子分	
	光法を用いて、異なるPID加速試験	
	(A1法)時間におけるセル表面の水平	
	方向および深さ方向のNa析出分布の	
	評価を行った。セル表面の窒化膜上のN	
	a 分布については、フィンガー電極近傍	
	のNa析出量が多いことを確認した。深	
	さ方向の分布においては、析出したNa	
	は主に窒化膜表面にとどまっているこ	
	とを確認した。パルス電流を流すこと	
	で、数10秒程度でPID回復できるこ	
	とを見いだした。正電圧では、劣化の程	
	度はさらに小さく、また同じく飽和する	
	傾向があることを見出した。また、これ	
	らの劣化の原因が、光入射側の表面再結	
	合速度増大であることを実験的に確認	
	した。ヘテロ接合型に関し、負電圧のP	
	ID試験において、短絡電流密度のみが	
	I _9_1¢	

	低減する特徴的なPID現象を示すこ
	とを明らかにした。フロントエミッター
	型に関し、負電圧のPID試験におい
	て、開放電圧と短絡電流密度が低下し、
	その後飽和する振る舞いの劣化を示す
	ことを明らかにした。「発電データ分析
	によるシステム信頼性および劣化率評
	価」において、北杜メガソーラーにおけ
	る各種太陽電池モジュール・システムの
	発電データ取得および分析を行った。8
	年目時点での結晶シリコン系47シス
	│
	結果として、一0.4%/年を得た。ま
	た、大規模太陽光発電システム導入のた
	Mの検討支援ツール」(STEP-PV)
	のユーザビリティの向上に向けた改修
	7 7 1 1 1 1 1 2 2 1 1 7 1 2 2 1 2
	を実施した。
研究開発項目⑤ 動向調査等	研究開発項目⑤ 動向調査等
	(1) 日本の太陽光発電システムの発電
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
開発戦略の発電コスト低減	コストを分析するとともに太陽光発電
目標の達成に向け、必要な情	産業、市場動向等に関するシナリオ分析
報を収集、整理及び分析を行	実施に向けた基礎情報の検討及び太陽
報を収集、整理及の方例を打	
	光発電技術に関する特許調査における
(2) I E A 国際協力事業	キーワードの抽出とそれに関する情報
	の整理を実施した。また、研究開発項目
	②で開発している「高効率太陽電池」の
	新たな利用方法の可能性を検討するた
	め、「高効率太陽電池」の特長を生かした
	面積制約を受ける環境での活用例とし
	て「太陽光発電システム搭載自動車」に
	関する情報収集、課題の抽出等を実施し
	ト。加えて、太陽電池モジュールを中心
	とした性能レベル、製造技術、製造コス
	ト等の各種動向及び政策動向の調査を
	力強化研究会」において、ポストFIT
	(固定価格買取制度)も見据えたコスト
	競争力の強化や、長期安定的な発電事業
	体制の構築に向けて、具体的に必要な業
	界の取り組みや、政策的措置について検
	討するため、事務局として発電コスト等
	に関する調査・分析を実施した。さらに、
	BIPV(建材一体型太陽光発電)に関
	する検討においては、B I P V の市場価
	格、設置形態、市場ポテンシャル等につ
	いて技術面、法制面、その他様々な側面
	から、国内及びBIPV先進国の実情を
	調査・分析し、日本におけるBIPV市
	場拡大のための課題抽出を行った。
	(2)諸外国の技術開発動向や政策動向
	等について、国際エネルギー機関(IE)
	A)の太陽光発電システム研究協力実施
	協定 (PVPS)に参画し、太陽光発電の
	普及・促進に向けた国際協力活動を通じ
	た調査・分析を実施した。
b. 風力発電 (b) 風力発電 (b) 風力発電	- (b) 風力発電
風力発電の大量導入に向 風力は他の再生可能工 1. 風力発電等技術研究開発	1. 風力発電等技術研究開発 [平成 2
	0年度~平成29年度]
け、風力発電の一層の低コ ネルギーと比較して発電 [平成20年度~平成29年	
スト化に資する技術開発 コストが低く、中長期的に 度]	風力発電の大量導入に向けた技術課
スト化に資する技術開発 コストが低く、中長期的に 度] やメンテナンス技術の高 大規模な導入が期待され 風力発電の大量導入に向け	風力発電の大量導入に向けた技術課 題の克服や産業競争力強化等を目的に、
スト化に資する技術開発 コストが低く、中長期的に 度]	風力発電の大量導入に向けた技術課

		力強化等を目的に、以下の研	れらを実現するための実用化開発を支	
	スメント対応、出力安定化		援する。また、研究開発項目②について	
の普及拡大等に貢献する取 組を行うものとする。また、		それらを実現するための実用 化開発を支援する。また、研	は、公募を行う。	
		化開発を又接する。また、切		
強化等に向け、超大型洋上				
		研究開発項目① 洋上風力発		●「広範囲かつ高解像度の風況情報」、「自然・
術開発等を行うこととす	課題となる。	電等技術研究開発	研究開発	社会環境情報社会」、「衛星データ」、「発電」
る。	第3期中期目標期間においては、道入日標の達成	我が国の海象・気象条件に 適した洋上風力システム等に	我が国の海象・気象条件に適した洋上 風力システム等に係る技術の確立を目	量簡易予測」という洋上風力発電の適地の初 期検討に必要な情報を一つのマップ上で見
		過した任工風ガンペアム等に 係る技術の確立を目的に、以	めに、以下の研究開発を実施した。	られるように実現したのは国内初であり、世
	観点から、風力発電の一層	'' = " ''' '' = ' ' ' ' '	(i) 洋上風況観測システム実証研究	界でも最先端のマップである。本マップは、
	の低コスト化に資する高		実海域に設置した洋上観測システム	欧州等の風況マップと比べ、気象モデルの計
	効率ブレード等の開発や		による観測を継続実施し、観測結果に基	算解像度が500mまで細密化されており (る常な) (る常な) (なななななななななななななななななななななななななななななななななな
	メンテナンス技術の高度 化等、出力・信頼性・稼働		づく洋上風力発電の実用化を評価した。 また、洋上風況マップの作成に取り組	(通常 2 ~ 3 k mメッシュ)、さらにシミュ レーションと実観測値とのずれが±5%以
	率の向上に向けた取組を		み、風況情報だけではなく、自然環境情	内である (通常±10~30%程度) 等、高
		浪/潮流)特性の把握・検証	報、社会環境情報を一元化して表示可能	精度化が図られている。
	導入拡大に資するため、環		なマップとして機構のホームページで	
		風況観測システムによる観測 を継続し、我が国固有の風速	公表した。 (1) 洋上風汨細測システルは街の確立	
	屑化に貝臥りる疎越の見 服に取り組む。また、洋上		(1) 洋上風況観測システム技術の確立 (ア) 気象・海象(海上風、波浪/潮流)	
		性を把握するとともに、風車	特性の把握・検証	
	上風力の設置、運転、保守	設備によるウェイク評価のた	平成27年度に引き続き、風況観測シ	
		めのライダーの設置・計測を	ステムによる観測を継続し、我が国固有	
	備するとともに、固定価格	実施する。また、測定した実 データを基に将来の気象・海	の風速の鉛直分布の特性又は乱流特性 を把握するとともに、風車設備によるウ	
	力発電の価格設定に必要		を允姪するとともに、風単畝佣によるリ ェイク評価のためのライダーの設置・計	
		テムの設計・構築を図る。	測を実施した。また、測定した実データ	
	組を行う。	(イ) 環境影響調査	を基に将来の気象・海象を適切に予測す	
		複数年度にわたって実施・	る予測システムの設計・構築を図った。	
	何の催立に回け、要素技術 やシステム技術の開発、浮	収集したデータを整理・解析 し、構造物設置前後のデータ	また、洋上風況マップの作成の際に情報した提供し、システムでは、	
	体式洋上風況観測など洋		を提供し、シミュレーションによる発電 量予測の精度確認等を行った。	
		期的な環境影響評価を実施す	(イ)環境影響調査	
	開発等を行うとともに、洋	る。	複数年度にわたって実施・収集したデ	
	上風力の立地促進に関す	(2)環境影響評価手法の確	ータを整理・解析し、構造物設置前後の	
	る取組を行う。	立等	データを比較することにより、中長期的 な環境影響評価を実施し、ガイドブック	
		研究及び洋上風力発電システ	として取りまとめた。	
		ム実証研究において、運転開	(2)環境影響評価手法の確立等	
		始後複数年にわたって新たに	洋上風況観測システム実証研究及び	
		得られる環境影響調査データ	洋上風力発電システム実証研究におい	
		及び洋上風力発電等技術研究 開発委員会の検討結果を踏ま	て、運転開始後複数年にわたって新たに 得られる環境影響調査データ及び洋上	
		え、実証研究にて得られる知	風力発電等技術研究開発委員会の検討	
		見の取りまとめを行うととも	結果を踏まえ、実証研究にて得られる知	
		に、洋上風力発電導入に関す	見の取りまとめを行うとともに、洋上風	
		るガイドブックを作成する。 (3) 洋上風況マップの開発	力発電導入に関するガイドブックを作 成した。	
		(3) 存上風洗マックの開発 洋上の風況を示すマップ作	成した。 (3) 洋上風況マップの開発	
		成に求められる洋上風況シミ	洋上の風況を示すマップ作成に求め	
		ュレーションモデルの開発を	られる洋上風況シミュレーションモデ	
		実施し、洋上風況マップを作	ルの開発を実施し、国内初世界最先端の	
		成する。	洋上風況マップを作成、機構のホームペ ージにて公表した。	
		(ii)次世代浮体式洋上風力	(ii)次世代浮体式洋上風力発電システ	
		発電システム実証研究	ム実証研究	
		FSの結果を踏まえ、実証研	FSの結果を踏まえ、実証研究の詳細	
		究の詳細仕様を決定し、実際	仕様検討を行うとともに、更なる低コス	
		に浅水域に浮体式洋上用風力	ト浮体式洋上風力発電システムを実現	

発電システムを設置し性能評		する要素技術開発を実施した。	
価等を行うとともに、更なる			
低コスト浮体式洋上風力発電			
システムを実現する要素技術			
開発を実施する。			
(iii)洋上風力発電システム	_	(iii) 洋上風力発電システム実証研究	
実証研究		(1) 国内の洋上環境に適した洋上風力	
(1) 国内の洋上環境に適し		発電システムの開発	
, , , , , , , , , , , , , , , , , , , ,			
た洋上風力発電システムの開		平成27年度に引き続き、実海域に設	
発		置した洋上風力発電システムの塩害対	
平成27年度に引き続き、実		策装置や落雷計測装置等の運用による	
海域に設置した洋上風力発電		データから、洋上風車への適合性につい	
システムの塩害対策装置や落		て評価を行った。	
雷計測装置等の運用によるデ		(2) 洋上風力発電システムの保守管理	
一タから、洋上風車への適合		技術の開発	
性について評価を行う。		洋上風車へのアクセス率を向上させ	
(2) 洋上風力発電システム		るアクセス船を引き続き利用し、メンテ	
の保守管理技術の開発		ナンス効率に関するデータの収集、解析	
洋上風車へのアクセス率を向		を実施した。また、海中設備の状態を安	
上させるアクセス船の開発に		全かつ簡易に確認できる水中点検設備	
着手する。海中設備の状態を		の設計を行った。	
安全かつ簡易に確認できる水		さらに、着床式洋上風力発電に関する導	
中点検設備の設計を行う。		入ガイドブック(最終版)を作成した。	
, 5			
(3)環境影響調査		(3)環境影響調査	
複数年度にわたって収集した		複数年度にわたって収集したデータ	
データを整理・解析し、構造		を整理・解析し、構造物設置前後のデー	
物設置前後のデータを比較す		タを比較することにより、中長期的な環	
ることにより、中長期的な環		境への影響を評価した。	
境への影響を評価する。		元でが音で可聞した。	
(iv)洋上風況観測技術開発	_	(iv) 洋上風況観測技術開発	
→ 15			
平成27年度終了。		平成27年度終了。	
	_		
(v) 超大型風力発電システ	_	平成27年度終了。 (v)超大型風力発電システム技術研究	
(v)超大型風力発電システム技術研究開発	_	平成27年度終了。 (v)超大型風力発電システム技術研究 開発	
(v) 超大型風力発電システム技術研究開発 平成26年度終了。	_	平成27年度終了。 (v)超大型風力発電システム技術研究 開発 平成26年度終了。	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上によ	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コス	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それ	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それ	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調査研究	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調査研究 平成26年度終了。	_	平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (ii)スマートメンテナンス技術研究開発	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス		平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (i)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナン	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス技術研究開発		平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となる故障事故及び	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現するための実用化開発を支援する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (i)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となる故障事故及びメンテナンス技術の調査分析等を実施	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化開発 風車の設備利用率向上による発電量の増加及び発電研究開発 風車量がで発電がある。 の低減を実施する。また、それらを実現するための実用化開発を実援する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎		平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となる故障事故及び	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化開発 風車の設備利用率向上による発電量の増加及び発電研究開発 風車量がで発電がある。 の低減を実施する。また、それらを実現するための実用化開発を実援する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (i)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となる故障事故及びメンテナンス技術の調査分析等を実施	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コスの低減を目的に、以下の研究開発を実施する。また、それらを実現する。 (i)10MW超級風車の調査研究 平成26年度終了。 (ii)スマートメンテナンス技術研発 平成27年度に引き続き、メンテナンス技術開発の基礎となる故障事故及びメンテナ		平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。また、それらを実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発 ア成27年度に引き続き、メンテナンス技術開発の基礎となるおので開発をである。 (ii)スマートメンテナンス技術研究開発 ア成27年度に引き続き、メンテナンス技術開発の基礎となる分析学の基礎となる分析学の表に、データベース・情報分析プラットフォームと分析ツールの開発を行った。ま	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発の開発の開発の開発の設備利用率向上による発明を開発の設備が発電のの場所を開発の関係を関係でのでで、以下のので、関発を実施する。のでは、また、ののでは、また、ののでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、		平成27年度終了。 (v)超大型風力発電システム技術研究開発平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、以下の研究開発を実施した。またた。表別するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度終了。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となる対策を実施し、アナンス技術の開発をであるが開発の基礎となるがである。 (ii)スマートメンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術開発の基礎となるがである。 (ii)スマートメンテナンス技術の関発を大きなが、データベース・情報分析プラット。よる対策を表して、メンテナンスを発展をあるとに、メンテナンスを発展を表して、メンテナンスを発展を表して、メンテナンスを発展を表して、メンテナンスを発展を表して、メンテムを発展を表して、メンテムを発展を表して、メンテムを表して、超大の関発を表して、メンテナンスを表して、超大の関系を表して、対象を表し、対象を表して、対象を表しなりを表して、対象を表して、対象を表して、対象を表して、対象を表しなりを表して、対象を表しなりまりを表しなりまりを表しまする。まりを表しなりを表して、まりを表しまりまりを表しまりまりまりまり	
(v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 平成26年度終了。 研究開発 風力発電高度実用化設備利用率向上による発調を間が上によるの地域を関係を重要をである。 (i) 10 MW超級風車の調査を支援する。 (i) 10 MW超級風車の調査研究 平成26年度終了。 (ii) スマートメンス技術研究 平成27年度に引き続き、メンテ開発 平成27年度に引き続き、メンテカンス技術研究 シス支術のびメンテナンス技術のであるが、手を変し、データベース・情報分析		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風車の発電高度実用化 風車の設備利用率向上による発電量の増加及び発電コストの低減を目的に、よりを実施した。また、支援した。は)10MW超級風車の調査研究 平成26年度終了。(i)10MW超級風車の調査研究 平成26年度終了。(i)27年度に引き続き、メンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術研究開発 平成27年度に引き続き、メンテナンス技術のよる分析プラッた。また、カームと分析ツールの開発を対した。	
(V)超大型風力発電システム技術研究 平成26年度終了。 研究開発 平成26年度終了。 研究開発 風力発電高度実用化研究開発 風声の計算を表現が明期を変更がある。 の低減を目がする。のでは、また、のでで、のでは、また、のでで、では、また、のでで、では、また、のでで、では、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化研究開発 風力発電高度実用化研究開発 風車の設備利用率向上による発電量、の増加の研究開発を実施した。また、を実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度と対テナンス技術研究開発 平成27年度に引き続き、メンテナンス技術研究 発 平成27年度に引き続き、メンテナンス技術研究 が 東京との表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を	
(v) 超大型風力発電システム技術の26年度終了。 研究開発 平成26年度終了。 研究開発 風力発電高度実用化砂膜 風間 大型 一型 で で で で で で で で で で で で で で で で で で		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 研究開発 風力発電高度実用化 風地の設備利用率トの上による発能に、れ 風地のので開発を実施した。となるというでは、またが、またが、またが、またが、またが、またが、またが、またが、またが、またが	
(V)超大型風力発電システム技術研究 平成26年度終了。 研究開発 平成26年度終了。 研究開発 風力発電高度実用化研究開発 風声の計算を表現が明期を変更がある。 の低減を目がする。のでは、また、のでで、のでは、また、のでで、では、また、のでで、では、また、のでで、では、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは、ないでは		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化研究開発 風力発電高度実用化研究開発 風車の設備利用率向上による発電量、の増加の研究開発を実施した。また、を実現するための実用化開発を支援した。 (i)10MW超級風車の調査研究平成26年度と対テナンス技術研究開発 平成27年度に引き続き、メンテナンス技術研究 発 平成27年度に引き続き、メンテナンス技術研究 が 東京との表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を表表を	
(v) 超大型風力発電システム技術研究開発 平成26年度終了。研究開発項目② 風力発電高度実用化設備 関発 画車の開発 画車量の増加による発電量の的によるででで、で、では減を実施する。の低減を実現する。のでは、まのの一般を変更である。のでは、10MW超級風車の調査研究 平成26年度終了。のでは、27年度終了。のでは、27年度に引き続きを支援が研究を関発を支援が研究ででは、27年度に引き続きを支援が研究を対し、アーンス技術の関系を対し、デーンスを対解のでは、対し、デーンの関系をもとに、メンテナルの開発をもとに、メンテナルの開発をもとに、メンテナルの開発をもとに、メンテナンスを対解の関系をもとに、メンテナルの開発をもとに、メンテナルの開発をもとに、メンテナルの開発をもとに、メンテナルを対解して、メンテナルの開発をもとに、メンテナルを対解する。メンテナルの関系をもとに、メンテナルを対解する。メンテナルを対解を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 研究開発 風力発電高度実用化 風地の設備利用率トのした。を動力をで開発を動力をで開発を動力を変更がある。 (i)10MW超級風車の調査研究明ので開発をある。(i)10MW超級風車の調査研究中には、10MW超級風車の調査研究中には、10MW超級風車の調査研究では、10MW超級国車の調査研究では、10MW超級国車の調査研究では、10MW超級国車の調査が表別である。 (i)10MW超級国車の調査研究では、10MW超級国車の調査があるためのに、10MW超級国車の調査がある。 「正成26年度に対した、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車の調査がある。」 「正成26年度に対して、10MW超級国車がある。」 「正成26年度終了。10MW超級国車がある。」 「正成26年度終了。10MW超級国車がある。10MW超級国車がある。10MW超級国車がある。10MW超級国車がある。 「正成26年度終了。10MW超級国車がある。10MMを10MMを10MMを10MMを10MMを10MMを10MMを10MM	
(v) 超大型風力発電システム技術研発 平成26年度終了。 研究開発 平成26年度 風力発電高度 実用化開発 風車の出による発調を調整を実施する。 の一般発を実現する。 の一般発を実現する。 の一般を実現する。 の一般を実現する。 の一般を実現する。 の一般を実現する。 の一般を実現する。 の一般を表する。 などのでは、また、などのでは、また。などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、また、などのでは、ないなどのでは、ないなどのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、などのでは、ないないないないないないないないないないないないないないないないないないない		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発項目② 風力発電高度実用化研究開発 風力発電高度実用化 風車の設備利用率トの低減を目的と表質による発的による発的によるとので開発を変更した。以下を実施した。以下を実施した。以下を実施した。以下を実施した。以下を実施した。以下を実施とのでは、10MW超級国車の調査研究 平成26年度といます。以下では、10MW超級国車の調査研究 平成26年度に引き続き、メンテナンス技術研究 アポートメンテナンス技術研究 アポート・ステータが開発を対し、一、大いでは、10MW超級国車の調査研究 では、10MW超級国車の調査研究 では、10MW超級国車の調査研究 では、10MW超級国車の調査研究 では、10mmで	
(v) 超大型風力発電システム技術の (i) 和研究 (v) 超大型風力発電高度 (v) 超大型風光電高度 (v) 超大電子 (v) 超大電子 (v) 超大電子 (v) 超大電子 (v) 超大電子 (v) 風光電子 (v) 風光電子 (v) 明光 (v		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 の発電高度実用化 の発電 高度 実用化 の 単加 の 単加 の 世間 か の で ま 発 を か の ま た め の ま た め の ま た め の ま た め の ま た め の ま た め の ま た め で ま 発 を か た ら し た 。 (i) 10 MW超級 風 車 の 調 査 研 究	
(v) 超大型風力発電システム技術研発 平 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 風光電子の光電高度実用化 風光 一点 上による発的に表現 一点 上に 表別 一点 一点 表別 一点 一点 表別 一点 一点 表別 一点	
(v) 発電システ		平成27年度終了。 (v) 超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度 実用化 風光 発電 風力発電高度 実用化 風光 発電 による 発動 による 発動 による 見から した。 (i) 10 MW超級 国本の の の の の の の の の の の の の の の の の の の	
(v) 超大型風力発電システム技術研発 平 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		平成27年度終了。 (v)超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 風光電子の光電高度実用化 風光 一点 上による発的に表現 一点 上に 表別 一点 一点 表別 一点 一点 表別 一点 一点 表別 一点	
(v) 発電システ		平成27年度終了。 (v) 超大型風力発電システム技術研究開発 平成26年度終了。 研究開発 風力発電高度実用化 風光 一、ステン で開発 画加 の の の の の の の の の の の の の の の の の の	

	ンポーネントや主要部品の性能向上や信頼性・メンテナンス性向上を目的とした部材・コンポーネントの基本設計、詳細設計等を実施する。	平成27年度に引き続き主要コンポーネントの標準化に向けた開発を実施。目標としていたコストダウン30%を達成した。また、PCSの認証については、一般財団法人電気安全研究所(JET)等と協議を重ね、認証に向けた道筋を確立した。	
	2. 風力発電等導入支援事業 [平成25年度~平成29年度] 風力発電の導入拡大、洋上 風力発電の導入拡大及び上風力発電の実用化加速及と 無力発電の強化を目的びと 業競争力の研究開発及びして、 以下の研究開発をして、 研究を実現するととの実 に 開発を支援する。また、 開発で 開発で 開発で 関発で に に に に に に に に に に に に に に に に に に に	2. 風力発電等導入支援事業 [平成25年度~平成29年度] 風力発電の導入拡大、洋上風力発電の実用化加速及び産業競争力の強化を目的として、以下の研究開発及び実証研究を実施するとともに、それらを実現するための実用化開発を支援する。また、研究開発項目③については、公募を行う。	
	研究開発項目① 地域共存型 洋上ウィンドファーム基礎調 査 平成26年度終了。	研究開発項目① 地域共存型洋上ウィンドファーム基礎調査 平成26年度終了。	
	研究開発項目② 着床式洋上 ウィンドファーム開発支援事業 平成27年度に引き続き、 洋上ウィンドファームの開発 に係る風況解析、海域調査及 び環境影響評価を行う。また、 風車・基礎、海底ケーブルや 変電所等の設計、施工手法等 の検討結果を取りまとめる。	研究開発項目② 着床式洋上ウィンドファーム開発支援事業 平成27年度に引き続き、洋上ウィンドファームの開発に係る風況解析、海域調査及び環境影響評価を行った。また、風車・基礎、海底ケーブルや変電所等の設計、施工手法等の検討を実施した。	
	研究開発項目③ 環境アセス メント早期調査実施実施実主 平成27年度に引き続き、 環境アセスメントの迅速化を 行うため、風力発電と地熱発 電に係る環境アセスメントの 手続き期間を半減するために 必要な環境影響調査等を行 う。	研究開発項目③ 環境アセスメント早期調査実施実証事業 平成27年度に引き続き、環境アセスメントの迅速化を行うため、風力発電と地熱発電に係る環境アセスメントの迅速化を行うため、風力発電に係る環境アセスメントの迅速化を行うため、風力発電に係る環境アセスメントの表をでは、東京を取りたのでは、東京の東京でのでは、東京の東京でのでは、東京の東京でのでは、東京の東京でのでは、東京の大学を開した。 マス 28年度から既設サイトにおける環境影響を把握することにより、既設を関がある項目等の精査等を行う環境を関が、また。 ス 2 8年度から既設サイトにおける環境影響を把握することにより、既設を関がある項目等の精査等を行う環境と関が、また。 ス 2 8年度から既設サイトにおける環境影響を把握することにより、 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
c. バイオマス 食糧供給に影響しないバ イオ燃料製造技術を将来的 に確立するための技術の開 発・実証を行うとともに、微 細藻類を使ったジェット燃 料など次世代バイオ燃料の 製造技術を確立するための 技術開発を行うものとする。また、エネルギー 製造技術を確立するための 技術開発を行うものとする。また、バイオマス燃料の 既存発電システムでの活用 促進や効率的な熱利用の推 進に向けた技術等の開発を	(c) バイオマス 1. バイオマスエネルギー技 術研究開発 [平成16年度 ~平成31年度] バイオマスエネルギーの更 なる利用促進・普及に向け、 これを実現するための技術開 発を行うことを目的に、以下 の研究開発を実施する。	(c) バイオマス 1. バイオマスエネルギー技術研究開発 バイオマスエネルギーの更なる利用 促進・普及に向け、これを実現するため の技術開発を行うことを目的に、以下の 研究開発を実施した。	
CELEBRATION TANDE MISCALLA A MATCHER			

一一行うこととする。	料利用の促進に向けた必		
	要な取組を行うとともに、		
	バイオマスの発電利用や		
	熱利用を促進していくこ		
	_ とが重要である。	TIT HOURS AND THE STATE OF THE	THE PROPERTY OF THE PARTY OF TH
	第3期中期目標期間に	研究開発項目① 戦略的次世 -	研究開発項目①「戦略的次世代バイオマー
	おいては、食糧供給に影響	代バイオマスエネルギー利用	スエネルギー利用技術開発事業」[平成
	しないバイオ燃料製造技	技術開発事業	22年度~平成28年度]
	術を将来的に確立するた	2030年頃の実用化が期	(1)「次世代技術開発」
	め、第2世代バイオ燃料で	待される次世代技術や早期実	2030年頃の本格的増産が見込ま
	あるセルロース系エタノ	用化が望まれる実用化技術の	れ、バイオ燃料の普及を促進する波及効
	ールについては、2020	確立等を目的に、以下の研究	果の大きい次世代バイオ燃料製造技術
	年頃の実用化・事業化に向	開発を実施する。	を対象として、公募によりテーマを採択し、アイスの不存
	けて、製造技術の開発、実	(1) 次世代技術開発	し、研究開発を実施した。平成28年度
	証を行うとともに、第3世	2030年頃の本格的増産	は、平成24、25年度に採択し、技術
	代バイオ燃料である微細	が見込まれ、バイオ燃料の普	委員会による評価で研究開発の継続を
	藻類等由来による燃料に	及を促進する波及効果の大き	行った3テーマについて研究を実施し
	ついては、藻類からのジェ	い次世代バイオ燃料製造技術	た。
	ット燃料等の製造技術、B	について、更なる技術開発が	(マ) 報油、ジェント歴史(仏井歴史) 七年
	TL技術の開発を行う。ま	見込める事業を精査して進め	(ア)軽油・ジェット燃料代替燃料技術
	た、バイオマス燃料の既存	る。 (マ) 叔油 ジ … 1 焼火(ル)	開発
	発電システムでの活用促	(ア)軽油・ジェット燃料代	「微細藻類の改良による高速培養と
	進や効率的な熱利用の推	替燃料技術開発	藻類濃縮の一体化方法の研究開発」につ
	進に向け、バイオマス燃料	微細藻類由来バイオ燃料製	いては、事業化へ向け国内(鹿児島)で
	の性状改良等の開発やバ	造技術については、有望な新	の大規模屋外培養実証試験(1,500
	イオマス燃料の含水率や	規微細藻の改良及び画期的な	m²)を実施し、屋外環境での安定的な培
	形状等の性状を制御する	大量培養技術の確立のための 研究開発について、企業のポ	養技術および油分生産技術を確立した。
	技術等の開発を行う。		また、将来の事業化を想定し、海外3か
		テンシャルを底上げする軽 油・ジェット代替燃料のため	所での培養基礎実験を実施し、現地環境 動向とも合わせた安定培養、油分生産性
		の研究開発を実施する。	動向とも合わせた安定培養、佃労生産性 について評価・検討を行った。
		ひ切え開発を美施する。 また、微細藻類由来バイオ燃	「高油脂生産微細藻類の大規模培養」
		料製造技術について、24年	と回収及び燃料化に関する研究開発」に
		存扱追収所に ライ・く、 24年	ついては、微細藻類の培養工程コスト低
		模(1,500㎡)の屋外培養	減に資するため、培養水リサイクル技術
		実証試験を継続実施し、回収・	や藻体回収技術とともに、育種技術によ
		油分抽出等の後段技術の改良	り獲得した高油脂生産性を有する改良
		等を進める。一方、25年度	株の事業化運用を併せて検討した。
		採択事業2件について、1件	「好冷性微細藻類を活用したグリー
		は大規模(1,200㎡)の屋	ンオイル一貫生産プロセスの構築」につ
		外培養実証試験に着手し、こ	いては、平成26年度までに20基(1
		れを基礎とした一貫油分抽出	0㎡/基)の円形型培養装置を設置し、水
		システム構築を進める。さら	温低下時にグリーンオイル生産を可能
		に、微細藻類の培養工程コス	とする耐冷性珪藻の屋外大量培養技術
		ト低減に資するため、培養水	の開発及び、すでに保有する中温微細藻
		リサイクル技術や藻体回収技	類と併用した年間を通じた屋外大量培
		術とともに、育種技術により	養技術の確立とともに回収・脱水プロセ
		獲得した高油脂生産性を有す	スと一体とした運用技術開発を実施し
		る改良株の事業化運用を併せ	た。平成28年度は大規模(1,200
		て検討する。	m ²) の屋外培養実証試験を行い、これを
		27年度後半の原油安の影	基礎とした一貫油分抽出システムを構
		響を受けて、世界各国でバイ	築した。
		オ燃料製造事業に対する遅延	
		が認められるものの、COP	
		21で検討された地球温暖化	
		抑止の観点から、軽油・ジェ	
		ット燃料等の代替燃料におい	
		ても、早期のGHG排出基準	
		が策定されると考えられ、必	
		要に応じてGHG排出基準等	
		を含めたLCA評価に関する	
		調査を実施する。	
			0 01

(2) 実用化技術開発 -	(2)「実用化技術開発」		
事業期間終了後5年以内に	事業期間終了後5年以内に実用化が		
実用化が可能なバイオマス利	可能なバイオマス利用技術について、公		
用技術について、更なる低コ	募によりテーマを採択し、低コスト化、		
スト化の技術開発を進めつ	コンパクト化、効率化に寄与する研究開		
つ、既存の流通システムに導	発を実施した。平成28年度は、平成2		
入可能なバイオマスの燃料化	5年度に採択したテーマについて、研究		
における高度化技術(橋渡し)	を継続した。		
に重点を置いた研究開発を実	原料の生産・調達、ペレット燃料製造		
に里点を直いた切え開発を美	の研究開発については、海外(インドネ		
	シア)で、製材用樹木の林床を用いたネ		
本年度においては、ペレッ	, , , , , , , , , , , , , , , , , , , ,		
ト燃料製造に資する品質変化	ピアグラスの栽培試験を実施した。試験		
の少ない効率的な乾燥技術及	栽培したネピアグラスを用いて、開発し		
び新規の原料に対しての適応	たペレット製造設備の終日連続運転を		
性を高めたペレット成形シス	行い、実用化レベルでの粉砕効率、製造		
テムを確立するとともに、実	速度、コスト等のデータを取得し、設備		
証用設備を用いて成型速度、	および製造方法の最適化を行った。		
歩留まりの向上及び消費エネ			
ルギー低減へ向けた改良を進し			
め、事業化への課題解決を鋭し			
意進める。			
研究開発項目② バイオ燃料 -	研究開発項目② バイオ燃料制造の右	●研究室レベルで、バガス(サトウキビ搾汁残	
製造の有用要素技術開発事業	用要素技術開発事業	査)の発酵に適した世界最高レベルの組換え	
教担の有用安系技術開光事業 (1) ゲノム育種及び高効率	「一日」 イン	酵母株を開発(エタノール濃度6%以上、エ	
(1) グノム自催及い向効率	(1) グノム自催及い同効学が来による バイオマス増産に関する研究開発	タノール変換効率95%以上)。	
		クノールを換別至90%以上/。	
関する研究開発	海外の植林地(ブラジル等)にて、植	●即変した部の掛き田いたいノー・トプラン	
海外の植林地(ブラジル等)		●開発した酵母株を用いたパイロットプラン	
にて、植生試験の評価により	用法を確立し、大面積で高精度なバイオ		
最適な松林施業運用法を確立	マス測定技術を確立するとともに、DN	タノール濃度および生産量を達成。	
し、大面積で高精度なバイオ	Aマーカーを用いて評価選抜した苗の		
マス測定技術を確立するとと	植栽試験の評価より、目的クローンとし		
もに、DNAマーカーを用い	て3系統以上を選抜した。		
て評価選抜した苗の植栽試験	(2) 可溶性糖質源培養による木質系バ		
の評価より、目的クローンと	イオマス由来パルプ分解用酵素生産の		
して3系統以上を選抜する。	研究開発		
(2) 可溶性糖質源培養によ	2 k L までスケールアップし、6円/		
る木質系バイオマス由来パル	k g - 発酵性糖 (= 10円/L-エタノー		
プ分解用酵素生産の研究開発	ル)以下の酵素変動費を達成するオンサ		
2 k L までスケールアップ	イト酵素カクテル生産設備基本フロー		
し、6円/kg-発酵性糖(=	及び生産技術を確立した。		
10円/L-エタノール)以下	(3)バイオ燃料事業化に向けた革新的		
の酵素変動費を達成するオン	糖化酵素工業生産菌の創製と糖化酵素		
サイト酵素カクテル生産設備	の生産技術開発		
基本フロー及び生産技術を確	更なる酵素探索及び改変により、最終		
立する。	目標値を達成する酵素を作製した。遺伝		
(3)バイオ燃料事業化に向	子操作等により、引き続き革新的糖化酵		
けた革新的糖化酵素工業生産	素生産菌を開発するとともに、本菌を用		
菌の創製と糖化酵素の生産技	いたパイロットスケール (数m ³ 以上)で		
術開発	の最適な培養条件・システムの技術開発		
更なる酵素探索及び改変に	及びF/Sを実施した。		
より、最終目標値を達成する	(4) 有用微生物を用いた発酵生産技術		
酵素を作製する。遺伝子操作	の研究開発		
等により、引き続き革新的糖	キシロース代謝性及び耐熱性・発酵阻		
化酵素生産菌を開発するとと	害物質耐性に優れた同時糖化並行複発		
もに、本菌を用いたパイロッ	青初貝間ほに優化た同時福化並行後先 酵に最適な酵母株を引き続き開発する		
トスケール(数m3以上)で			
の最適な培養条件・システム	装置や、20w/v%スラリーをハンド		
の技術開発及びF/Sを実施	リングできる試験装置を用いて商業機		
する。	設計データを採取し、商業機のプロセス		
(4) 有用微生物を用いた発	デザインパッケージを作成した。		
酵生産技術の研究開発			
キシロース代謝性及び耐熱			
	9-99		

性・発酵阻害物質耐性に優れ		
た同時糖化並行複発酵に最適		
な酵母株を引き続き開発する		
とともに、2,000レパイ		
ロット実験装置や、20w/		
v %スラリーをハンドリング		
できる試験装置を用いて商業		
機設計データを採取し、商業		
機のプロセスデザインパッケ		
ージを作成する。		
研究開発項目③ セルロース	一 研究開発項目③ セルロース系エタノ	
	一	
合開発実証事業	(1) 最適組合せの検証	
(1)最適組合せの検証	キー技術となる前処理技術、糖化発酵	
キー技術となる前処理技		
術、糖化発酵技術(糖化酵素		
選定、発酵微生物選定)の組		
合せ検討をラボ試験レベル	定した技術の組合せについて予備検証	
(実験室レベルでの小規模な	を継続した。パイロットプラントを建設	
試験)で実施し、選定した技		
術の組合せについて予備検証		
を継続する。パイロットプラ		
ントを建設し、平成28年度		
後半で建設を完了し、試運転・		
連続試験に着手する。原料~	- と競合しないセルロース系エタノール	
糖化~発酵に至るプロセスの	の生産技術の確立を目指す。	
最適化を行うとともに事業性		
を考慮した操業方法について		
も検証を実施する。		
2. バイオマスエネルギーの		
地域自立システム化実証事業	ステム化実証事業 [平成26年度~平	
研究開発項目① バイオマス	研究開発項目① バイオマスエネルギ	
エネルギー導入に係る技術指		
針/導入要件の策定に関する		
	最新のバイオマスエネルギー利用設	
最新のバイオマスエネルギ	備導入事例の成果の分析・整理といった	
一利用設備導入事例の成果の	技術的観点での調査、海外における技術	
分析・整理といった技術的観		
点での調査、海外における技		
術及び事業動向の調査、国内		
のバイオマス利用可能量・流		
通量の実態調査等のシステム		
全体に係る調査といった総合		
	ークショップを郡山市と福岡市(木質,	
る。平成27年度に作成した		
バイオマスエネルギー導入に		
係る技術指針/導入要件につ		
いて、ワークショップを開催		
し、「技術指針/導入要件」に		
関する広報活動と関連事業者		
飲の辛日と旧生より、飲入品		
等の意見を収集する。総合的		
な調査やワークショップの成		

	研究開発項目② 地域自立システム化実証事業 平成26年度に採択したテーマのうち3件、平成27年度に採択した5件について事業性評価(FS)を実施し、実正事業に着手する。また、軍業性評価(FS)の第3回目公募及び実証事業の公募を実施する。	研究開発項目② 地域自立システム化 実証事業 平成26年度に採択したテーマのう ち3件、平成27年度に採択した5件に ついて事業性評価(FS)を実施し、ス テージゲート審査にて4件を採択して 実証事業に着手した。また、事業性評価 (FS)の第3回目公募し6件採択して 事業性評価(FS)を実施した。	
再生可能エネルギーと同程 賦存量が大きく、波力発電 度の発電コストを達成する 技術や潮力発電技術、その	(d)海洋エネルギー発電 1.海洋エネルギー技術研究 開発[平成23年度~平成2 9年度] 波力や潮流等の海洋エネル ギーを利用した発電技術の確 立を目的に、以下の研究開発	(d)海洋エネルギー発電 1.海洋エネルギー技術研究開発[平成23年度~平成29年度] 波力や潮流等の海洋エネルギーを利用した発電技術の確立を目的に、以下の研究開発を実施した。	
	研究開発項目① 海洋エネルギー発電システム実証研究 実海域へデバイスを設置するための実施設計、施工・設置方法の検討及び地元関係者との合意形成や設置に必要な許認可等の取得を行う。 研究開発項目② 次世代海洋エネルギー発電技術を確立するために必要なスケールモデルの設計・製作、実海域での計測	研究開発項目① 海洋エネルギー発電システム実証研究 実海域へデバイスを設置するための実施設計、施工・設置方法の検討及び詳細設計を実施、有識者による技術、安全の観点からの評価を行った上で、デバスの製作を開始した。また、実海域での実証に向けて地元関係者との合意形成や設置に必要な許認可等の取得を行った。 研究開発項目② 次世代海洋エネルギー発電技術研究開発 平成27年度に水槽試験により性能を確認したデバイスについて、次世代要素技術の確立のため、実海域での曳航試	
	等を行い、発電性能、制御や 係留の信頼性等の試験・評価 を行う。	験に向けた計画を検討。実海域における 海象データの取得、地元関係者との合意 形成等を実施した。	

	研究開発項目③ 海洋エネル ギー発電技術共通基盤研究 国際標準化が進んでいる海 洋エネルギーを利用した発電 装置にかで、実海域における波浪推算や流速計測等データのための水槽試験方法、装置性能平海 切したがある発電評価手法等に 関する親重を行う。また、調査結果に基づき国内の海洋エネルギーのポテンシャルについて詳細に調査し、検討する。	研究開発項目③ 海洋エネルギー発電 技術共通基盤研究 国際標準化が進んでいる海洋エネルギーを利用した発電装置について、実海域における波浪推算や流速計測等データの収集方法、装置性能評価のための水槽試験方法や実海域における発電評価手法等に関する調査を行った。また、調査結果に基づき国内の海洋エネルギーのポテンシャルについて詳細に調査し、ポテンシャルマップとして作成・公開した。	
け、発電技術の小型化・高効率化等に向けた技術開発を行うものとする。また、低コストな熱計測技術の開発・実証を行うとともに、地熱以外の熱の利用拡大を図るべく必要な調査等を行うこととする。 おいては、発電とが重要である。これまでは地熱に関すってえとが重要である。これまでは地熱に関すってえど、特開発をは地熱に行っ加速を図が、今後は地熱にもいる。 「は、発電である。ととする。を当まれまでは、発電である。 第3期日標期間である。第3期日標期間である。第3期日標期間である。第3期日標期間である。第3期日標がである。第3期日標がである。第3期日標がである。第3期のででは、が、単位を図るべく、新でない、対域を対象では、対域を対象である。ない、対域を対象である。をは、対域を対象である。をは、対域を対象である。をは、対域を対象である。をは、対域を対象を対象に、対域を対象を対象に、対域を対象を対象に、対域を対象を対象に、対域を対象を対象に、対域を対象を対象に、対域を対象を対象にある。	用 1. 地熱発電技術可成29年 度] 地熱発電技術可成29年 度] 地熱発電技術可応29年 度] 地熱発を上の導入に、のの場合に、のののののでは、のののののでは、ののでは、ののでは、ののでは、ののでは、のの	(e) 再生可能エネルギー熱利用 1. 地熱発電技術研究開発 [平成25年度〜平成29年度] 地熱発電の導入拡大に貢献することを目的に、以下の研究開発を実施した。 環境負荷と伝熱特性を考慮したバイナリー発電用高性能低沸点流体の開発について、タービンを組み込んだバイナリーシステムを構築し、既存流体を用いた伝熱性能評価実験を開始した。 エコロジカル・ランドスケーブデザイン手法を活用した設計支援ツールの開発について、ケーススタディを実施することで、エコロジカル・ランドスケーブの適用手法を明確化し、支援アブリの適用課題の抽出を行った。 地熱発電プラントのリスク評価・対策手法の研究開発について、リスク評価・システムに海外先進事例情報を反映させ、そのプロトタイプの開発を完了した。	
	2. 再生可能エネルギー熱利 用技術開発 [平成26年度 ~平成30年度] 再生可能エネルギー熱利用 の普及拡大に貢献することを 目的として、トータルシステムのコストダウン・高効率化・ 規格化等の研究開発を実施する。また、必要に応じて調査 や追加公募を行い事業の補 強・加速をはかる。	2. 再生可能エネルギー熱利用技術開発 [平成26年度~平成30年度] 再生可能エネルギー熱利用の普及拡 大に貢献することを目的として、トータ ルシステムのコストダウン・高効率化・ 規格化等の研究開発を実施した。	
	研究開発項目① コストダウ ーンを目的とした地中熱利用技術の開発 ボーリングマシンのヘッド 部の低騒音化技術開発及び消	研究開発項目① コストダウンを目的 とした地中熱利用技術の開発 ボーリングマシンの低騒音化技術開 発を完了し、騒音レベル低減の目標を達 成した。熟練技術者のボーリングマシン	

音装置の性能照査を実施す		操作内容を把握し、自動掘削制御ソフト		
5.		に追加するアプリケーションの改良を		
		完了した。		
シン操作内容を把握し、自動)L1 U/C0		
掘削制御ソフトに追加するア				
プリケーションを開発すると				
ともに、自動化したボーリン				
グマシンの作業改善のための				
改良を行う。				
研究開発項目② 地中熱利用	_	研究開発項目② 地中熱利用トータル		
トータルシステムの高効率技		システムの高効率技術開発及び規格化		
術開発及び規格化		複数台のヒートポンプを組合せたヒ		
1117 17 18 18 17 17 11 11				
ヒートポンプ、太陽熱集熱		ートポンプシステムと、太陽熱集熱器、		
タンク、冷却塔等を統合制御		冷却塔等を統合制御して全体の熱利用		
して全体の熱利用効率を向上		効率を向上させる制御システムの試作		
させる制御システムを開発す		を完了した。		
る。また、設置場所に対応し		地盤・地下水情報データベースを開発		
た地中熱システムの設計・性		して、Webブラウザで利用可能な設置		
能予測ツールを開発する。		場所に対応した地中熱システムの設計・		
		性能予測ツールの試作を完了した。		
			●地市麹利田ポニンパノファの甘土並加工洪ナ	
研究開発項目③ 再生可能エ			●地中熱利用ポテンシャルの基本評価手法を	
ネルギー熱利用のポテンシャ		熱利用のポテンシャル評価技術の開発	確立し、定量的な地中採熱指標を表示可能な	
ル評価技術の開発		都市部3地域(長野、関東、仙台)及び	国内初のポテンシャルマップを試作。	
地中熱システムの適切な立		関東-東北広域について、三次元地質構		
地設計に活用可能な三次元地		造モデルを構築し、水平解像度50mか		
質構造モデル及びマルチスケ		ら500m範囲のマルチスケール国土		
ール国土水・熱循環モデルを		水・熱循環モデルを構築した。		
仙台地域及び関東ー東北広域		構築したモデルのデータベースを用		
について構築し、これらのデ	1	いて、地中熱利用ポテンシャル評価マッ		
ータベースを用いた地中熱利		プを試作した。		
		ノを政トした。		
用ポテンシャル評価技術を開				
発する。				
研究開発項目④での他再生		研究開発項目④ その他再生可能エネ		
可能エネルギー熱利用トータ		ルギー熱利用トータルシステムの高効		
ルシステムの高効率化・規格		率化・規格化		
化		都市除排雪を利用した冷房の実証試		
都市除排雪を利用した冷房		験を実施した。		
の実証試験を実施し、また都		都市除排雪の冷熱を利用した関連技		
市除排雪の冷熱を利用した関		術として、30℃以下の低温冷風による		
連技術の開発を実施する。		乾燥技術を開発した。		
		平山木以門で開光した。		
1 2 11711 0 22 12 17111	1			
性能評価と改善案の検討を行				
7.		开皮明水石口鱼 [20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
研究開発項目⑤ 上記①~④		研究開発項目⑤上記①~④以外でそ		
以外でその他再生可能エネル		の他再生可能エネルギー熱利用システ		
ギー熱利用システム導入拡大		ム導入拡大に資する革新的技術開発		
に資する革新的技術開発		焼酎残渣を原料にした超臨界水ガス		
焼酎残渣を原料にした超臨		化プロセスの開発では、パイロットプラ		
界水ガス化プロセスの開発で		ントに対して熱交換器等の改造工事を		
は、既存のパイロットプラン		行い、急速昇温試験、Daily Start and		
トによる連続運転試験を行		Stop 運転試験を実施した。		
い、安定性を確認する。		OUD 注音APVIOK で大心 した。		
い、女に注を帷祕する。				

に必要な技術開発を行うこととする。	術研究開発事業 [平成26 年度~平成30年度] 再生可能エネルギーについて、出力が不安定な変動電源から出力を予測・制御・運用することが可能な変動電源に改善することで、その連系拡大を目指すことを目的として以下の研究開発を実施する。必要に応じて公募を実施す	(f)系統サポート 1.電力系統出力変動対応技術研究開発 事業 [平成26年度~平成30年度] 再生可能エネルギーについて、出力が 不安定な変動電源から出力を予測・制 御・運用することが可能な変動電源に改善することで、その連系拡大を目指すことを目的として以下の研究開発を実施する。これら取組により、2030年の 再生可能エネルギー導入拡大に資する ことを目的とする。
可能性評価及び開発等、再 生可能エネルギーの調整		研究開発項目① 風力発電予測・制御高度化 ランプ現象の発生要因の解析を目的としたモニタリングシステムを構築し、モニタリングシステムから得られた情報を基に、ランプ現象の分析を行った結果を踏まえ、複数のアプローチ手法を駆使したランプ予測技術のプロトタイプを開発し、評価と予測アルゴリズムの改善に向けた取組を開始した。また、蓄エネルギー設備の制御方法の開発を行うとともに、複数の蓄エネルギーについて実証設備の構築を完了し、実証試験項目を整理した。
	研究開発項目② 予測技術系 統運用シミュレーション ランプ予測技術と出力変動 制御技術に加え、調整電源の 最適運用手法等を総合的に組 合せた需給シミュレーション システムを開発し、再工の 連系拡大に向けた技術的課題 と課題解決策を明らかにす る。また、課題解決策の動果 を確認するため、実際の電力 系統における実証試験を行 う。	研究開発項目② 予測技術系統運用シミュレーション 風力発電のランプ予測技術を含めた、 再生可能エネルギーの予測情報の仕様を整理し、2030年頃の大量導入検討のモデルや解析条件を検討し、需給シミュレーションシステムの詳細仕様のプロトタイプ開発を行った。実証試験として選定した地点において、必要となる設備構築を完了するとともに、風力・太陽光発電の出力予測や調整電源の最適運用手法による需給運用の具体的な試験項目・方法の整理を行った。
	研究開発項目③ 再生可能エ ー ネルギー連系拡大対策高度化 電力の需給運用に影響を与える風力発電及び太陽光発電 の急激な出力変動に着目し、再生可能エネルギーの予測技 術や出力変動を制御する。	研究開発項目③ 再生可能エネルギー連系拡大対策高度化 風力発電の遠隔出力制御装置の標準化に向けて検討結果を整理し、プロトタイプシステムを開発するとともに、実証試験設備の構築に着手した。 太陽光発電の出力抑制手法に係る実証試験の環境構築に着手し、双方向と片方向の通信方式による実効性を検証するための検証項目を整理した。また、エネルギーマネジメントシステムや蓄エネルギー技術との連動を踏まえた需給制御手法の開発の検討に着手した。
	2. 分散型エネルギー次世代 - 電力網構築実証事業 [平成 26年度~平成30年度] 再生可能エネルギーの導入 拡大に伴って配電系統に生じ る電圧上昇等の課題を解決す	2. 分散型エネルギー次世代電力網構築 実証事業 [平成26年度~平成30年 度] 再生可能エネルギーの導入拡大に伴って配電系統に生じる電圧上昇等の課 題を解決することを目的として、以下の

ることを目的として、以下の	研究開発を実施した。本事業の実施によ
研究開発を実施する。	り、配電系統における電圧上昇課題が解
	決され太陽光発電の導入を図る取組に
	貢献する。
一 一 一 一 一 一 一 一 一 一	研究開発項目① 次世代電圧調整機器・
調整機器・システムの開発	システムの開発
7	
次世代電圧調整機器の開発	次世代電圧調整機器の開発について
については、平成27年度に	は、平成27年度に実施したミニモデル
実施したミニモデルでの試験	での試験結果等を踏まえ、実証機の製作
結果等を踏まえ、実証機の製	に着手し、制御系の確認等、各種工場試
作及びメーカー試験を行う。	験を実施した。また、電圧制御システム
また、電圧制御システムにつ	については、集中電圧制御、協調電圧制
いては、ソフトウェアの開発	御といったそれぞれの制御についてア
を完了するとともに、太陽光	ルゴリズムを開発するとともに、通信機
大量導入に向けた集中制御シ	器の動作検証を完了した。
ステムの有効性について検証	
を行う。	
	77 定用で在日の
研究開発項目② 次世代配電	研究開発項目② 次世代配電システム
システムの構築に係る共通基	の構築に係る共通基盤技術の開発
盤技術の開発	研究開発項目①で開発する次世代電
研究開発項目①で開発する	圧調整機器・システムのフィールドでの
次世代電圧調整機器のフィー	運用検証に関連する性能・信頼性評価方
ルドでの運用検証に関連する	法の検討や試験方法の検討を継続して
性能・信頼性評価方法の検討	実施した。配電システムの設計指針に係
	るヒアリング結果やミニモデル機器の
29年度に実施する模擬グリ	実験室レベルでの試験結果等を通じて、
ッドでの実証に向けた実験室	平成29年度に予定している模擬グリ
レベルでの詳細解析を行い、	ッド実証評価に向けた試験項目及び、評
その結果を評価指標の検討に	価方法、判定基準の整理を行った。また、
反映させる。	模擬グリッド実証評価に必要となる設
	備を導入する等の整備を実施した。
研究開発項目③ 未来のスマ	研究開発項目③ 未来のスマートグリ
ートグリッド構築に向けたフ	ッド構築に向けたフィージビリティ・ス
	タディ
平成27年度の調査・検討	昨年度に引き続き、国内外の配電系統
に引き続き、電気的特性、信	や技術開発動向調査等を実施するとと
頼性及び経済性の評価・分析	もに、電気的特性、信頼性、経済性の評
を実施するとともに、外部有	価・分析を実施し、地域特性やPV設置
	箇所等の諸条件毎にPV導入量と年経
を反映させ、配電系統の将来	費の関係性をまとめた。また、外部有識
像を取りまとめる。	者による検討委員会での将来像に対す
	る意見等を反映しつつ、将来の配電系統
	についての考察を行った。また、情勢変
	化や中間評価等を踏まえ、再エネ導入拡
	大に伴う特別高圧系の影響についての
	検討を開始した。
3. 次世代洋上直流送電シス	3. 次世代洋上直流送電システム開発事
プログラス プログラス プログラス プログラス アルス 27年	業 [平成27年度~平成31年度]
度~平成31年度]	今後、導入が見込まれる大規模な洋上
今後、導入が見込まれる大	ウィンドファームに適用が期待される
規模な洋上ウィンドファーム	直流送電システムについて、高い信頼性
に適用が期待される直流送電	を備え、かつ、低コストで実現する多端
システムについて、高い信頼	子直流送電システムと必要な新規コン
性を備え、かつ、低コストで	ポーネントを開発し、今後の大規模洋上
実現する多端子直流送電シス	風力の連系拡大・導入拡大・加速に向け
テムと必要なコンポーネント	
	た基盤技術を確立することを目指し、以
を開発し、今後の大規模洋上	下の研究開発項目を実施した。本事業終
を開発し、今後の大規模洋上	
を開発し、今後の大規模洋上 風力の連系拡大・導入拡大・	了後に1GWクラスの案件を国内で3
を開発し、今後の大規模洋上 風力の連系拡大・導入拡大・ 加速に向けた基盤技術を確立	了後に1GWクラスの案件を国内で3 件前後、欧州や米国では1、2件を見込
を開発し、今後の大規模洋上 風力の連系拡大・導入拡大・	了後に1GWクラスの案件を国内で3
を開発し、今後の大規模洋上 風力の連系拡大・導入拡大・ 加速に向けた基盤技術を確立	了後に1GWクラスの案件を国内で3 件前後、欧州や米国では1、2件を見込

研究開発項目①シ	ステム開	研究開発項目① システム開発	
発		洋上ウィンドファーム候補地及び集	
システム開発とし	7 多 農 子	電方式の検討結果を用いて多端子洋上	
洋上直流送電シスラ		直流送電システムのモデルケースの検	
計・調達・建設と運		討を開始した。多端子直流送電システム	
を検討する。さらに		の系統解析を実施するためのシミュレ	
上直流送電システム		ーションモデルを開発すると共に、多端	
想定したモデルケー		子直流送電システムの標準仕様案の検	
性を検討する。既存		討を開始した。	
電システムに対して			
率(信頼性)等を含	うたコス		
ト削減割合20%以	上の導入		
モデルケースを完成	させる。		
研究開発項目② 要	₹技術開 	研究開発項目② 要素技術開発	
発		直流遮断器やケーブルジョイントな	
多端子洋上直流送	言システ	どの新規開発となるコンポーネントの	
ム向けに新たに必要		試作又はプロトタイプの製作を開始し	
素技術開発されたコ		た。一部は、評価試験を開始している。	
ントのプロトタイプ	·	直流遮断器の開発は、世界に先駆けて	
試作、性能試験等を	16 17 1	通電時の損失ゼロと高速遮断を実現し	
		血電時の損失と口と同歴処例を実現し た主回路方式の原理検証に成功した。本	
'' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			
て、そのモデルケー	7 - 1	技術成果により、海外勢と比較して低損	
稼働率(信頼性)等		失かつ高速遮断が可能で、小型軽量、高	
コスト削減割合20		信頼性な直流遮断器の実用化に向けて	
貢献する可能性を検	- / - 0	大きく前進した。	
g. 燃料電池・水素 (g) 燃料電池・水素 (g) 燃料電池・水素		(g)燃料電池・水素	
家庭用燃料電池の普及拡 燃料電池は、燃料となる 1. 水素利用技術研	岩開発事	1. 水素利用技術研究開発事業[平成2	
大及び業務用・発電事業用 水素と空気中の酸素を直 業 [平成25年度	~平成 2	5年度~平成29年度]	
燃料電池の実用化を図るた 接化学反応させて電気と 9年度]		水素供給インフラ等に係るさらなる	
めの技術開発、標準化等に 熱を同時に取り出すため、 水素供給インフラ	等に係る	低コスト化や国内規制適正化等を図る	
資する取組を行うととも エネルギー効率が高くか 更なる低コスト化、		ことを目的に事業を推進し、追加公募を	
に、次世代燃料電池等に関一つ発電・発熱時には温室効一適正化、国際基準調		併せて行い、以下の研究開発を進めた。	
する技術開発を行うものと 果ガスを発生しないため、 ることを目的に、以			
する。また、燃料電池自動車 我が国における省エネル 開発を進める。	ν Στη ΤΕ		
の普及拡大と水素供給イン ギーや地球温暖化対策の			
フラの整備促進に向け、燃 観点から重要な技術であ			
料電池及び水素ステーショる。また、東日本大震災以			
ンの低コスト化等に向けた 降、災害に強い分散型エネ			
技術の開発・実証を行うと ルギーシステムへの重要			
ともに、規制適正化等に資 性が増している点からも、			
する取組を行うこととす 分散型電源の一翼を担う			,
る。さらに、水素を利用した 燃料電池に対する期待が			,

エネルギーシステムの実現に向けた技術開発等を行うこととする。	第3期中期目標期間に おいては、家庭用燃料・発電 事業日 を図るため、実 事業化を図るための 事業化を図るための の の の の の の の の の の の の の の の の の の	研究開発項目① FCV及び 水素供給インフラの国際基準の国際基準の国際基準の国際基準のに関するのののでででででででででででででででででででででででででででででででででで		研究開発項目①FCV及び水素供給インフラの国内規制適正化、国際標準化に関する研究開発 規制適正化に関しては、70MPaスタンドの保安検査基準案、圧縮水素運送技術基準案、圧縮水素輸送自動車用複合容器の安全弁につ用率案、圧縮水素輸送自動車工業に指する水素輸送自動基準案、圧縮水素輸送自動基準案、圧縮水素性の容器及2種製造設備に相当する水液化水素との技術基準案を作成した。液化水素準との技術基準案を作成した。液化水素準の対域による方式によりででは、材料評価式による水びでは、材料評価式によるがであるがででは、材料評価式によるがであるがである。 低合金鋼(クロムモリブデン鋼等)にした。	
	形燃料電池、固体酸化物形 燃料電池等の従来型燃料 電池と異なる次世代燃料 電池の開発及び従来型燃 料電池の新たな用途の実	研究開発項目② FCV及び	_	水素ステーションにおける水素ガス 品質管理方法に関しては、品質管理規定 とフィルタ規定を盛り込んだ品質ガイ ドラインを制定した。 研究開発項目②FCV及び水素ステー	
	用上、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	水素ステーション用低コスる 機器・システム等に関するののの で開発 ・野蔵・野蔵・野蔵・大してのののででである。 ・野蔵・野蔵・大きなののででである。 ・野では、大きなのででは、大きなのでででは、大きなのででは、大きなのででは、大きなのでは、大きなのでは、大きなのでは、大きないでは、まないでは、大きないでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、		システム等に関 著蓄 に関 著蓄 に関 を表 のいて、タタイプと。 アタイプと。 アクイプと。 アクーン アクイプと。 アクーン アクーン アクーン アクーン アクーン アクーン アクーン アクーン	
	現に向け、技術動向等を調査し、水素の貯蔵や輸送等に関する新しい技術の開発等を行う。	ション安全基盤整備に関する 研究開発		研究開発項目③水素ステーション安全 基盤整備に関する研究開発 運用開始したセーフティーデータベースを活用して重要事例の深堀研究を行った。 人材教育・育成については、水素ステーション従業員育成の訓練カリキュラムの骨格を構築した。 水素技術センターの建設地を決定し、センター仕様を決定した。 次世代ステーションに必要な技術開発(水素センサー及び火炎可視化等)を継続し、設計・試作した実用モデル機でフィールド試験を行い妥当性の検証を行った。	

年か 問 ※ 百 F			
	4 CO271 -	研究開発項目④ CO2フリー水素及び	
	際機関等に係る	国際機関等に係る政策・市場・研究開発	
	研究開発動向に	動向に関する調査研究	
関する調査研		IEA/HIA・AFCIAにおいて	
海外の政策	€・市場・研究開	燃料電池・水素利用の市場性を調査し	
一	⁻ る調査研究を行	た。	
	国内外の産官学	I PHEにおいては、国内外の産官学	
	び海外の水素・	の情報交換活性化を支援した。	
	f開発展望を調査 ┃		
	公物形燃料電池等 -	2. 固体酸化物形燃料電池等実用化推進	
	表術開発 [平成]	技術開発 [平成25年度~平成29年]	
25年度~平		度]	
	n形燃料電池(S	固体酸化物形燃料電池(SOFC:	
OFC: Sol	id Oxide Fuel	Solid Oxide Fuel Cell) に関して、家	
	て、家庭用燃料電	庭用燃料電池の普及拡大と業務用燃料	
	と業務用・発電	電池の実用化を図るため、以下の研究開	
	[池の実用化を図	発を実施した。	
	「の研究開発を実		
	1① 固体酸化物 -	研究開発項目①固体酸化物形燃料電池	
		の耐久性迅速評価方法に関する基礎研	
)耐久性迅速評価		
方法に関する		究	
スタック面	対久性評価、劣化	1) 中温筒状平板形、高温円筒横縞形、	
機構解明及ひ	「耐久性迅速評価	低温小型円筒形、中温平板形、中温筒状	
	発を引き続き実	横縞形、中温一体焼結形、それぞれのセ	
施する。		ルにおいて、耐久試験を実施し、劣化機	
ルツる。			
		構の確認を行い、Crや硫黄(S)の空	
		気極被毒の定量的な把握、初期劣化要因	
		の特定、劣化影響度解析による対策すべ	
		き劣化因子の特定などを進めた。	
		2) 熱力学的解析では硫黄(S) による	
		空気極被毒の影響を確認するとともに、	
		空気極劣化とセリア中間層の相関に関	
		する考察に必要な拡散データなどを取	
		7	
		1 得」を 化学的触転ではC r 第の報告挿 1	
		得した。化学的解析ではCr等の被毒種	
		の影響を明確化し改善につなげると共	
		の影響を明確化し改善につなげると共 に、共通的課題であるSrZrO3の生	
		の影響を明確化し改善につなげると共	
		の影響を明確化し改善につなげると共 に、共通的課題であるSrZrO₃の生 成場所や結晶方位、結晶構造を解析し、	
		の影響を明確化し改善につなげると共 に、共通的課題であるSrZrO₃の生 成場所や結晶方位、結晶構造を解析し、 SrZrО₃成長メカニズムの検討を開	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。	
		の影響を明確化し改善につなげると共 に、共通的課題であるSrZrO ₃ の生 成場所や結晶方位、結晶構造を解析し、 SrZrO ₃ 成長メカニズムの検討を開 始した。 3)各スタックの強制劣化セルの試験を	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO ₃ の生成場所や結晶方位、結晶構造を解析し、SrZrO ₃ 成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)での	
		の影響を明確化し改善につなげると共 に、共通的課題であるSrZrO ₃ の生 成場所や結晶方位、結晶構造を解析し、 SrZrO ₃ 成長メカニズムの検討を開 始した。 3)各スタックの強制劣化セルの試験を	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO ₃ の生成場所や結晶方位、結晶構造を解析し、SrZrO ₃ 成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)での	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、Y	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせて	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO₃の生成場所や結晶方位、結晶構造を解析し、SrZrO₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせてモデルセル構造に対して、酸素ポテンシ	
		の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせてを対して、酸素ポテンシャル計算から構造解析までの一連の解	
TIT of the sec tax in		の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせてモデルセル構造に対して、酸素ポテンシャル計算から構造解析までの一連の解析を実施した。	
	② 固体酸化物 —	の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせてモデルセル構造に対して、酸素ポテンシャル計算から構造解析までの一連の解析を実施した。 研究開発項目② 固体酸化物形燃料電	
形燃料電池を	用いた業務用シ	の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)た。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)た。 実施し、ライフタイム(10年間)た。 実施し、ライフタイム(10年間)を完了した。 実施し、ライフタイム(10年間)を完了した。 でまたといる。 でまたといる。 でまたといる。 でまたといる。 ではいるといるとは、 でないるといる。 ではいるといるといるとは、 でないるといるといるといるとは、 ではいるといるといるといるとは、 ではいるといるといるといるとは、 ではいるといるといるといるとは、 ではいるといるといるといるとは、 ではいるといるといるとはいるとは、 ではいるといるといるとはいるとはいるとはいるとはいるとはいるとはいるとはいるとはい	
	用いた業務用シ	の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を開始した。3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データ取得し、空気クロム被毒・硫黄被毒のモデル化に向けた基礎データを取得した。合わせてモデルセル構造に対して、酸素ポテンシャル計算から構造解析までの一連の解析を実施した。 研究開発項目② 固体酸化物形燃料電	
形燃料電池を ステムの実用	・用いた業務用シ 化技術実証	の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)た。サイクル耐性の迅速評価を完了した。シミュレーションの高度化に取得した。マSZ電解質の相変態基礎データを化にてりませが表現であれた。合わせて、一方に基礎データを取得した。合わせて、一方に基礎データを取得した。合いというでは、Y、アル計算がら構造解析までの一連の解析を実施した。 研究開発項目② 固体酸化物形燃料電池を用いた業務用システムの実用化技術実証	
形燃料電池を ステムの実用 数〜数10	・用いた業務用シ 化技術実証 O k W級中容量	の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施し、ライフタイム(10年間)でのサイクル耐性の迅速評価を完了した。シミュレーションの高度化に向け、YSZ電解質の相変態基礎データを化てる力にとびである。のまずのではた基礎データを取得した。ポテンとではた基礎データを取得した。ポテンとではた基礎データを取得した。おりまでの解析を実施した。 研究開発項目② 固体酸化物形燃料電が変別発列目② 固体酸化物形燃料電池を開発で開発の実施した。	
形燃料電池を ステムの実用 数〜数10 SOFCシス	・用いた業務用シ 化技術実証 O k W級中容量 テムの実負荷条	の影響を明確化し改善につなげると共に、共通的課題であるSrZrО₃の生成場所や結晶方位、結晶構造を解析し、SrZrО₃成長メカニズムの検討を開始した。 3)各スタックの強制劣化セルの試験を実施した。 3)各スタックの強制劣化セルの試験を実施したの可能を完了した。 マライフタイム(10年間)た。 シミュレーションの高度化にりないでのである。 マライフタイム(10年間)での大きにはでいる。 「大きない」というでは、 「大きない」というでは、 「大きない」というでは、 「大きない」というでは、 「大きない」というでは、 「大きない」というというでは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「大きない」というとは、 「ない」というとは、 「ない」というは、 「ない」といいましていいまする。 「ない」というは、 「ない」というは、 「ない」というないまするいいまする。 「ない」というない。 「ない」といいまするは、 「ない」といいまするは、 「ない」というは、 「ない」というは、 「ない」というは、 「ない」といいまするは、 「ない」というは、 「ない」というは、 「ない」といいまするは、 「ないまするは、 「ないまするいいまするは、 「ないまするいいまするは、 「ない、 「ない」といいまないまするは、 「ないまないいまするは、 「ないまないまないまないまないまないまないまないまないまないまないまないまないまな	
形燃料電池を ステムの実用 数〜数10 SOFCシス 件下での実証	・用いた業務用シ 化技術実証 O k W級中容量 ステムの実負荷条 E試験(連続運転	の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を解析した。 3)各スタックの強制劣化セルの試験をの出した。 3)各スタックの強制劣化セルの試験をのよりをである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Tのでは、Yののでは、Yのでは、Yのでは、Yのでは、Yのでは、Yのでは、Yのでは、	
形燃料電池を ステムの実用 数〜数10 SOFCシス 件下での実記 及び起動停止	用いた業務用シ 別化技術実証 00kW級中容量 ステムの実負荷条 E試験(連続運転 た)を実施し、導	の影響を明確化し改すると共 に、共通的課題であるSrZrO3の生 成場所や結晶方位、結晶構造を解析を いた。 3)各スタックの強制劣化セルの試験での 実施し、か一ションのではした。 シミスクの強制のでであると 実施し、がでのでは、 でのでで、 でのでは、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でので、 で、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でで、 で	
形燃料電池を ステムの実用 数〜数10 SOFCシス 件下での実記 及び起動停止	・用いた業務用シ 化技術実証 O k W級中容量 ステムの実負荷条 E試験(連続運転	の影響を明確化し改善につなげると共に、共通的課題であるSrZrO3の生成場所や結晶方位、結晶構造を解析し、SrZrO3成長メカニズムの検討を解析した。 3)各スタックの強制劣化セルの試験をの出した。 3)各スタックの強制劣化セルの試験をのよりをである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Yの過程をである。 Tのでは、Yののでは、Yのでは、Yのでは、Yのでは、Yのでは、Yのでは、Yのでは、	
形燃料電池を ステムの実用 数〜数10 SOFCシス 件下での実記 及び起動停止 入効果の検記	京用いた業務用シ 日化技術実証 00kW級中容量 ステムの実負荷条 E試験(連続運転 に)を実施し、導 E及び技術課題の	の影響を明確化し改らSrZrO3のと共 に、共通を開題であるSrZrO3の があるSrZrO3の があるSrZrO3の があるSrZrO3がした。 おした。 3)をレークの強制のではできるとの をであるとの があると、カニズムの検討をの があると、カニズムの があると、カニズムの があると、カニズムの があると、カニズムの があると、カニズムの があると、カニズムの がはないの がいる。 での がいる。 での がいる。 での がいる。 での がいる。 での が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、	
形燃料電池を ステムの実用 数〜数10 SOFCシス 件下での実記 及び起動停止 入効果の検記 抽出を行い、	用いた業務用シ 別化技術実証 00kW級中容量 ステムの実負荷条 E試験(連続運転 た)を実施し、導	の影響を明確化し改すると共 に、共通的課題であるSrZrO3の生 成場所や結晶方位、結晶構造を解析を いた。 3)各スタックの強制劣化セルの試験での 実施し、か一ションのではした。 シミスクの強制のでであると 実施し、がでのでは、 でのでで、 でのでは、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でのでで、 でので、 で、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でので、 でで、 で	

良につなげる。	円筒形SOFC-ガスタービンハイブリッドシステムの実用化に向け工場内の実サイト実証運転を実施し、運転管理に資するデータ等を取得した。中容量常圧型円筒形SOFCシステムにおいて、DC発電効率 55%以上を確認し、常圧高効率システムにおける安定運転方法を確立した。20kWベンチ試験を実施し、安定した起動昇温、発電運転を行うとともに、スタック毎のガス流量分配や温度分布など、実証機及び商品機の設計に資するデータを取得した。これらの知見を基に	
研究開発項目③ 固体酸化物 - 形燃料電池を用いた事業用発電システムの要素技術開発平成26年度終了。	20kW級実証機を設計・製作し、大阪の2ヶ所に実証機を設置し運転を開始した。 研究開発項目③ 固体酸化物形燃料電池を用いた事業用発電システムの要素技術開発 平成26年度終了。	
研究開発項目④ 次世代技術 ー開発 可逆動作可能な固体酸化物型燃料電池による低コスト水素製造及び高効率発電を利用した電力貯蔵に関する研究開発を引き続き行う。	研究開発項目④ 次世代技術開発 高効率発電及び低コスト水素製造を 両立するSORCの電極に関し、Ni/ CMF電極が優れた可逆性を有する燃料極であることを見出した。 ディップコート法による新規SOR C用LaGaO3(LSGM)電解質の薄膜化を検討し、円筒管型マイクロチューブセルで、 700 ~ 500 で発電が可能であることを確認した。 低温で酸化還元するFeの酸化触媒Fe-Cr ₂ O ₃ -PBMO(PrBaMo ₂ O ₅)において、優れた酸化度と繰り返し特性を有することが判明した。	
3. 水素利用等先導研究開発 事業 [平成26年度~平成29年度] 水素等の新たなエネルギー キャリアについて化石燃料等 と競合できる価格の実現を目 指し、公募を行い、以下の研 究開発を行う。	3. 水素利用等先導研究開発事業 研究開発項目③と⑤に係る公募を行 うとともに、以下の研究開発を行った。	
研究開発項目① 低コスト水 - 素製造システムの研究開発 中・大型水電解ユニットによる連続試験を実施し、大型 化に伴う課題を明確化する。	研究開発項目① 低コスト水素製造システムの研究開発 中・大型水電解ユニットによる連続試験を実施し、大型化に伴う課題を明確化した。	
研究開発項目② 高効率水素 型造技術の研究 (1)次世代水電解システムの研究 1kW電解セルを用いた耐久性試験により劣化メカニズムの解明を行い、耐久性向上の検討を行う。 (2)高温水蒸気電解システムの研究 セル・スタックの寿命評価試験を継続し、劣化影響因子の抽出及び改良施策の検討・評価を実施する。	研究開発項目② 高効率水素製造技術の研究 (1)次世代水電解システムの研究 1kW電解セルを用いた耐久性試験を実施し、耐久性の評価を行った。 (2)高温水蒸気電解システムの研究セル・スタックの寿命評価試験を継続し、劣化影響因子の抽出及び改良施策の検討・評価を実施した。	

研究開発項目③ 大規模水素 - 利用技術の研究開発 (1) 水素液化貯蔵システム 大型真空二重殻タンク真空 層の真空排気試験を実施し、 大容量真空排気技術の見通し を得る。また、液体水素用新	研究開発項目③ 大規模水素利用技術 の研究開発 (1)水素液化貯蔵システム 大型真空二重殻タンク真空層の真空 排気試験を実施し、大容量真空排気技術 の見通しを得た。また、液体水素用新鋼 材の溶接部の破壊靱性を評価した。
鋼材の溶接部の破壊靱性を明らかにする。 (2)大規模水素利用技術 高効率に大規模な水素エネルギーを利用することを目的とした技術(燃料電池を除く) を開発する。	(2) 大規模水素利用技術 高効率に大規模な水素エネルギーを 利用することを目的とした技術として、 水素専焼タービン向け燃焼器開発を開 始した。
研究開発項目④ エネルギーキャリアシステム調査研究・高効率メタン化触媒を用いた水素・メタン変換不純物混合ガスの連続反応試験による触媒耐久性試験により、実用化環境における性能劣化評価を実施する。・溶融塩を用いた水と窒素からのアンモニア電解合成ー室型の評価試験装置の詳細設計を行い、製作を完了する。・水素分離膜を用いた脱水素実用化サイズのシリカ膜の長尺化技術を確立するともに、記者を確立するともに、記者を確かするとともに、記者を確かするとともに、記者を確かするとともに、記者を確かするとともに、記者を確かする。	研究開発項目④ エネルギーキャリアシステム調査研究 ・高効率メタン化触媒を用いた水素・メタン変換 不純物混合ガスの連続反応試験による触媒耐久性試験を行い、実用化環境における性能劣化評価を実施した。 ・溶融塩を用いた水と窒素からのアンモニア電解合成 一室型の評価試験装置の詳細設計を行い、製作を完了した。 ・水素分離膜を用いた脱水素 実用化サイズのシリカ膜の長尺化技術を確立した。またパイロットプラントの概念設計を実施した。
念設計を実施する。 研究開発項目⑤ トータルシステム導入シナリオ調査研究水素製造から貯蔵、輸送及び利用に至るサプライチェーン全体について、分析・評価等を実施する。	研究開発項目⑤ トータルシステム導入シナリオ調査研究 水素製造から貯蔵、輸送及び利用に至るサプライチェーン全体について調査・分析を行い、技術課題等について考察した。
4. 水素社会構築技術開発事業 [平成26年度~平成32年度] 水素エネルギーの利活用を促進するために、水素の需要を増加させるだけで無く、需要に見合った水素を安価で安定的に供給するため、公募を行い、水素の「製造」、「輸送・貯蔵」及び「利用」に関する技術開発を行う。	4. 水素社会構築技術開発事業 水素エネルギーの利活用を促進する ために、水素の需要を増加させるだけで 無く、需要に見合った水素を安価で安定 的に供給するため、公募を行った。水素の「製造」、「輸送・貯蔵」及び「利用」 に関する技術開発を行った。
研究開発項目① 水素エネルギーシステム技術開発 水素を利用して、安定的な水素を利用して、安定的なエネルギーを供給するための技術開発及び当該技術の実証研究を行う。具体的には、再生可能エネルギー等の出力変動の大きな発電設備に対して、電力を一旦水素に変換して輸送・貯蔵することにより変動を吸収し、出力を安定化させるための技術開発を実施	研究開発項目① 水素エネルギーシス テム技術開発 水素を利用して、安定的なエネルギー を供給するための技術開発及び当該技 術の実証研究を行った。具体的には、再 生可能エネルギー等の出力変動の大き な発電設備に対して、電力を一旦水素に 変換して輸送・貯蔵することにより変動 を吸収し、出力を安定化させるための技 術開発を実施した。更に公募で採択した 新たな6タイプの Power to Gas システ ムについて、技術・経済成立性評価を実

+7	 	
する。	施した。	
研究開発項目② 大規模水素	研究開発項目② 大規模水素エネルギ	
エネルギー利用技術開発	一利用技術開発	
水素発電の導入及びその需	「未利用エネルギー由来水素サプラ	
要に対応するための安定的な	イチェーン構築」については、水素サプ	
供給システムの確立に向け、	ライチェーン構築に向けて、液化水素に	
海外の未利用資源を活用した	ついては長距離大量輸送のための基本	
水素の製造、その貯蔵・輸送、	設計等を行った。また有機ケミカルハイ	
更には国内における水素エネ	ドライドを用いる方法について、商業規	
ルギーの利用まで、一連のチ	模に向けたコンピューターシミュレー	
ェーンとして構築するための	ション等を行った。	
技術開発を行う。また、水素	「水素エネルギー利用システム開発」	
のエネルギー利用を大幅に拡	については、1 MW級ガスタービン発電	
大するため、水素を燃料とす	システムによる新エネルギーシステム	
るガスタービン等を用いた発	の開発について、システム設計、機器製	
電システム等、新たなエネル	作及び現地工事に着手した。また500	
ギーシステムの技術開発を行	MW級水素・天然ガス混焼ガスタービン	
う。	の発電設備の研究開発について、要素試	
	験及び燃焼シミュレーション等を継続	
	して実施した。	
研究開発項目③ 総合調査研	研究開発項目③ 総合調査研究	
究	水素エネルギーに関する最新の政策、	
水素社会の実現に向け、水	国内外の取組状況、今後の水素エネルギ	
素の初期需要を誘発するため	一の普及拡大に向け必要な技術課題の	
の社会システムや未利用エネ	整理・体系化、水素エネルギー関連技術	
ルギーを用いた水素製造・輸	開発動向と将来見通し、技術的目標とア	
送・貯蔵技術に関する調査を	プローチなど必要な情報について調査	
行う。	を開始した。	
行う。 5. 固体高分子形燃料電池高	を開始した。 5. 固体高分子形燃料電池高度化技術開	●これまで実現困難とされていた、電解質膜に
行う。 5. 固体高分子形燃料電池高 度化技術開発事業 [平成2]	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年	電極触媒を直接塗工・乾燥する技術開発に世
行う。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮
行う。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けて	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮
行う。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパ	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパラメータの影響を個別に判断すること	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパラメータの影響を個別に判断することは非常に困難であるが、パラメータの比	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパラメータの影響を個別に判断することは非常に困難であるが、パラメータの比で評価を行う無次元モジュラスを用い	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するための耐久性の向上といった技術的な課題が存在しており、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパラメータの影響を個別に判断することは、MEAの性能を支配する12個のパラメータの影響を個別に判断することにより性能評価が可能になることにより性能評価が可能になることにより性能評価が可能になるこ	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の性能向上、現状年間数百台レベルである生産能力の大幅な向上及び適用車種を乗用車から商用車へと拡大するおり、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」については、MEAの性能を支配する12個のパラメータの影響を個別に判断することは非常に困難であるが、パラメータの比で評価を行う無次元モジュラスを用いることにより性能評価が可能になることを見出した。	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の生能向上、現状年間数百台レベルである生産能力の高用車へと拡大するための高用車へと拡大するためが高期車へと拡大するためがある世でおり、このため、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」についった。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」についった。 研究開発であるが、パラメータの影響を個別に判断するの比で評価を行う無次元モジュラスを用いることにより性能評価が可能になることを見出した。 腐食しない担体の候補として、酸化物	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低コスト化にも繋がる燃料電池の生能向上、現状年間数百台レベルである生産能力の高用車へと拡大するための高用車へと拡大がある時間を表現である。	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。 5. 固体解析 [平] 下標 [平] 下標 [平] 下標 [平] 下標 [平] 下標 [平] 下標 [平] 下 [を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度] 燃料電池自動車の普及拡大に向けては、低上の書類がある性電池の書類がでするが、大年間では、低上、現状年間を上上拡大が高力と大力をであるが、以下のでは、大年間であるを乗用車がのでは、大年間であるが、以下の研究開発を実施した。 研究開発項目① 普及拡大化基盤技術開発 「PEFC解析技術開発」についると変を実施した。 研究開発の影響を個別に判断するのととは、MEAの影響を個別に判断するのととがでは、外の影響を個別に判断するのととででは、MEAの影響を個別に判断するととがでは非価を行うとは非常にあるが、ジュラをといては、が、対しては、対しては、対しては、対しては、対しては、対しては、対しては、対しては	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場
行う。	を開始した。 5. 固体高分子形燃料電池高度化技術開発事業 [平成27年度~平成31年度]	電極触媒を直接塗工・乾燥する技術開発に世界で初めて成功。燃料電池の製造時間の短縮と生産コスト低減が期待でき、燃料電池市場

セプト創出、長期耐久性許	『価│ │ 論解析の結果、酸素空孔が反応サイトで │
を迅速に実施するための評	
解析技術開発等に取り組む	
	プト創出」については、PdコアーPt
	シェル構造の拡散バリア層としてAP
	D法による作製法を検討し、その結果形
	成されたコアシェル構造を持つ触媒は
	市販のPt/C触媒の10倍の質量活┃
	性を示し、耐久性も高いことを確認し
	TE.
	マラミックス担体系触媒ではエレク
	トロスプレー法を用いてアイオノマー
	を均一分散することで高電流密度域で
	一
	を見出した。
	R u や P d のナノシートに P t 原子
	シェルを被覆した材料の合成に成功し、
	- 2010-1011-1011-1011-1011-1011-1011-101
	高い電極触媒活性を示すことを確認し
	た。
研究開発項目② プロセス	
用化技術開発	開発 Table 1
現状、年間数百台から数	コアシェル触媒の量産化検討におい コアシェル触媒の量産化検討におい
台程度とされる生産台数の	
速要因となる燃料電池スタ	
クの生産性を2020年以	【降
の普及拡大期に大幅に向上	
せるため、プロセス技術の	9生 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
産性向上や品質管理手法の	P確
立に向けた開発等を行う。	炭化水素系電解質膜の連続処理が可
立に同けた開発寺を打り。	
	広幅化を実現可能なマルチ欠点検査の
	検討を開始した。
	一
	た新規合成法の検討を行い、環化副反応
	のない感化反応抑止原料を用いた検証
	直接塗工CCM量産製造装置開発に
	おいては、インク使用効率を向上する送
	液回路を開発し、転写工法CCMと同等
	性能を確保できることを確認した。
(+ \ ==1 mby	1. 11 - 11 11 11 11 11 11 11 11 11 11 11 1
(h) 国際 (h) 国際	(h) 国際
→ 我が国の新エネルギー 1. 新エネルギーベンチャ	・一 ・・・・・・・・・・
技術の産業競争力強化や 技術革新事業 [平成19	
地球環境問題の解決等に 度~]	新・国家エネルギー戦略(平成18年
向け、当該技術の海外展開 新・国家エネルギー戦略・	(平
に向けた戦略的な国際協 成18年5月)における新	
│ 力を実施していくことが │ ネルギーイノベーション計	
重要である。	・一
第3期中期目標期間に「ビジネスに対する支援の	
おいては、今後再生可能エ 大」や総合資源エネルギー	
ネルギー市場の拡大が見│査会新エネルギー部会中間	報 活性化」に基づき、ベンチャー企業等が
込まれる国々との間でパ 告書(平成18年5月)に	
ートナーシップの構築を ける「ベンチャー企業によ	:る することで、継続的な新エネルギー導入
図るべく、政策対話、情報 多様な技術革新の活性化」	
交換、人材育成、共同研究 基づき、ベンチャー企業等	
等を通じてネットワーク 保有している潜在的技術シ	·一 · 支える産業群を創出するため、再生可能
強化を図る。また、再生可しズを活用することで、継続	
能エネルギーの普及拡大 な新エネルギー導入普及の	
│ が今後見込まれる国・地域│めの新たな技術オプション	·の ・・・・・・・・・・ る技術について、多段階選抜方式による ・・・・・・・・・・・・・・・ ・・・・・・・・・・・・・・・・・
における技術実証事業を 発掘・顕在化を実現し、次	
にやりる以門大皿尹木と 九畑 - 駅江山と大光し、り	(中 「ツ「ノロク「ノロでめばないがタタルにより大心し

行うとともに、新しい技術 代の社会を支える産業群を創 の実用化・事業化・国際的 出するため、再生可能エネル 平成28年度は、これまでのフェーズ ギー及びその関連技術に関す な技術動向の把握・市場の A (フィージビリティ・スタディ)、フェ 開拓の観点から、多国間・ る技術課題を提示し、それら ーズB(基盤研究)及びフェーズC(実 二国間協力の枠組みを有 用化研究開発)に加え、フェーズD(大 の解決策となる技術につい 効活用する。 規模実証研究開発)を創設し、19件の て、多段階選抜方式による研 究開発を委託及び助成により 新規研究開発テーマを採択・実施すると 実施する。 ともに、24件の継続テーマの研究開発 平成28年度は、これまで を実施した。また、実用化を見据えたハ のフェーズA(フィージビリ ンズオン支援等の実施及びイノベーシ ティ・スタディ)、フェーズB ョン・コースト構想の推進につながる新 (基盤研究) 及びフェーズ C エネルギー分野の技術開発について1 (実用化研究開発)に加え、 件の支援を行った。 フェーズD(大規模実証研究 開発)を創設し、新規研究開 発テーマを採択・実施すると ともに、継続テーマの研究開 発を実施する。また、実用化 を見据えたハンズオン支援等 の実施及びイノベーション・ コースト構想の推進につなが る新エネルギー分野の技術開 発について支援を強化する。 (ii) 省エネルギー分野 ●省エネルギーに大きく貢献する重要分野を ii)省エネルギー分野 (ii) 省エネルギー分野 (ii) 省エネルギー分野 1. 戦略的省エネルギー技術革新プログ 大幅な省エネルギー効果 資源の大半を海外に依 1. 戦略的省エネルギー技術 特定した「省エネルギー技術戦略2016」 革新プログラム [平成24 が見込まれ、エネルギー・産 ラム 「平成24年度~平成33年度] 存している我が国にとっ 業構造の変革に貢献する省 て、資源確保は従前から重 年度~平成33年度] 現行の「省エネルギー技術戦略」に掲 エネルギー技術の開発と、 要な課題である。特に、近 平成26年4月に第4次 げる産業・民生・運輸部門等の省エネル ●平成27度までに終了した事業のうち、26 産業競争力の強化の観点か 年、アジア地域等の開発途 「エネルギー基本計画」が関 ギーに資する重要技術に係る分野を中 社が上市・製品化を達成。これらにより、2 らの省エネルギー製品・技 上国の経済成長による化 議決定され、中長期のエネル 心として公募を行い、合計9テーマ(イ 03万k1のエネルギー消費量(2030年 術の海外展開の加速化を着 石燃料を主としたエネル ギー需給構造を視野に入れ ンキュベーション研究開発フェーズ:3 度時点、原油換算)の削減が見込まれる。 て、エネルギー政策の基本的 テーマ、実用化開発フェーズ:5テーマ、 実に推進するための取組を ギー需要の増加は著しく、 世界各国ともにエネルギ な方針がとりまとめられ、徹 行うものとする。産業分野 実証開発フェーズ:1テーマ)を採択し については、エネルギー消 一資源を始めとする資源 底した省エネルギー社会とス マートで柔軟な消費活動の実 また、本プログラムへの提案を予定し 費比率上位の産業を中心と 確保の競争が激化するこ して、更なる効率改善を図 とが見込まれる。こうした 現として、民生、運輸及び産 ている企業、大学等の高い技術シーズを るための取組を行うことと エネルギーを取り巻く非 業各部門における省エネルギ 発掘・抽出するための調査事業の公募を 行い、9件を採択した。さらに、これま する。家庭・業務分野につい 常に厳しい国際環境に加 一の取組を一層加速していく え、東日本大震災を契機に ことなどが掲げられた。引き で終了したテーマに係る成果の状況等 ては、住宅や業務用ビルの 省エネルギーを推進するた エネルギーに対する安全・ 続き、経済成長と両立する持 を把握するための調査を実施した。 めの技術開発を行うものと 安心に関する重要性を再|続可能な省エネルギーの実現 省エネルギー技術の研究開発や普及 する。運輸分野については、 確認することとなった。つしが重要課題であり、省エネル を効果的に推進するため、省エネルギー 自動車等単体対策に加え、 まり、我が国においては ギー技術は多分野かつ広範に に大きく貢献する重要分野を特定した 交通流対策等にも資する技 「効率性」を確保しなが | 跨るため、これらの着実な実 「省エネルギー技術戦略2016」を策 術の活用の検討等にも取り ら、「安全」で「環境」に優 | 現のため「省エネルギー技術 定した。IoT技術などの新たな関連技 戦略」に掲げる産業・民生・運 術の動向を踏まえ、省エネルギーに貢献 組むこととする。各分野に しく、「エネルギーセキュ 共通する技術は横断的分野 リティ」にも十分に配慮し 輸部門等の重要技術や技術領 する重要技術を一部見直し、さらに技術 開発の進め方や導入シナリオを取りま として捉え、様々な分野で たエネルギー構造改革を 域別に設けた会議体(コンソ その適用が拡大している 成し遂げなければならな ーシアム等)において設定し とめた。 いものとなった。そのためした技術開発課題の解決に資す 平成27度までに終了した事業のう 「ヒートポンプ」、電気電子 機器の電源の高効率化を支 には、再生可能エネルギー る省エネルギー技術開発を強 ち、26社が上市・製品化を達成。これ える「パワーエレクトロニ の積極的な導入とともに、 力に推進する。 らにより、203万k1のエネルギー消 もう1つの柱として「省エ クス」、都市や街区レベルで 具体的には、技術毎にその 費量(2030年度時点、原油換算)の 開発リスクや開発段階は異な のエネルギー利用最適化を ネルギーの推進」は、その 削減が見込まれる。 本プログラムの実施により、成果が上 図るエネルギーマネジメン 重要性を益々高めている るため、3つの開発フェーズ ト技術に資する「熱・電力の がったテーマに係るプレスリリース、展 ところである。 (「インキュベーション研究 次世代ネットワーク」等に こうした背景の下、機構 開発フェーズ」、「実用化開発 示会での展示及び成果発表を通じて、企 係る技術開発に取り組むこ の省エネルギーに関する フェーズ」及び「実証開発フ 業の事業化を促進した。 ととする。 取組としては、大幅な省エ ェーズ」)を設けることで、そ 具体的な開発成果として、EUVパイ の開発段階等に応じるものと ネルギー効果が見込まれ、 ロット光源で世界最高水準の発行効率 エネルギー・産業構造の変 する。原則として複数回公募 の実証や、本プログラム成果の新規ラン

ガサイト型単結晶振動子を開発し、さら

革に貢献する省エネルギ

展開の加速化を目指すものであり、平成23年に策	切り口や着想に基づいた省エネルギーに係る技術の発掘、 将来の革新的な省エネルギー 技術開発に資するための検 討、制度の効果評価のための 調査等を行う。	に新製造プロセスを確立したことにより低コストでの製品化を実現した。	
	2. 太陽熱エネルギー活成23 住宅の技術開発 [平成28年度] でに成28年度] でに実記でに実証でに実証でに実証ででは、高性能断熱及では、高性能断熱及では、高性能断熱及では、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、高性のでは、一点を実施ができる。 一次がでは、一点には、一点には、一点には、一点には、一点には、一点には、一点には、一点に	2. 太陽熱エネルギー活用型住宅の技術開発 [平成23年度~平成28年度] 平成28年11月に事後評価委員会を開催した。プロジェクト全体の評価について、当初目標がほぼ達成され、空調・給湯エネルギーが一次エネルギー換算で半減できる可能性を日本各地の複数の住宅で実証した意義は大きいとの評価ではあったが、プロジェクト前半で開発した高性能断熱材と高機能パッシブ蓄熱建材のコンポーネント(施工性、流通性、耐久性)の改善点や将来的な展開が示されていない等、成果の普及に関する改善点が指摘された。	
	研究開発項目① 高性能断熱 - 材の開発 平成25年度終了。	研究開発項目① 高性能断熱材の開発 平成25年度終了。	
	研究開発項目② 高機能パッ - シブ蓄熱建材の開発 平成25年度終了。	研究開発項目② 高機能パッシブ蓄熱 建材の開発 平成25年度終了。	
	研究開発項目③ 戸建住宅用 - 太陽熱活用システムの開発 平成25年度終了。	研究開発項目③ 戸建住宅用太陽熱活 用システムの開発 平成25年度終了。	
	研究開発項目④ 太陽熱活用 システムの実証住宅での評価 平成27年度終了。	研究開発項目④ 太陽熱活用システム の実証住宅での評価 平成27年度終了。	
	研究開発項目⑤ 太陽熱活用システムの評価法の構築 2つのグループに分かれて 実施している研究開発項目 「太陽熱活用システムの実住 宅での評価」により得られる 実証データのうち、1グループの実証研究の省エネルギー性能に関する評価方法の決定 とシミュレーションによる省 エネルギー性能評価及び実測	研究開発項目⑤ 太陽熱活用システム の評価法の構築 空気循環太陽熱暖房システムの住宅 (FHアライアンス)に対して、「太陽熱 活用システムの実住宅での評価」で取得 した実証データを用い、省エネルギー性 能の簡易評価式を構築した。今回は、外 皮に設置されたダブルスキン等におけ る集熱効果量に対して、拡張外壁置換法 を用いることで、省エネルギー性能の評 価法の構築が可能となった。	

データを用いた検証を実施する。また、平成28年度に公募を実施し、2つのグループの省エネルギー性能を統一的に評価する方法を構築する。	OMソーラー(空気集熱式暖房・給湯システム)、FHアライアンス(空気循環太陽素)の2グループの省エネル構、内性能を統一的に評価する評価を決定を決定を決定を表して、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな		
3. 未利用熱エネルギーの革 新的活用技術研究開発 [平成27年度~平成34年度] 未利用熱エネルギーを経済 的に回収する技術体系を確立 すると同時に、同技術の適用 によって自動車・住宅等の日 本の主要産業競争力を強化す ることを目的に、以下の研究 開発を実施する。また、必要 に応じて、実施テーマの追加 や委託調査について公募を行 う。	システムの普及に繋がると推測できる。 3. 未利用熱エネルギーの革新的活用技術研究開発 未利用熱エネルギーを経済的に回収する技術体系を確立すると同時に、同技術の適用によって自動車・住宅等の日本の主要産業競争力を強化することを目的に、以下の研究開発を実施した。	●プロジェクト全体の効果試算として、各研究開発項目の最終目標をハイブリッド車に適用して燃費改善効果を推計。3代目プリウス基準で夏季30%、冬季10%の高い燃費改善を見通した。 ●ダブルリフト吸収サイクル式の冷凍機を開発し上市済み。未利用熱を活用し温水熱の利用温度をより低温域まで拡大(冷熱変換量2倍)した。	
研究開発項目① 蓄熱技術の研究開発 (1)高密度/長期蓄熱材料の研究開発 「高密度 番熱材料(低温用)の開発」、「高密度蓄熱材料(中/高温用)の開発」をでは、の開発」をでは、の開発がある。(2)車載用蓄熱技術(材料)の研究開発 「蓄熱構造体の開発」、「蓄熱材の所ので開発 「蓄熱構造体の開発」、「蓄熱材の高密度化」及びいて新規蓄熱材の高密度化」及びいて研究開発を行い、中間目標の達成を目指す。	研究開発 「蓄熱技術の研究開発」 「新熱技術の研究開発」 「高密度/長期蓄熱材料の開発」で 「高密度を動作に 「高密度化補を 「高密度化補を 「一方の 「一方の 「一方の 「一方の 「一方の 「一方の 「一方の 「一方の		

	「芸効せの言窓座ル」では、言宏具ル	
	「蓄熱材の高密度化」では、高容量化	
	のため細孔容量を向上したMOF(金属	
	有機構造体:Metal Organic Frameworks)	
	・	
	/ L、市販MOFの1.5倍)を確認し	
	, , , , , , , , , , , , , , , , , , , ,	
	た。	
	「新規蓄熱材の探索」では、MgO、	
	CaOについて、表面水和反応の反応律	
	速段階を明確化するために、固体内化学	
	反応について分子動力学法第一原理計	
	算を実施し、計算可能なことを確認し	
	to.	
	カー 研究開発項目②「遮熱技術の研究開発」	
研究開発	(1)革新的次世代遮熱フィルムの研究	
	, , , , , , , , , , , , , , , , , , ,	
(1)革新的次世代遮熱フィ	↑ │	
ルムの研究開発	「新規光学設計における超高精度積	
高精度積層技術の開発」、「次	欠 で作成した試作フィルムの結果に基づ	
世代遮熱用ポリマーの開発」		
「次世代遮熱フィルムのフィ	ィー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ルム加工技術の開発 及び「光		
世代遮熱窓材の評価技術の見	開	
発とその商品設計」について		
研究開発を行い、中間目標の	の	
達成を目指す。	した積層装置と改良したポリマーを適	
上版を自由す。		
	用したフィルム製膜試験を実施し、前年	
	度に試作したフィルムに対して、透明性	
	を3%程度向上させ中間目標値を達成	
	┃ した。またスケールアップのための課題 ┃	
	の明確化を行った。	
	「次世代遮熱フィルムのフィルム加	
	工技術の開発」では、前年度設計した粘	
	着層をパイロット機にて窓に貼合する	
	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加	
	着層をパイロット機にて窓に貼合する	
	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課	
	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。	
研究開発項目③ 断熱技術の	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の - 研究開発項目③「断熱技術の研究開発」	
	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。	
研究開発	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の ー 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発	
研究開発	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の ー 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム	
研究開発	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の ー 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム	
研究開発(1) 断熱材料の研究開発「産業炉/熱マネージメン	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加工に成功し、スケールアップのための課題の明確化を行った。 の ー 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」では、個々の研究開発成果を組	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の 一 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検	
研究開発(1) 断熱材料の研究開発「産業炉/熱マネージメン	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックス	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄熱	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックス の開発」、「耐高温高効率蓄熱 放熱システムの開発」、「高效	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄熱	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックス の開発」、「耐高温高効率蓄素 放熱システムの開発」、「高交 率廃棄ガス熱回収システムの	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックフ の開発」、「耐高温高効率蓄熱 放熱システムの開発」、「高ダ 率廃棄ガス熱回収システムの 開発」及び「高効率産業/工美	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 ち 0 %を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックス の開発」、「耐高温高効率蓄素 放熱システムの開発」、「高交 率廃棄ガス熱回収システムの	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 安合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 ち0%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックラの開発」、「耐高温高効率蓄熱 放熱システムの開発」、「高效率廃棄ガス熱回収システムの 開発」及び「高効率産業/工業 炉における検証」について研	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックラの開発」、「耐高温高効率蓄熱 放熱システムの開発」、「高效率廃棄ガス熱回収システムの 開発」及び「高効率産業/工業 炉における検証」について研	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 ち0%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加工に成功し、スケールアップのための課題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 ち0%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミックスの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間が従来に比べ約1/2	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック 関発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造欠陥抑制に	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造ケ陥抑制に 寄与するとともに、断熱材の強度向上と	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造ケ陥抑制に 寄与するとともに、断熱材の強度向上と	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄素 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための貼着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討について、新しいる孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造と陥消を強度向上と 熱伝導率低減にも寄与することを明ら	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 の 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミックスの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造の陥抑制に 寄与するとともに、断熱材の強度向上と。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造の指針	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための貼着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討について、新しいる孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造と陥消を強度向上と 熱伝導率低減にも寄与することを明ら	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発或果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産のい である乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間が従来に比べ約1/2に大幅短縮可能となる技術を開発した。また、この気孔形成技術はJIS並形形 状まで大型化した際の構造欠陥抑制に 寄与するとともに、断熱材の強度向上と 熱に海準を低減にも寄与することを明 がにし、断熱材としての最適構造の指針 を得た。これらの取り組みにより、工業	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合するための粘着層付きのフィルムの連続加工に成功し、スケールアップのための課題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱・マネージメントシステムの開発」では、個々の研究開発成果を組み合わせることにより、ラボスケール検証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック要別を前機である乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間が従来に比べ約1/2に大幅短縮可能となる技術を開発した。また、この気孔形成技術はJIS並形形状まで大型化した際の構造欠陥抑制に寄与するとともに、断熱材としての最適構造の指針を得た。これらの取り組みにより、工業用原料から作製したファイバーレス断	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1)断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発或果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレ ーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産のい である乾燥時間短縮の検討について、新しい気孔形成技術を適用することにより、乾燥時間が従来に比べ約1/2に大幅短縮可能となる技術を開発した。また、この気孔形成技術はJIS並形形 状まで大型化した際の構造欠陥抑制に 寄与するとともに、断熱材の強度向上と 熱に海準を低減にも寄与することを明 がにし、断熱材としての最適構造の指針 を得た。これらの取り組みにより、工業	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術を適用すること により、乾燥時間が後来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造欠陥抑制に 寄与するとともに、断熱材の強度向上と 熱伝導率低減にも寄与することを明ら かにし、断熱材としての最適構造の指針 を得た。これらの取り組みにより、工業 用原料から作製したファイバーレス断 熱材で、耐熱温度1,450℃、圧縮強	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックスの開発」、「耐高温高効率蓄素 放熱システムの開発」、「高刻率蓄熱 放熱システムの開発」、「高刻率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である石排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術と固定部の検した。 また、この気孔形成技術は月と並形形 状まで大型化した際の構造欠陥抑制に 寄与するとともに、断熱材の強度向上と 熱伝導率は減にも寄与することを明占 かにし、断熱材としての最適構造の指針 を得た。これらの取り組みにより、工業 用原料から作製したファイバーレス断 熱材で、耐熱温度1,450℃、圧縮強 を得た。これらの取り組みにより、工業 用原料から作製したファイバーレス断 熱材で、耐熱温度1,450℃、圧縮強 度11MP a、熱伝導率0.25W/m・	
研究開発 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステムの開発」、「高強度 高断熱性多孔質セラミックス の開発」、「耐高温高効率蓄素 放熱システムの開発」、「高効率蓄素 放熱システムの開発」、「高効率産業/工業 原における検証」について研究開発を行い、中間目標の資	着層をパイロット機にて窓に貼合する ための粘着層付きのフィルムの連続加 工に成功し、スケールアップのための課 題の明確化を行った。 研究開発項目③「断熱技術の研究開発」 (1) 断熱材料の研究開発 「産業炉/熱マネージメントシステム の開発」では、個々の研究開発成果を組 み合わせることにより、ラボスケール検 証炉で得られたデータを元にシミュレーションし、最終目標である排熱削減率 50%を削減できる見通しを得た。 「高強度高断熱性多孔質セラミック スの開発」では、1,500℃以上で使 用可能なファイバーレス断熱材量産の 課題である乾燥時間短縮の検討につい て、新しい気孔形成技術を適用すること により、乾燥時間が従来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術を適用すること により、乾燥時間が後来に比べ約1/2 に大幅短縮可能となる技術を開発した。 また、この気孔形成技術はJIS並形形 状まで大型化した際の構造欠陥抑制に 寄与するとともに、断熱材の強度向上と 熱伝導率低減にも寄与することを明ら かにし、断熱材としての最適構造の指針 を得た。これらの取り組みにより、工業 用原料から作製したファイバーレス断 熱材で、耐熱温度1,450℃、圧縮強	

	「耐高温高効率蓄熱放熱システムの
	開発」では、セラミックシェル構造蓄熱
	部材の耐久性について、繰り返し加熱に
	よる耐久試験、および強度試験結果をも
	とにした応力計算により検証を行い、そ
	の結果をもとにシミュレーションによ
	り従来の1.8倍の蓄熱放熱速度を持つ
	部材の設計を完了した。
	「高効率廃棄ガス熱回収システムの
	開発」では、平成27年度に判明した課
	題を解決し、さらに、実用化を考慮した
	高効熱交換器を設計・試作し、1,50
	0℃での耐久試験に着手した。
	「高効率産業/工業炉における検証」
	では、ファイバーレス断熱材の排熱削減
	効果を検証するガス炉を作製し、従来の
	アルミナ質煉瓦を使用した基礎試験を
	実施した。セラミックシェル構造蓄熱部
	材を使用する高効率バーナーの熱容量
	を削減する小型高効率バーナーを試作
	し、検証炉に組み込んだ。
研究開発項目④ 熱電変換材 一	研究開発項目④「熱電変換材料・デバイ
料・デバイス高性能高信頼化	ス高性能高信頼化技術開発」
技術開発	平成27年度より実施している小規
(1) 高性能熱電材料及びモ	模研究開発のテーマと合せて、12月に
ジュールの開発	外部有識者により研究開発の進捗状況
「熱電材料の高速合成・評」	を審査し、平成29年度以降の方向性を
価技術開発」、「導電性高分子	定めた。
材料・素子の研究開発」及び	(1) 高性能熱電材料及びモジュールの
「炭素系熱電変換デバイスの	開発
技術開発」について研究開発	「熱電材料の高速合成・評価技術開
を行い、中間目標の達成を目	発」では、高速合成法であるレーザー溶
指す。	融合成法によりシリコンクラスレート
18 9 6 (2) 熱電デバイス技術の研 18 9 6 (2) 18 1	系材料の合成に成功し、性能の組成依存
究開発	性を明らかにした。またA1-Mn-S
「熱電材料の開発」、「熱電	i 系シリサイド材料を合成し、600K
デバイスの開発」及び「熱電	における性能指数 Z T = 0.3 を確認し
	た。
て研究開発を行い、中間目標	3元系、4元系の金属間化合物につい
の達成を目指す。	ては、122系新規物質Ba _{1-x} K _x Z
(3) 熱電変換による排熱活	n ₂ A _{s₂} を合成し、高い熱電性能を確認
用の研究開発	
	した。またYbAlaCo物焼結体にお
「システム効率向上の検	いて、室温における出力因子PF=0.
証」及び「新熱電変換材料の	0.06W/Km^2 、性能指数 Z T = 0.1
開発」について研究開発を行	を確認した。Sn-(S, Se, Te)
い、中間目標の達成を目指す。	系化合物の4元混晶系組成を探索し、室
(5) 実用化に適した高性能	温における熱伝導率 $\kappa \sim 1 \text{W/mK}$ 、ゼ
なクラスレート焼結体の研究	ーベック係数 S = 1 0 0 ~ 6 0 0 μ V
開発	/ Kを確認した。
「高性能化に関する技術開	T i S 2 系有機/無機ハイブリッド材
発」、「p型特性発現に関する」 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	料を使用した開発では、フレキシブル熱
技術開発」及び「モジュール	電モジュールを試作し、世界最高性能と
化に関する技術開発」につい	なる温度差 Δ T=70Kにおいて2.5
て研究開発を行い、中間目標	W/m^2 の出力密度を実現した。
の達成を目指す。	「導電性高分子材料・素子の研究開
(6)シリサイド熱電変換材	発」では、PFの増大を狙うPEDOT
料による車載排熱発電システ	とカーボンナノチューブのハイブリッ
ムの実用化への要素技術開発	ド膜で性能向上に関する指針を得て、1
「Mg2Si熱電変換材	$50 \mu \text{W}/\text{Km}^2 OPF を達成した。さ$
料・発電素子の量産化技術」	らに、熱電モジュールで界面抵抗の低減し
及び「車載用熱電発電モジュ	等を行い $2.4 \mu \text{ W/c m}^2$ の高い出力密
ールの開発」について研究開	度を達成した。
T -	-2-40

発を行い、中間目標の達成を	「炭素系熱電変換デバイスの技術開	
目指す	発」では、バインダー高分子の濃度制御、	
	及び、カーボンナノチューブファイバー	
	の直径制御などを通じて出力因子60	
	0 μW/Km ² を超えるカーボンナノチ	
	ューブー高分子複合材料を実現した。ま	
	た、ZTに加えた新たな目標・指標につ	
	いて検討し、PFとモジュールの出力密	
	度を目標とすることを提案した。	
	(2) 熱電デバイス技術の研究開発	
	「熱電材料の開発」では、スクッテル	
	ダイト系熱電材料の熱的安定性と組成	
	の関係を調べ、ZT=1.2の高い熱電	
	性能と室温~600℃の温度範囲で良	
	好な耐熱性を備えた熱電材料を開発し	
	£.	
	「熱電デバイスの開発」では、変換効	
	上の耐久性試験後、600℃における発	
	電性能の変化率は5%以内となり、50	
	0℃~600℃の温度範囲で累計5,0	
	00時間の耐久性を確認した。	
	「熱電発電システムの開発」では、発	
	電ユニット性能評価装置を設計し完成	
	した。基礎試験用発電ユニットを設計、	
	製作し、発電ユニットにおける温度分布	
	と熱源のガス温度、流速等との関係を測し	
	定して熱伝達状況を研究した。さらに構	
	造、熱流体シミュレーション技術を用い	
	て、熱電発電ユニットの構造設計を行っ	
	ている。	
	(3) 熱電変換による排熱活用の研究開	
	発	
	「システム向上の検討」では、5 kW	
	コージェネユニットを対象とし、有効な	
	熱電素子の設置場所を検討し、ZT=1	
	の熱電材料を想定した試算の結果、容積	
	増大率5%以内でエネルギー利用効率1	
	電人率3 %以内でエネルギー利用効率 1 ポイント向上の見通しを得た。	
	「新熱電変換材料の開発」では、ΖΤ	
	= 2 達成に必要な出力因子: 0. 6 mW	
	/Km ² と熱伝導率: 0.8W/Kmを薄	
	膜で達成し、ZT=2達成するための組	
	織構造の一つとしてMnSi _{1.7} を母相	
	結晶とし、結晶粒界にSiGeとSiA	
	gを形成した構造を決定した。また、バー	
	ルク材料としてMnSi _{1.7} とSiの複	
	合材料バルクの合成を行った。	
	(5) 実用化に適した高性能なクラスレ	
	ート焼結体の研究開発	
	「高性能化に関する技術開発」では、	
	前年度に作成したナノ焼結体試料を用	
	いてナノ組織が熱電特性に与える影響	
	を解析する技術を研究し、シリコンクラ	
	スレートの材料高性能化の方向性を定	
	めた。	
	「p型特性発現に関する技術開発」で	
	は、構成元素うち特にPt等の元素が熱	
	電特性に与える影響を第一原理計算に	
	より解析し、実験的検討への指針を明確	
	化した。	
	「モジュール化に関する技術開発」で	
	· · · · · · · · · · · · · · · · · · ·	
	I - 2 - 41	

	は、クラスレート焼結体素子のモジュー	
	ルを試作し、発電効率および出力の評価	
	を行って素子の課題が電極部の界面に	
	あることを明確化した。	
	(6)シリサイド熱電変換材料による車	
	載排熱発電システムの実用化への要素	
	技術開発	
	「Mg2Si熱電変換材料・発電素子」	
	の量産化技術」では、熱電特性及び機械	
	特性の面内偏差が 5 %以内の均質な φ	
	100mm焼結体製造技術を開発し、本	
	製造技術を軸としたシリサイド系発電	
	素子の量産ライン設計の検討開始に目	
	途をつけた。	
	「車載用熱電発電モジュールの開発」	
	では、小型モジュールで発電出力密度	
	1. 2W/cm ² 、大型モジュール(35)	
	, , , , _ , , , _ , , , , , , , , , , , , , , , , , , ,	
	$ x 29 \text{ mm}^2) \circ 0.8 \text{W} / \text{cm}^2 $ を達	
	成した。耐久性評価では、100℃-5	
	00℃の熱サイクル試験1,500時間	
	サイクルで初期性能からの出力変化率	
	/ / / / / / / / / / / / / / / / / / / /	
	が21%となることを確認した。	
研究開発項目⑤ 排熱発電技	研究開発項目⑤「排熱発電技術の研究開	
術の研究開発	発」	
(1) 排熱発電技術の研究開	(1) 排熱発電技術の研究開発	
発	「高効率小型排熱発電技術開発」で	
「高効率小型排熱発電技術	は、出力1kWeクラスで、低GWP&	
開発」について研究開発を行	不燃冷媒に適合し発電効率14%を実	
い、中間目標の達成を目指す。	現するオーガニックランキンサイクル	
(八丁的口伝の) (11日)。		
	のシステム構成、膨張機、冷媒ポンプと	
	蒸発器等の耐熱デバイスの仕様を明確	
	化した。また、膨張機とポンプの耐久性	
	評価に着手した。出力10kWeクラス	
	では、小型膨張タービンを5kWeから	
	10kWeにスケールアップするとと	
	もに、模擬熱源装置を用いて実使用条件	
	を考慮した試験を行い、小型膨張タービ	
	ンと気体軸受の技術課題を抽出した。	
研究開発項目⑥ ヒートポン —	研究開発項目⑥「ヒートポンプ技術の研	
プ技術の研究開発	究開発」	
(1)産業用高効率高温ヒー	(1)産業用高効率高温ヒートポンプの	
トポンプの開発	開発	
「遷臨界サイクルヒートポ	「遷臨界サイクルヒートポンプの最	
ンプの最適化技術の開発」、	適化技術の開発」では、300kW級ヒ	
「ターボ圧縮機技術の開発」	ートポンプ試作機の設計を行うため、広	
及び「高温高圧熱交換器の開	範囲の計算ができる新たな圧縮機の性	
発」について研究開発を行い、	能計算式を作成し、静特性を確認した。	
中間目標の達成を目指す。	また、試作機の一部製作を実施した。フ	
(2)機械・化学産業分野の	ロン系新冷媒について、HFO-133	
高温熱供給に適した冷媒とヒ	6 m z z (E) とHFO-1 3 5 4 m z	
ートポンプシステム技術開発	y (E) の気相 P ρ T と 状態 方程式 作成	
「導入調査」、「機器開発」	の為に臨界点を計測した。	
及び「冷媒開発」について研	「ターボ圧縮機技術の開発」では、風	
究開発を行い、中間目標の達	損試験をN ₂ とR 1 3 4 a それぞれにつ	
成を目指す。	いて実施し、軸受部付近のガス温度と風	
(3)低温駆動・低温発生機	損の関係を確認した。風損解析と改善効	
の研究開発	果確認試験の結果から改善項目の抽出	
「低温駆動基本サイクル」、	を行い改良を実施した。回転確認試験を	
「低温発生技術の開発」及び	行い、機械的な健全性を確認した。	
「新吸収剤」について研究開	「高温高圧熱交換器の開発」では、プ	
発を行い、中間目標の達成を	レート式熱交換器の追加試験のために	

関格す。 「最適の組替えを行い、対魔界の詳細なデーータを得るために小型グレートを用いた試験を行った。1 0 MP a 設計のマイクロチャンネルプレート熱交機器の設計を終了し、試作を開始した。WE P 製ガスクーラのサーマルサイクル試験の仕様を決定した。 (2)機械・化学産業分野の高温熱供給に適比で、2 機械・化学産業分野の高温熱供給に適した治線とヒートボンプンステム技術開発 「ヒートボンブ技術導入プロセスス調査」で、対に関心ための計測を開始した。運転実態を分析して、熱収支、エネルギー消費量等を把握した。で、無収支、エネルギー消費量等を把握した。原低 GW P 冷媒候補の開発および物性情報の構築」では、新型冷媒像補の熱ケ友性、環境影響を把握した。。 「低 GW P 冷媒候補の開発および物性情報の構築」では、新型冷媒像補の熱度安定性、安全性・環境影響を対して、熱収支、エネルギー消費量等を把握した。 「低 GW P 冷媒候補の開発および物性情報の構築」では、新型冷媒像補の熱度安定性、環境影響を対して、熱収支に関して、意味を発した。また、候補冷媒 A の熱力学的性質、輸送性質データを取得した。また、候補冷媒 A の熱力学的性質、輸送性質データを取得した。また、候補冷線 A の熱力学的性質、輸送性質データを取得した。また、候補冷な A の熱力学的性質、輸送性質データを取得した。また、候補冷線 A の熱力学的性質、輸送性質データを取得した。また、候補冷線 A の熱力学的性質、輸送性質データを取得した。また、使用心な機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用いた合成機能を用なるに関していたのでは、 T C T C T C T C T C T C T C T C T C T
た試験を行った。1 0 MP a 設計のマイ クロチャンネルブレート熱交換器の設計を終了し、試作を開始した。SWE P 製ガスクーラのサーマルサイクル試験 の仕様を決定した。 (2)機械・化学産業分野の高温熱供給 に適した冷媒とヒートボンプシステム 技術開発 「ヒートボンプ技術導入プロセス調査」では、特に有望なブラントプロセス を 3 件抽出して、運転状態把握のための 計測を開始した。運転実態を分析して、 熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物 性情報の構築」では、境影響を評価、候補 冷媒人の熱力学的性質、輸送性質データ を取得した。また、候補格冷媒人2 に関し てより安価な機媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認し し、軍急性害性に対象で低素性であること
クロチャンネルブレート熱交換器の設計を終了し、試作を開始した。SWEP 製ガスクーラのサーマルサイクル試験 の仕様を次定した。 (2)機械・ビ戸産業分野の高温熱供給 に適した冷媒とヒートポンプも術導人プロセス調査」では、特に有望なブラントプロセス を3件抽出して、運転実態を分析して、 熟収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の解決する。「低GWP冷媒候補の熱安定性、環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また。「低GWP冷媒体に環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。よりを面積を開発した。また。「成品機大能性質、大能力を開発した。また。」 に、金供店を発生、環境影響を評価し、最初
計を終了し、試作を開始した。SWE P 製ガスクーラのサーマルサイクル試験 の仕様を決定した。 (2) 機械・化学産業分野の高温熱供給 に適した治媒とヒートポンプシステム 技術開発 「ヒートポンプ技術導入プロセス調 査」では、特に有望なプラントプロセス を3件抽出して、運転状態把握のための 計測を開始した。運転実態を分析して、 熱収支、エネルギー消費量等を把握し た。 「低GW P 冷媒候補の整治とび物 性情報の構築」では、新型冷媒候補の熟 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸洽体とに関し てより安価な触媒を用いた合成検討を 変施して高速択率、触媒の長寿命を確認 し、重急性毒性試験で低毒性であること
製ガスクーラのサーマルサイクル試験 の仕様を決定した。 (2)機械・化学産業分野の高温熱供給 に適した冷媒とヒートポンプシステム 技術開発 「ヒートポンプ技術導入プロセス調 査」では、特に有望なブラントプロセス を3件抽出して、運転実態を分析して、 熱収支、エネルギー消費量等を把握し た。 「低GW P 冷媒候補の開発および物 性情報の構築」では、新型内媒体制の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質アタ を取構を関係とに関し てより安価な触媒を用いた合成検討を 実施して高速規率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
製ガスクーラのサーマルサイクル試験 の仕様を決定した。 (2)機械・化学産業分野の高温熱供給 に適した冷媒とヒートポンプシステム 技術開発 「ヒートポンプ技術導入プロセス調 査」では、特に有望なブラントプロセス を3件抽出して、運転実態を分析して、 熱収支、エネルギー消費量等を把握し た。 「低GW P 冷媒候補の開発および物 性情報の構築」では、新型内媒体制の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質アタ を取構を関係とに関し てより安価な触媒を用いた合成検討を 実施して高速規率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
の仕様を決定した。 (2)機械・化学産業分野の高温熱供給 に適した冷媒とヒートポンプシステム 技術開発 「ヒートポンプ技術導入プロセス調 査」では、特に有望なプラントプロセス を3件抽出して、運転状態把握のための 計測を開始した。運転実態を分析して、 熟収支、エネルギー消費量等を把握し た。 「低GWP冷媒候補の開発および物 性情報の構築」では、新型冷媒候補の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補や解A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、維持の降と確認 し、亜急性毒性試験で低毒性であること
(2)機械・化学産業分野の高温熱供給に適した冷媒とヒートポンプシステム技術開発 「ヒートポンプ技術導入プロセス調査」では、特に有望なブラントプロセスを3件抽出して、運転状態把握のための計測を開始した。運転実態を分析して、熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・環境影響を評価し、候補冷媒ムの熱力学的性質、輸送性質データを取得した。また、候補冷媒 A 2 に関してより変価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、配急性毒性試験で低毒性であること
に適した冷媒とヒートポンプシステム 技術開発 「ヒートポンプ技術導入プロセス調 査」では、特に有望なプラントプロセス を3件抽出して、運転状態把握のための 計測を開始した。運転実態を分析して、 熱収支、エネルギー消費量等を把握し た。 「低GWP冷媒候補の開発および物 性情報の構築」では、新型冷媒候補の熟 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質 ・ 輸送性質 ・ を発生・環境影響を評価し、に関し でより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
技術開発 「ヒートポンプ技術導入プロセス調査」では、特に有望なブラントプロセスを3件抽出して、運転状態把握のための計測を開始した。運転実態を分析して、熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熟安定性・愛境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、正急性毒性試験で低毒性であること
「ヒートポンプ技術導入プロセス調査」では、特に有望なブラントプロセスを3件抽出して、運転状態把握のための計測を開始した。運転実態を分析して、熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・安全性・環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高速規率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること
査」では、特に有望なプラントプロセスを3件抽出して、運転状態把握のための 計測を開始した。運転実態を分析して、 熱収支、エネルギー消費量等を把握し た。 「低GWP冷媒候補の開発および物 性情報の構築」では、新型冷媒候補の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施で高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
を3件抽出して、運転実態を分析して、 熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
計測を開始した。運転実態を分析して、 熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
熱収支、エネルギー消費量等を把握した。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・安全性・環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質、輸送性質してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること
た。 「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・安全性・環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること
「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・安全性・環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること
「低GWP冷媒候補の開発および物性情報の構築」では、新型冷媒候補の熱安定性・安全性・環境影響を評価し、候補冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること
性情報の構築」では、新型冷媒候補の熱 安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
安定性・安全性・環境影響を評価し、候補 冷媒Aの熱力学的性質、輸送性質データ を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
冷媒Aの熱力学的性質、輸送性質データを取得した。また、候補冷媒A2に関してより安価な触媒を用いた合成検討を実施して高選択率、触媒の長寿命を確認し、亜急性毒性試験で低毒性であること し、亜急性毒性試験で低毒性であること
を取得した。また、候補冷媒A2に関し てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
てより安価な触媒を用いた合成検討を 実施して高選択率、触媒の長寿命を確認 し、亜急性毒性試験で低毒性であること
実施して高選択率、触媒の長寿命を確認し、 し、亜急性毒性試験で低毒性であること
し、亜急性毒性試験で低毒性であること
も明らかにした。さらに、候補冷媒B3
及びB5に関して合成検討を進めると
ともに、候補冷媒B3の熱安定性評価を
開始した
「ヒートポンプの開発と特性評価」で
は、 冷媒に R - 1 3 4 a を用いた検証機
で、高ヘッドインペラでの運転可能範囲
を確認した。さらに、候補冷媒A1に入
替えて高温条件での試験を開始した。候
補冷媒A1雰囲気下で、潤滑油粘度が実 は 用名がは 25 まながま は 用名がま は 用名がま 25 まながま は 用名がま 25 まながま 25 ま
使用条件に近い条件での軸受温度計測
を実施し、軸受内輪温度差は従来傾向と
は異なることを確認した。そこで、実運
転状態における軸受温度の伝熱モデル
を作成し、実測結果との合せ込みを完了
した。 候補冷媒 A 3 用潤滑油は R B 1 6
0 A - 2 を最適とし、高温使用限界を確
認した。160℃出力機において、候補
する代替材料でのエラストマ材料評価
9 3 1 (資材料でのエクストマ材料計画 を行った。
で13つた。 (3)低温駆動・低温発生機の研究開発
「低温駆動基本サイクル」では、前年
度に製作した空冷式実用性確認用供試
体により、低温排熱駆動にて7°Cの冷水
が得られることを実証した。また、中間
目標である75℃熱源から−10℃の
冷熱を発生する水冷式低温発生試作機
の基本設計を完了した。
「低温発生技術」では、安全性に配慮
した氷点降下剤を選定し、凍結温度、結
晶特性、冷熱発生実験により低温発生サ
氷点降下剤を混合した冷媒における低
温冷熱発生時の蒸発伝熱性能を実測に
より評価した。
「新吸収剤」では、実用化候補とした
吸収剤について熱物性の情報入手およ
I-2-43

	び腐食抑制技術を開発し、冷凍サイクル	
	構成時の動作点、従来技術に対する作動	
	範囲拡大の特性を試算した。	
研究開発項目⑦ 熱マネージ	^{>} -	
メントの研究開発	究開発」	
(1) 熱マネージメント材料	(1) 熱マネージメント材料の研究開発	
の研究開発	┃	
「車載用高効率熱輸送シス		
テム」、「材料研究」及び「熱計	・	
測技術」について研究開発を	験を行い、シミュレーションモデルの高	
行い、中間目標の達成を目指		
す。	構造の見直しを行い、平成28年度の目	
(2) 熱マネージメントの研		
究開発	た。	
「モータ領域」及び「インバ	、│	
ータ領域」について研究開発		
を行い、中間目標の達成を目		
指す。	│	
(3) 車両用小型吸収冷凍機	11.	
の研究開発	の直鎖の1価アルコールに対して分子	
「軽量化開発」、「作動媒体	: 動力学シミュレーションを実施し、分子	
の開発」及び「分離壁構造開		
発」について研究開発を行い、		
中間目標の達成を目指す。	「熱計測技術」では、時間分解能1p	
(4)車両用高効率排熱利用・		
. ,		
冷房用ヒートポンプの研究開		
発	し、金属/水界面の熱抵抗が最大1/5	
「吸着熱交換器開発」、「吸		
着式冷凍サイクルのシステム		
開発」及び「吸着蓄熱システ	・ ・ ・	
ム等の開発」について研究開		
発を行い、中間目標の達成を	1 7 - 1 9 1	
目指す。	熱移動性能を高めつつ、熱移動面積を拡	
	大するための新たな技術として、相変化	
	を活用したモータ冷却コンセプトを構	
	た冷却システムを具体化し、基本性能を	
	評価して中間目標達成の見通しを得た。	
	「インバータ領域」では、吸熱モジュ	
	ールを構成するペルチェ素子の熱移動	
	性能を計測し、その結果から発熱成分と	
	│	
	構築した。また、吸熱モジュールの作製	
	条件を検討し、材料分析により発熱成分	
	とは減するための材料組成を明らかに	
	した。これらの結果から、ゼーベック係し	
	数を向上させるための指針を導出し、中	
	間目標達成の見通しを得た。	
	3) 車両用小型吸収冷凍機の研究開発	
	,	
	「軽量化開発」では、軽金属構造で、	
	新たに作動媒体の混合を抑制する形状	
	を用いた装置の設計、システム化技術、	
	腐食対策技術を確立した。	
	「作動媒体の開発」では、改良作動媒	
	体の熱量測定を行い熱物性値の解析を	
	17 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	
	行った。また、いくつかの作動媒体候補	
	についての物性値計測結果から、車載環	
	境下で運転可能な改良作動媒体候補を	
	明確化した。	
	「分離壁構造開発」では、分離壁の基	
	本特性の計測を行い、その結果を用い	
	て、平膜式吸収器・再生器の製作・試験	
	し、干族八火収布・円生布の表下・八米	
	1 - 2 - 44	

	を行った。また、分離壁構造の性能シミ	
	コレータを用いて冷凍サイクル、機器構	
	造の最適化を行なった。	
	(4) 車両用高効率排熱利用・冷房用ヒ	
	ートポンプの研究開発	
	「吸着式冷凍システム」では、吸着熱	
	交換器の薄型化による新規設計を行っ	
	た。あわせて担持技術の改良としてバイ	
	ンダーの再選定と使用量の見直しを実	
	施し、目標の吸着性能を達成した。	
	「吸着式冷凍サイクルのシステム開	
	発」では、各コンポーネントの小型化と	
	単位容積当たりの熱容量の見直しを行	
	うことにより目標のシステム容積を達し	
	成した。さらに台上試験の連続運転にお	
	いて平均蒸発性能1.2 k W を確認し	
	た。	
	「吸着蓄熱システム等の開発」では、	
	原理確認用のシステムを構築し、冬季を	
	想定した温度条件における原理確認で	
	設定した目標蓄熱量を確認した。冷媒の	
	凍結についてはシステムにおける凍結	
	の発生条件の追究と、凍結防止剤を付加	
	した冷媒を試作して基礎特性の取得に	
	着手した。	
研究開発項目⑧ 熱関連調	一 一 研究開発項目⑧「熱関連調査・基盤技術	
査・基盤技術の研究開発	の研究開発」	
(1) 熱関連調査研究と各種		
熱マネージメント材料の基盤		
技術の開発	種の未利用排ガス熱量を調査し、排出傾	
「排熱実態の調査、研究開	向を明らかにした。業務用民生分野の建	
発/導入シナリオの検討」、	物での熱損失調査を行い、実際の遮熱制	
「熱マネージメント部材の評		
価技術開発」及び「熱関連材		
料の計算シミュレーションと	外皮を通して生じる熱移動を区分して、	
データベース構築」について	遮熱制御フィルム導入による暖冷房負	
研究開発を行い、中間目標の		
達成を目指す。	用空調システムの実働エネルギー効率	
達成を目指す。		
	評価法の開発を行い、室内機が4台接続	
	された個別分散型空調システムに対し、	
	主に冷房運転時における室内機運転パ	
	ターンの違いがエネルギー効率に与え	
	る影響を実働試験により明らかにした。	
	「熱マネージメント部材の基盤技術	
	の開発」では、モジュール評価装置のサ	
	ンプルステージ裏面に光学式の変位計	
	を設置し、 1μ mの分解能でサンプルス	
	「元 に μ	
	することに成功した。昇温とともに変位	
	が増大し、また電流変化によっても僅か	
	に変位の変化があることを明らかにし	
	た。また、昇温時の接合部の変位の変化	
	が故障するモジュールと故障しないモ	
	ジュールで明らかな差が見られた。また	
	ヒートサイクルを実施した際も次第に	
	変位が減少する様子を確認した。これら	
	の感度分析から、劣化加速の条件下で変し	
	位計測を同時実施することで、劣化の様	
	子を推定できることを明らかにした。	
	有機熱電材料の同時ゼーベック係数	
	計測に取り組み、7時間で5試料同時計	
	測に成功した。耐久性要因解明について	
	既に歩うした。同学に大人に大人に	
	I 0 45	

は雰囲気制御環境での同時ゼーベック 係数測定装置での予備実験を行った。ま たプロジェクト内の関係機関が評価装 置を使い、熱電素子の計測を行うことを サポートした。 本研究で開発した新型冷媒候補及び 類似化合物の環境影響及び燃焼性の評 価を実施した。新型冷媒候補1種、類似 化合物1種について、OHラジカルとの 反応速度測定による大気寿命評価、赤外 吸収測定による放射強制力評価を行い、 地球温暖化係数 (GWP) を算出した。 短寿命化合物向けの新評価法を導入し た結果、2種のGWPをそれぞれ20、 51に決定した。また、新型冷媒候補、 類似化合物各1種について燃焼限界、燃 焼速度、燃焼熱等の評価を行い、ISO 燃焼性等級を決定した。新型冷媒候補は 不燃性であり、類似化合物はクラス2L に区分されることを明らかにした。 「熱関連材料の計算シミュレーショ ンとデータベース構築」では、高密度蓄 熱が期待される化合物として、典型的な 有機潜熱物質である糖アルコールを対 象とした詳細な熱物性解析を実行した。 計算により分子構造をデザイン、結晶構 造を予測することで、糖アルコール類似 の分子骨格を有する分子性化合物では、 既存材料を大きく上回る潜熱蓄熱が可 能であることを計算科学により理詰め で証明した。これにより、有機物質の基 本構造を鋳型として分子を設計する場 合には、蓄熱密度の上限は500kJ/ kg程度であることが示唆されたため、 さらなる高密度蓄熱を達成するには、別 の蓄熱メカニズムを検討する必要があ ることを明らかにした。 熱関連材料を元素組成比を用いて統 一的に記述する技術を確立し、物性値と の相関を明らかにして物性データを評 価・体系化する技術の開発を進めた。ま た定常熱物性値および熱エネルギーの 蓄積・取出し速度に関わる4,500点 以上の物性値をデータベースに収録し、 技術交流会等でプロジェクト内に周知 し、分室の要請に対応してデータを提供 した。これに加えて、論文中の元素組成 比を迅速にデータベース化する技術、グ ラフ中に描かれた曲線を高速でデジタ ル化する技術を開発した。 リンクトデータとして提供されてい る公共データなどから、プロジェクト遂 行に有用な熱関連材料・部素材の各種熱 物性情報を収集するととともに、定常的 および非定常的な熱エネルギーの流れ をエクセルギーフローとして表現する 技術を開発した。 なお、ナノ材料技術の急速な進展等に 伴い、近年様々な取組により大きな性能 改善の可能性が期待される「熱電変換材 料・デバイス高性能高信頼化技術開発」 について、平成27年度から開始した6

	つのテーマの小規模研究開発は、研究を 継続し、12月に外部有識者による研究 開発の進捗状況審査を行って3つのテ ーマを本研究へ移行することとした。 さらに、「蓄熱技術」について小規模研 究開発の公募を行い、5つのテーマを採 択して研究開発を開始した。		
4. 高温超電導実用化促進技術開発 [平成28年度~平成32年度] 超電導技術は電気抵抗がゼロとなり、送電ロスの大きな省エスの大きなが期待される技術開発の人間である。これまでの基盤技術開発の成果を活からし、、省工工工工である。これまでもあるが、第1年では、1年で、1年で、1年で、1年で、1年で、1年で、1年で、1年で、1年で、1年で	4. 高温超電導実用化促進技術開発 [平成28年度~平成32年度] 超電導技術は電気抵抗がゼロとなり、 送電ロスの大幅な低減など、大きな省エネルギー効果が期待される技術である。 これまでの基盤技術開発の成果を活かし、早期実用化を実現するため、省エネルギー効果や大きな市場創出が期待を きる適用先として電力分野や運輸分野を 厳選し、高温超電導技術による送配電 技術の開発と高磁場マグネットシステムに係る技術開発を実施した。		
研究開発項目① 電力送電用 高温超電導ケーブルシステム の実用化開発 超電導ケーブルでの絶縁破 壊等の電気的事故、機械的故 障や損傷、冷却システムの故 障等、想定される各種の事故・ 故障を抽出・分類するととも に、安全性評価試験項目を実 施し、対処方法・早期復旧の ための方法を検討する。	研究開発項目① 電力送電用高温超電導ケーブルシステムの実用化開発 66kV短絡・地絡試験ならびに275kV地絡試験を行い、試験結果の分析を実施した。窒素漏えい試験の力を実施し漏えい量を大力を表情を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を	●長寿命化(6,000時間~40,000時間のメンテナンス間隔)を狙った我が国の独自技術である高効率大容量ターボブレイトン式冷凍機を用いた一年間の系統連系実証試験を開始。	

性能を評価し、長期運転性能試験を行い、試験後の残存性能を評価し、設計・運用・保守ガイドラインの策定を行った。 研究開発項目② 運輸分野への高温超電導適用基盤技術開発 電導適用基盤技術開発 長距離冷却システムの主構成機器である冷凍機、液体室素循環ポンプ等について、中間目標値に基づく設計、製作をある冷凍機、液体空素循環ポンプ等について、中間目標値に基づく設計、製作を進めた。断熱管については短尺での性能手する。
い、試験後の残存性能を評価し、設計・ 運用・保守ガイドラインの策定を行った。 研究開発項目② 運輸分野へ の高温超電導適用基盤技術開発 電導適用基盤技術開発 長距離冷却システムの主構成機器である冷凍機、液体窒素循環ポンプ等について、中間目標値に基づく設計、製作を もあた。断熱管については短尺での性能
運用・保守ガイドラインの策定を行った。
た。 研究開発項目② 運輸分野への高温超電導適用基盤技術開発 電導適用基盤技術開発 長距離冷却システムの主構成機器である冷凍機、液体窒素循環ポンプ等について、中間目標値に基づく設計、製作を進めた。断熱管については短尺での性能
の高温超電導適用基盤技術開発 発 変電所内へ設置可能な所定 の揚程・流量を持つコンパク ト冷凍システムの開発等に着 の場面を持つコンパク を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を
の高温超電導適用基盤技術開発 発 変電所内へ設置可能な所定 の揚程・流量を持つコンパク ト冷凍システムの開発等に着 の場面を持つコンパク を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を
発長距離冷却システムの主構成機器で 変電所内へ設置可能な所定 の揚程・流量を持つコンパク ト冷凍システムの開発等に着長距離冷却システムの主構成機器で ある冷凍機、液体窒素循環ポンプ等について、中間目標値に基づく設計、製作を 進めた。断熱管については短尺での性能
変電所内へ設置可能な所定 ある冷凍機、液体窒素循環ポンプ等について、中間目標値に基づく設計、製作をト冷凍システムの開発等に着 いて、中間目標値に基づく設計、製作を進めた。断熱管については短尺での性能
の揚程・流量を持つコンパク ト冷凍システムの開発等に着
ト冷凍システムの開発等に着し進めた。断熱管については短尺での性能し
- -
置を製作した。電流リード小型化に向け
ム・超電導ケーブルの状態監視について
の検出原理検証を行った。
研究開発項目③ 高温超電導 研究開発項目③ 高温超電導高安定磁
高安定磁場マグネットシステー場では、サール・カール・カール・カール・カール・カール・カール・カール・カール・カール・カ
ム技術開発
超電導特性の劣化、線材の 場乱れ等を検討するため、1/2アクテ
磁化による磁場乱れ及びコイ イブシールド型3T高温超電導コイル
ル異常発生時の焼損についてした。当れると、一般には、一般にはなるは、一般になるは、一般にはない。
の試作コイルを設計・試作すりは、計し導入した。また、永久電流運転を目りなった。また、永久電流運転を目ります。
る。また、超電導接続に使用しません。特別は、10世紀の19世紀は、19世紀は、19世紀の19世紀は、19世紀の19世紀は、19世紀の19世紀は、19世紀の19世紀は、19世紀の19世紀は、19年紀は、19世紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年紀は、19年
可能な線材の開発に着手す 形成可能性の検討を行った。さらに、コ Rith Mark Black Blac
る。
した。
高温超電導(REBCO)線の超電導
層同士を直接接続する超電導接続の測
定方法として、線材をワンターンループ
させて直接接続し、接続抵抗を測定する
磁場減衰法のための装置の構築を実施し
した。加えて、機械的応力下での超電導
接続の特性評価のための評価方法を検
対、評価装置の設計を行った。さらに、
平成30年度に評価する小型コイルの
設計を進め、そのコイルの設計の妥当性
を確認するために要素コイルを4つ試
作して、磁場中での特性評価を実施し
開発 臨界電流密度の安定化(ばらつきの低 は) 高が場所関係が変形が、 高が場所関係が変形が、 まだ場所関係が変形が、 またが場所関係が変形が、 またが場所関係が変形が、 またが場所関係が変形が、 またが場所関係が変形が、 またが場所関係が変形が、 またが場所である。
臨界電流密度のばらつき低 減)、高磁場臨界電流密度向上、安定化磁 IRTS (A PROTEIN TO A P
減及び高磁場での臨界電流密場を発生用線材開発のため、課題の抽出整
度向上の開発に着手する。低 理とともに設備導入を実施した。また、
コスト化及び高生産性を確立 製造線速向上に向けた課題抽出及び設
するための装置の開発を行している。横導入を実施した。

iii) 蓄電池、エネルギーシス (iii) 蓄電池・エネルギー (iii) 蓄雷池・エネルギーシ (iii) 蓄電池・エネルギーシステム分野 テム分野 システム分野 ステム分野 1. 革新型蓄電池実用化促進基盤技術開 a. 蓄電池 1. 革新型蓄電池実用化促進 (a) 蓄電池 発 [平成28年度~平成32年度] 我が国が競争力を確保す 蓄電池は、電気自動車 基盤技術開発 [平成28年 2030年にガソリン車並みの走行 るため、今後大きな成長が (EV) やプラグインハイ 度~平成32年度] 性能を有する電気自動車及び電池パッ ブリッド自動車(PHE 望め、かつ我が国の優位性 2030年にガソリン車並 クを実用化することを目的に、革新型蓄 を活かすことが出来る分野 V) 等の次世代自動車の普 みの走行性能を有する電気自 電池の共通基盤技術の開発として、研究 における蓄電池に注力し、 及、再生可能エネルギーの | 動車及び電池パックを実用化 開発項目①高度解析技術開発及び② 技術開発を実施するものと することを目的に、革新型蓄 導入拡大やスマートグリ 革新型蓄電池開発を実施した。 する。 ッド実現の核となる重要 電池の共通基盤技術の開発と また、産学の技術進展を な技術である。また、経済 して、研究開発項目①高度解 加速する共通基盤技術とし 産業省が平成24年7月 析技術開発及び②革新型蓄電 て、蓄電池材料の評価手法 に定めた「蓄電池戦略」で | 池開発を実施する。 の確立等に取り組むことと も、2020年に世界全体 する。 の市場(20兆円)の5割 研究開発項目① 高度解析技 研究開発項目① 高度解析技術開発 ●既設ビームライン (BL28XU) による反 のシェアを我が国関連企 さらに、IECやISO 術開発 蓄電池の高性能化や高耐久化等実設 応ダイナミクス解析と、今回増設のビームラ 等における国際標準の制 業が獲得することが目標 蓄電池の高性能化や高耐久 計及び製造に展開可能な解析技術とし インによるX線回折 (XRD)、X線吸収微 に掲げられており、今後も 定・見直しの場で、我が国主 化等に向けた実設計及び製造 て、放射光、中性子、透過型電子顕微鏡 細構造 (XAFS) 等の構造解析を組み合わ 導による国際標準化を促進 市場の拡大が想定される (TEM)、精密充放電、核磁気共鳴(N に展開可能な新規の解析技術 せることにより、革新型蓄電池の開発を大幅 するものとする。 成長産業と位置付けられ として、その場測定法、高度 MR)、計算科学等による解析手法の開 にスピードアップ。 b. スマートグリッド、スマ ている。 分析手法の開発及び計算科学 発を実施した。 第3期中期目標期間に ートコミュニティ ●論文発表件数(17件)、学会発表件数(6 による解析手法の開発を開始 放射光については、電池内部の反応分 電力システム安定化に向 おいては、国際的な競争が する。 布の解析精度を向上させるため、既存の 4件)、特許 出願件数 (7件)。 けた取組に注力することと 激化しつつある蓄電産業 ビームライン (SPring-8 BL し、系統側におけるスマー について、引き続き我が国 28 XU) の空間分解能を 30 μ mから トグリッド、需要側におけ が競争力を確保するため、 20μmに改善した。加えて、理化学研 るスマートコミュニティ、 用途に応じて高性能・高安 究所と共同でSPring-8に試料 発電側における再生可能エ 全性・高信頼性・低コスト の全自動計測が可能なハイスループッ ネルギーの能動的出力調整 の蓄電池を実用化・事業化 トビームライン (BL32B2) を増設 技術、これらを支える蓄電 していくことが必要であ し、国際競争が激化しつつある革新型蓄 技術といったシステム全体 り、今後大きな成長が望 電池の開発を加速した。中性子について にわたる技術の開発・実証 め、かつ我が国の優位性を は、小角散乱の導入を完了し計測を開始 を、総合的に推進するもの 活かすことができる分野 した。計測のための試料調整手法の検討 とする。 における蓄電池に注力し も進め、ラミネートセルでの充放電中の て技術開発を実施する。 Liイオンの挙動解析の目途を得た。T 車載用については、既に EMについては、第一原理計算を融合す 実用化・事業化されている ることにより、LiFePO4の表面構 リチウムイオン電池の出 造を原子レベルで観察することに初め 力・エネルギー密度を他国 て成功した。精密充放電については、超 に先行して飛躍的に向上 高精度な電流値の計測により充放電中 させるとともに、低コスト の副反応の定量化に取り組んだ。核磁気 化を実現し、次世代自動車 共鳴 (NMR)、計算科学については、材 市場を確保していく。ま 料の調整技術、シミュレーション用モデ た、2030年の実用化・ ル等の開発を進め、平成28年度目標を 事業化が期待されるポス いずれも達成した。 トリチウムイオン電池の 研究開発項目② 革新型蓄電池開発 研究開発項目② 革新型蓄電 実現を目指し、産官学の英 リチウムイオン電池の限界を超えた 池開発 知を結集して最先端の技 リチウムイオン電池の限界 エネルギー密度(500Wh/kg)が 術開発に取組むことによ を超えたエネルギー密度(5 得られる見通しのある革新型蓄電池タ って、我が国の中長期的な 00Wh/kg) が得られる見 イプ(亜鉛空気電池、ナノ界面制御電池 競争力の確保を目指す。 (ハロゲン化物、コンバージョン)、硫化 通しのある革新型蓄電池タイ 大型蓄電池については、 プを対象として、電極・電解 物電池)を対象として、20mm級コイ 電池の種類に捉われず、低 質技術、セル化技術等の共通 ンセル~5 cm単セルの小型プロトタ コスト化・長寿命化が期待 基盤技術の開発を開始する。 イプで、正負極活物質や電解質等の要素 できる蓄電技術を開発す 技術を開発した。 るとともに、システムの制 亜鉛空気電池については、300Wh 御・運用に係る技術実証を / k g を実現可能な高容量亜鉛を搭載 行い、実用化・事業化を促 し2cm角フルセルを構築し課題抽出 進することで比較的新し を終了するとともに、5 c m角フルセル い本技術の市場を確保し を構築し試験を開始した。ナノ界面制御 ていく。 電池(ハロゲン化物)については、直径

また、産学の技術進展を 加速する共通基盤技術と して、蓄電池材料の評価手 法の確立等に取組む。 さらに、IECやISO 等における国際標準の制 定・見直しの場に、必要に		20mm級コインセルの小型プロトタイプで特性評価を行いながら、正負極活物質等の要素技術開発を行い、室温で作動する活物質を抽出した。ナノ界面制御電池(コンバージョン)については、正極活物質の高容量化等を中心に要素技術の開発に取り組み、500Wh/kg		
応じてプロジェクトで得られた成果を提供し、我が国主導による国際標準化を促進する。 (b)スマートグリッド、スマートコミュニティ		を達成するために必要な初期放電容量 1,200mAh/gを達成した。硫化 物電池については、活物質の特性向上と スクリーニングを行いつつ、フルセル試 作のための電極材料選定とセル化技術 の開発に取り組み、初期放電容量800 mAh/gを達成した。		
ルギーの大量導入や分散 電源になって、エネルギーを を定めには、本するでは、一 を安定がには、一 を変がないに構築・運 を対して、本のには、一 でででででででででででででででででででででででででででででででででででで	度] 2020年又はそれ以降に、電気自動車、プラグインハイブリッド自動車の市場における日本のリチウムイオン電池の優位性を確保することを目的に、研究開発項目①で民間企業等が実施する実用化開発を支援する。さらに、研究開発項目③で下記の研究開発を実施する。	2. リチウムイオン電池応用・実用化先端技術開発事業 [平成24年度~平成28年度] 2020年又はそれ以降に、電気自動車、プラグインハイブリッド自動車の市場における日本のリチウムイオン電池の優位性を確保することを目的に、研究開発項目①で民間企業等が実施する実用化開発を支援した。さらに、研究開発項目③で下記の研究開発を実施した。		
ム安定化に向けた取組に 注力することとし、系統側 における能動的制御技術 であるスマートグリッド、 需要側においてコミュニティ全体でエネルギーの 効率的利用を行うスマートコミュニティ、発電側に おける再生可能エネルギーの能動的出力調整技術、	平成27年度までに開発した技術を適用した大型のセルを試作し、特性評価を行う。また、低コスト化、安全性対し、石の大型にでは、では、ないでは、各実施者で設定した最終にの達成に関して、活物質と関係ででである。と、経過では、大型では、大型では、大型では、大型では、大型では、大型では、大型では、大型	ン電池技術開発 各実施者は平成27年度までに開発 した技術を適用した実用レベルの大型 セルを試作し、エネルギー密度につい て、EV用途では300Wh/kg以上、PHEV用途では200Wh/kg 以上という、実用フェーズでは世界トップレベルの重量エネルギー密度を達成。 出力密度については、エネルギー密度を 維持しつつ、EV用途では1,800W	 ○ 0 0 0 W/L)を実証。 ●液系リチウムイオン電池について、世界トップレベルのエネルギー密度を有する大型プロトタイプセルで安全性、耐久性及びコスト等も含め、2 0 2 0 年代の製品化の見通しを得られた意義は大きい。 ●車載用の液系リチウムイオン電池及び全固体電池について、6 社中 5 社が目標を達成。 	
		池の3倍以上の出力特性をもつ硫化物 系全固体電池の開発に成功した。また、 活物質と固体電解質の複合化設計、界面 解析等を検討した結果、活物質と固体電		

				##55 c) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
				解質のナノコンポジット化に成功し、正極合材あたりの容量向上を確認した。さらに、固体電解質に開発した低温接合技術を用いることで酸化物系全固体電池として世界トップレベルの高容量(600Wh/L)と高出力(2,000W/L)の両立が可能であることを実証した。		
		研究開発項目② リチウムイ オン電池応用技術開発 平成26年度終了。	_	研究開発項目② リチウムイオン電池 応用技術開発 平成26年度終了。		
		研究開発項目③ 車載用リチウムイオン電池の試験評価法の開発 平成27年度に開発した安全性及び寿命に関する試験評価法にといて、その再現性確認・試験手順明確化等を含めた妥当性の検証を実施し、との活用を図る。	_	研究開発項目③ 車載用リチウムイオン電池の試験評価法の開発 平成27年度に開発した安全性に関する試験評価法について、内部短絡代替試験法として、既存試験と事象が同じ且つ再現性の高い手法を開発した。この手法はTR62660-4の内容に盛り込まれて発行された。 安全性に関する試験評価法については、試験手順の明確化を行い、試験手順の明確化を行い、試験手順をとして電池標準化WGにて提案を行った。		
		3. 技平大学 (1) では、大学では、大学では、大学では、大学では、大学では、大学では、大学では、大学		3. [平極 大	 ●先進LIBの高精度の発熱挙動評価法、単層 短絡の釘刺し安全試験法を開発。 ●全固体LIBは、シート成形電池モデルを大面積化し(2cm角→7cm角)、容量を10倍増加させた50mAh級標準電池モデルを開発。 ●文科省プロジェクトとの連携について、これまで意見交換レベルであったものを強化し、共同ワークショップの開催や学術成果であるサンプルを受け入れて、電池試作・評価を開始。 	
ロジー (ССТ) 分野 ノロ	コジー(CCT)分野 一炭は、石炭火力発電を いに、今後とも世界的に 長が拡大し、世界の一次	(iv) クリーンコールテクノロジー(CCT)分野1. 環境調和型製鉄プロセス技術開発(STEP2)[平成25年度~平成29年度]以下の研究開発を実施する。	_	(iv) クリーンコールテクノロジー(CCT)分野1. 環境調和型製鉄プロセス技術開発(STEP2)[平成25年度~平成29年度]以下の研究開発を実施した。		

効率の燃料電池に適用可能	が高くなると見込まれ、我	研究開発項目① 高炉からの −	研究開発項目① 高炉からのCO2排出	●水素リッチガスの直接導入と送風操作によ	
な石炭ガスのクリーンアッ			削減技術開発	り、CO2排出量を削減する世界初の試みで	
プ技術等の要素技術開発を		2 *			
			(1) 鉄鉱石還元への水素活用技術の開	ある。	
推進することとする。	割合及び発電量に占める		発		
また、CO2分離回収技術を	石炭火力の割合は20%	還元炉を用いた試験高炉で	高炉数学モデルを用いて、COG羽口		
適用してもエネルギー効率			吹込み、炉頂排ガスを脱炭酸・脱水蒸気		
の低下が最小限に抑制され			したガスの再循環吹込みについて炭素		
る石炭ガス化複合発電(I	率な石炭火力発電技術、石	また、高炉数学モデルによ	消費量の削減効果を評価し、試験高炉で		
GCC) システム等の要素	炭利用の課題とかるCO。	る試験高炉の操業データ解析	の実績値と合うことを確認できた。		
技術開発、システム内の未		を実施する。	(2) コークス炉ガス (COG) 改質技		
			, , , , , , , , , , , , , , , , , , , ,		
利用廃熱を活用した高効率			術の開発		
化技術等の基盤的研究を推	ョン石炭火力技術の開発	G)改質技術の開発	ベンチプラント2(BP2)において、		
進することとする。	を推進していく必要があ	ベンチプラント2(BP2)	部分酸化炉 (POX炉) でのPOX改質		
		により、触媒改質性能及び部	試験及び今回開発した新規触媒反応器		
低品位炭の改質技術を海外		分酸化改質性能の個別確認、	での触媒改質試験を実施し、H2増幅率		
			を2倍以上を達成できる見通しを得た。		
ととする。また、高効率、低	位の低い未利用炭となっ	の連動運転による改質性能の	また、POX炉でのPOX改質個別性		
		確認並びに最適な組み合わせ	能、新規触媒反応器での触媒改質個別性		
	の緩和、及び我が国のエネ		能、並びに、POX炉と触媒反応器を連		
	ルギーセキュリティ向上		動した連動改質性能を評価し、かつ耐久		
CO₂削減に資するべく、環	を目指しこれら未利用炭	及び炭化を抜本的に抑制する	性500h以上を達成できる見通しを		
		触媒改質条件の検討も進め	得た。		
		る。	(3) コークス改良技術開発		
る。	こうした我が国が優位		試験高炉用の、コークス強度(ID)が		
	性を持つクリーンコール		88となる高強度コークスを製造する		
	テクノロジーは、普及展開	に必要な添加材を継続して製	配合指針適用可能性を検証した。また、		
	による国際貢献とともに、	造する。	乾留試験を行い、操業上問題なく、目標		
	産業競争力確保の観点か		品質を満足するコークスを製造できた。		
			叩貝を側だりるユーケハを表担しさた。		
	ら、更なる技術力の向上が				
	一ツ亜でもて				
	必要である。	を実機コークス炉で製造す			
	革新的な高効率発電技	る。	研究開発項目② 喜恒ガスからのCO。	■試験高恒による試験撮業の結果 水表環示効	
	革新的な高効率発電技 術及びCO ₂ 削減技術とし	る。 研究開発項目② 高炉ガスか —	研究開発項目② 高炉ガスからのCO2		
	革新的な高効率発電技 術及びCO2削減技術とし ては、石炭ガス化複合発電	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発	分離回収技術開発	果を確認。また、高炉内数学モデルは、水素	
	革新的な高効率発電技 術及びCO ₂ 削減技術とし ては、石炭ガス化複合発電 (IGCC)/石炭ガス化	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発 (1)CO ₂ 分離回収技術開発	分離回収技術開発 (1) CO2分離回収技術開発	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度	
	革新的な高効率発電技 術及びCO2削減技術とし ては、石炭ガス化複合発電	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発 (1)CO ₂ 分離回収技術開発	分離回収技術開発	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度	
	革新的な高効率発電技 術及びCO ₂ 削減技術とし ては、石炭ガス化複合発電 (IGCC)/石炭ガス化 燃料電池複合発電(IGF	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発 (1)CO ₂ 分離回収技術開発 試験高炉とCAT30の連	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO2削減技術としては、石炭ガス化複合発電 (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待されてい	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発 (1)CO ₂ 分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に	分離回収技術開発 (1) CO ₂ 分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度	
	革新的な高効率発電技 術及びCO ₂ 削減技術とし ては、石炭ガス化複合発電 (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待されてい る。第3期中期目標期間で	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に 対する化学吸収によるCO2	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO ₂ 削減技術としては、石炭ガス化複合発電 (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待されている。第3期中期目標期間で は、石炭ガス利用の高効率	る。 研究開発項目② 高炉ガスか - らのCO ₂ 分離回収技術開発 (1)CO ₂ 分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に 対する化学吸収によるCO ₂ 分離回収技術の適用性を評価	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO2削減技術をとしては、石炭ガス化複合発ス (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待され間で る。第3期中期目標期 は、石炭ガス利用の高 は、石炭ガス利用の高製技 化を実現するガス精製技	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に 対する化学吸収によるCO2 分離回収技術の適用性を評価 するとともに、試験高炉にお	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO2削減技術合発と ては、石炭ガス化複合発ス (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待ではれて る。第3期中期目標の高 は、石炭ガス利用の高製 は、石炭ガスカガス は、排ガスのCO2濃度を	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に 対する化学吸収によるCO2 分離回収技術の適用性を評価 するとともに、試験高炉にお ける水素還元効果確認を支援	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO2削減技術合発と ては、石炭ガス化複合発ス (IGCC)/石炭ガス化 燃料電池複合発電(IGF C)の実現が期待ではれて る。第3期中期目標の高 は、石炭ガス利用の高製 は、石炭ガスカガス は、排ガスのCO2濃度を	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連 動試験を実施して試験高炉に 対する化学吸収によるCO2 分離回収技術の適用性を評価 するとともに、試験高炉にお ける水素還元効果確認を支援	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO2削減技術合発と ては、石炭ガス化石炭ガス化 (IGCC)/石炭炭ガス (M料電池複合発電(IGF と)の実現が期待ではれている。第3期中期目標の高場があるがあるがでで は、石炭ガスのCO2 は、チガスのCO2 に に に に い の に い の に の に の に の に い で に い で に い で に い で に い で に い で に い で に い で に い で に い で に い で に い で に い で に い で に れ に れ に に れ に れ に れ に に れ に れ に れ に	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2 を達成できる見通しを得た。	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 術及びCO₂削減技術合発と でCO₂削減技複合 でCO₂削減技複合 では、石炭ガス化石炭ガス にIGCC)/石電 大石炭ガスの の実現が期目標の る。第3期中期目標の る。第3期中別別 のよりで る。第3期中の でと があるが にいで率技 を実ガスの にいで率技を が、 がある高効率な にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとの2 にいる。 のとのる。 のとの2 にいる。 のと。 のと。 のと。 のと。 のと。 のと。 のと。 のと	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。 (2)未利用排熱活用技術の	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水溶媒の活用、相分離現象等の活用、反応促進する金属錯体触媒の探索を検討し、CO2分離コスト2,000円/t-CO2を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的な高効率発電技 高効率発術とO2削減技複合がCO2削減技複合がス でCO2削減技複合がス にIGCC)/石電(IGCE) 大電池複合発電(Iの発電では、 大型では、 大型では、 大型では、 大型でででででででででででででででででででででででででででででででででででで	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。 (2) 未利用排熱活用技術の開発	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2 を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器の	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的なO2削減複符と配ってCO2削減複複形でCO2削減複複形でCO2削減複複形でCO2がス化石炭ガス化石炭がス化石炭が不同の発電では、不可能を発表ででは、があるが、ののでのででででででででででででででででででででででででででででででででで	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。 (2)未利用排熱活用技術の開発 マイクロ熱交換器の詳細仕	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2 を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器の 熱交換能力を評価するための実機実験	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的なO2削減複符と配と 高効減技複合がスピーの 高効減技複合がスピーの ででの がスピーの がスピーの がスピーの では、石炭がスピーで では、イロ では、イと では、イロ では では では では では では では では では では では では では	る。 研究開発項目② 高炉ガスか - らのCO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。 (2) 未利用排熱活用技術の開発	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水 溶媒の活用、相分離現象等の活用、反応 促進する金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2 を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器の	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新的なO₂削減を含えてCO₂削減を含えてCO₂削減を含えてでででででででででででででででででででででででででででででででででででで	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対する化学吸収によるCO2分離回収技術の適用性を評価するとともに、試験高炉における水素還元効果確認を支援する。 (2)未利用排熱活用技術の開発 マイクロ熱交換器の詳細仕様の検討を進めていくととも	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非水溶媒の活用、相分離現象等の活用、反応 とでする金属錯体触媒の探索を検討し、 CO2分離コスト2,000円/t-CO2を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器の熱交換能力を評価するための実機実験 装置を製作し、新日鐵住金 鹿島製鐵所	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新のCO2削減を発表で 高効減技複合が 高効減技複合が にIGCC)/石電で で で で で で で で で で で で に で に で に に に に	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の連動試験を実施して試験高炉に対象によるCO2分離回収技術の適用性を評価すると対策の過期を表記を支援を表記を表記を表記を表記を表記を表記を表記を表記を表記を表記を表記を表記を表記を	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非反し、 ではの活用、相分離現象等の活用、対し、 の2分離コスト2,000円/t-CO2 を達成できる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器別数交換能力を評価するための実機実置を製作し、新日鐵住金 鹿島製鐵所内に設置完了した。また当該実験装置を	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新のCO2削減を発出して、(IGCC)/不電池でででででででででででででででででででででででででででででででででででで	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発(1)CO2分離回収技術開発(1)CO2分離回収技術開発試験高炉とCAT30の連動試験を実施して試験高炉に対象のではよ性をではないではないではないではないではないではないではないではないではないではない	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非反して、低反応熱が期待できる東区の活用、相分離現象等の活用、対しての企動が基本を対して、企業のできる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器関連では、新日鐵住金 鹿島装置のた。 教育を製作し、新日鐵住金 鹿島装置を内に設置完了した。また当該実験が大いて、大いては、大いては、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いで	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革新CO2別スのの 高別減化石に (IGCC)/大 高別減化石電で 高別減化石電で 高別減化石電で 高別減化石電で 高の 高の 高の 高の 高の 高の 高の 高の 高の 高の 高の 高の 高の	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発(1)CO2分離回収技術開発(1)CO2分離回収技術開発 試験高炉とCAT30の連 試験を実施して試験高炉に対する化学吸収によるCO2分離回収はよるでで 対する化学でのではまるででである。 があるととでである。 (2)未利用排熱活用技術の開発である。 (2)未利用排熱活用技術の開発では表別を変換器の詳とと用いた実験のではよるに、表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる東区に では、低反応熱が期待で活用、相分離現象等の活用、相分離現象等の活用、相分離現象で素を検討して、公理がある。 (2) 未利用は一個ででは、 (2) 未利用は一個ででは、 製鉄所実排がスを用た。 製鉄所実排がスを用いて、 製鉄所実排がスを用いて、 製鉄所実排がスを開発 製鉄で製作し、またとの実機、 製装置を製作し、またマイクに を製造では、 に、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革が CO2 は C で 本 で で 本 で C で で 本 で C で で で で で で で	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の炉とCAT30の炉とCAT30の炉とでは表面がである。 対験を実施して試験高にないではなるでのではないではないではないではでででである。 (2) 未利用排熱活用技術の開発 マイクは表別で変数がであるが、製鉄のではないではありによるである。 (2) 未利用排熱活用技術の開発 マイクを選がである。 (2) 未利用技術の開発 マイクを変異がある。 (2) 未利用技術のに、製鉄のではないであるがである。 (2) 未利用技術のに、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製鉄のでは、製造のでは、対象の	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる非反して、低反応熱が期待できる東区の活用、相分離現象等の活用、対しての企動が基本を対して、企業のできる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器関連では、新日鐵住金 鹿島装置のた。 教育を製作し、新日鐵住金 鹿島装置を内に設置完了した。また当該実験が大いて、大いては、大いては、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いで	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革が C O 2 は C で 本 が T C C を が T C C を が T C C を が T C C を が T C C を が T C C を で T C C C を で T C C を で T C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C C を で T C C C C を で T C C C C C C C C C C C C C C C C C C	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開連 試験高炉とCAT30の炉とCAT30の炉とCAT30の炉とでは 動試験をではしてはいるでではよるCO2分離の収によるCO2分離の収によるでででである。 分離ととでででは、 分離ととでででである。 (2) 未利用技術の開発 では、表別のでは、 は、大きなのでは、 は、製鉄のでは、 は、大きなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる東区に では、低反応熱が期待で活用、相分離現象等の活用、相分離現象等の活用、相分離現象で素を検討して、公理がある。 (2) 未利用は一個ででは、 (2) 未利用は一個ででは、 製鉄所実排がスを用た。 製鉄所実排がスを用いて、 製鉄所実排がスを用いて、 製鉄所実排がスを開発 製鉄で製作し、またとの実機、 製装置を製作し、またマイクに を製造では、 に、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革が C O 2 は C で 本 が T C C を が T C C を が T C C を が T C C を が T C C を が T C C を で T C C C を で T C C を で T C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C を で T C C C C を で T C C C C を で T C C C C C C C C C C C C C C C C C C	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開連 試験高炉とCAT30の炉とCAT30の炉とCAT30の炉とでは 動試験をではしてはいるでではよるCO2分離の収によるCO2分離の収によるでででである。 分離ととでででは、 分離ととでででである。 (2) 未利用技術の開発 では、表別のでは、 は、大きなのでは、 は、製鉄のでは、 は、大きなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、たきなのでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計 第化学手法やシミュレーション手法等 を活用して、低反応熱が期待できる反応 に関立を選びから、 に登する金属錯体触媒の探索を検討して、 に登立ができる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器 製鉄所実排がスを用いて熱交換と 製鉄所といる。 製鉄所といて、 製鉄所といて、 製鉄所といて、 製鉄所といて、 製造を製作し、 の長期性能評価実験を開始 と、 (1号機)の長期性能評価実験を開始 した。	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の 2	る。 研究開発項目② 高炉ガスからのCO2分離回収技術開発 (1)CO2分離回収技術開発 (1)CO2分離回収技術開発 試験高炉とCAT30の炉とCAT30の炉との上ででは、1000元	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計等 化学手法やシミュレーション手法等 を活用して、低反応熱が期待で活用、反応熱が期待で活用、同様ではよる金属錯体触媒の探索を検討して、の2分離コスト2,000円/t-CO2を達成できる見通しを得た。 (2) 未列車があるとのできる見があるとのできる見がある。 (2) 未列車がある。 (2) 未列車がある。 製鉄所実排ガスを用いて熱を製造である。 製鉄能力を調査を関係したのよりでは、新の表別を関係した。またマイク関係を関係して、またマイク関係といて、作年度試作したでは、対した。 研究開発項目③ 試験高炉によるプロ	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の 本の での での での での での での での での での で	る。 研究開発 高炉ガオ発 (1) CO2分離回収技術開発 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術の (1) CO2分離回収技術の (2) 分離回収方面 (2) とここに (2) 一個 (2) では (3) では (4) では (4) では (5) では (5) では (6)	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計算化学手法やシミュレーション手法等を活用して、低反応熱が期待で活用、相分離現象等の活用、耐力を強力を強力を強力を強力を強力をである。のの円/t-CO2を達成でもる見通しを得た。 (2) 未利用排熱活用技術の開発 製鉄所実排ガスを用いて熱交換器間で表現を製作し、新工の主動を製作し、新工の主動を製造では、新工の主動を製造では、新工の主動を製造では、新工の主動を製造では、新工の主動を製造では、新工の主動を製造では、大の表別を製造では、大の表別を製造では、大の表別を関係した。 「の表別を関係した。」は、大の表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表別を表	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	革然では、 すると では、 での発送ので での発送ので での発送ので での発送ので での発送ので でので でので でので でので でので でので でので	る。 研究 (1) CO2分離回収技術開発 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術の (1) CO2分離回収技術開連 (1) CO2分離回収技術の (2) 公司 (2) 公司 (2) 公司 (2) 公司 (3) 公司 (4) 公司 (4) 公司 (5) 公司 (6) 公司 (6) 公司 (6) 公司 (7) 公司	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計等 が発生して、低反応熱が期待で活用、相分離現象等索を検討する金属錯体性が表するででである。 (2) を選出した。 (2) 未利用排熱で、 (2) 未利用排熱で、 (2) 未利用排熱で、 (2) 未利用排がで、 製鉄所支持がで、 製鉄がは、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いて 本の発送いて 本のでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でができるのでは、 でがするのででは、 でがするのででは、 でがするのででは、 でがするのでではでがさい、 でがさい、 ののでではでがさい。 でがするのでではでがさい。 でがするのでではでがでいる。 でがするのでではでがでいるが、 でがするのでではでがでいるが、 でがするのでではでがさい。 でがするのでではでがでいるが、 でがするのでではでがでいる。 でがするのでではでがでいる。 でがするのでではでができまでいる。 でがするのででは、 でがするのででいる。 でがするのででいるは、 でがない、 ののででは、 でがない、 ののででいるは、 でがない、 ののでいるは、 でがない、 ののでいるは、 でがない、 ののでいるは、 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でいるは、 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるの	る。 研究 (1) CO2分離回収技術開発 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術開連 (1) CO2分離回収技術の (1) CO2分離回収技術の (1) CO2分離回収技術の (2) 分離回収方 (2) とここの (2) 一個 (2) では (3) では (4) では (4) では (5) での (6) では (6) では (6) では (6) では (7) での (7) では (7) での (8) では (8) での (8) では (8) での (8)	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計等 が場上である。 が期待で活用、相分離現象等索を検してのできる。 (2) 未利用排列スを連びのできる見通しを得た。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可能を 製鉄能力を開発を 製鉄能力を可能を 数を製作してした。 をといて、 製鉄能力を可能を 数を製作している。 をといて、 製鉄能力を可能を 数を製作して、 の長期性能評価実験を開始 にいて、 の長期性能評価実験が にいて、 のののののできる。 (2) 未利用排列スをのの をといるの を関係を ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは ののでは のののでは のののでは ののでは のののでは ののでは のののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでのでので	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いて本 を で で で で で で で で で で で で で	る。 研究CO2分離回収技術開発 (1)CO2分離回収技術術のEO2分離回収技術術のEO2分離回収技術術の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (2)分離回収支援の原立 (2)分離のに (2)位 (2)位 (2)位 (3)位 (3)位 (4)位 (4)位 (4)位 (5)位 (6)位 (6)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計等 が発生して、低反応熱が期待で活用、相分離現象等索を検討する金属錯体性が表するででである。 (2) を選出した。 (2) 未利用排熱で、 (2) 未利用排熱で、 (2) 未利用排熱で、 (2) 未利用排がで、 製鉄所支持がで、 製鉄がは、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いて 本の発送いて 本のでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でのでは、 でができるのでは、 でがするのででは、 でがするのででは、 でがするのででは、 でがするのでではでがさい、 でがさい、 ののでではでがさい。 でがするのでではでがさい。 でがするのでではでがでいる。 でがするのでではでがでいるが、 でがするのでではでがでいるが、 でがするのでではでがさい。 でがするのでではでがでいるが、 でがするのでではでがでいる。 でがするのでではでがでいる。 でがするのでではでができまでいる。 でがするのででは、 でがするのででいる。 でがするのででいるは、 でがない、 ののででは、 でがない、 ののででいるは、 でがない、 ののでいるは、 でがない、 ののでいるは、 でがない、 ののでいるは、 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でがない。 でいるは、 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいる。 でいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるのでいるの	る。 研究CO2分離回収技術開発 (1)CO2分離回収技術術のEO2分離回収技術術のEO2分離回収技術術の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (1)CO2分離回収支援の原立 (2)分離回収支援の原立 (2)分離のに (2)位 (2)位 (2)位 (3)位 (3)位 (4)位 (4)位 (4)位 (5)位 (6)位 (6)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7)位 (7	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、引き続き計等 が場上である。 が期待で活用、相分離現象等索を検してのできる。 (2) 未利用排列スを連びのできる見通しを得た。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可した。 (2) 未利用排列スを可能を 製鉄能力を開発を 製鉄能力を可能を 数を製作してした。 をといて、 製鉄能力を可能を 数を製作している。 をといて、 製鉄能力を可能を 数を製作して、 の長期性能評価実験を開始 にいて、 の長期性能評価実験が にいて、 のののののできる。 (2) 未利用排列スをのの をといるの を関係を ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは ののののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは のののでは ののでは のののでは のののでは ののでは のののでは ののでは のののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでは ののでのでのでので	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の で で で で で で で で で で で で で	る。 研究CO2分離回収技術開開のCO2分離回収技術術のEO2分離回収技術術の原位の2分離回収技術術の原位の原語の原理の方式験が開開の原体では、 ・ 一 一 一 一 一 一 一 一 一 一 一 一 一 で 一 で 一 で 一	分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のため、ヨンき続き法 の低減のたーショで活法を必 にの一ショで活用が にの一ショで活用が にの一ショで活用が にの一ショで活用が にの一ショで活用が にの一ショで活用が にの一かで にの一かで にの一が にの一が にの一が にの一が にの一が にの一が にの一が にの一が	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いてででいる。 本のでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、	る。 研究CO2分離回収技術開開の炉のCO2価 (1)CO2分離回収技術開開の炉のCO2価 (1)CO2分離回収技術開開の炉のの分分分配の (1)CO2份離回収収の (1)CO2份離回収収の (1)CO2份能吸のでは (1)CO2份能では (1)CO2份能で (2) (1)CO2份能で (2) (2) (3) (3) (4) (4) (4) (5) (5) (6) (6) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	分離回 CO2分離回収技術開発 (1) CO2分離回収技術開発 熱量原単位の低減のたーショで活法を が以上を (1) を (1)	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の で で で で で で で で で で で で で	る。研らO2分別でのででは、 一 で	分離 CO2分離回収技術開発 (1) と で (1) を (1) を (2) を (2) が (3) を (3) を (4) を (4) を (4) を (5) を (4) を (5) を (5) を (5) を (6) を (6) を (6) を (7) を (7) を (8) を (7) を (8) を (8) を (8) を (8) を (8) を (8) を (9) を	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の 本の 本の で、 は、 に、 で、 が、この で、 が、この で、 で、 の、 の、 で、 の、 の、 で、 の、 の、 で、 の、 の、 の、 で、 の、 の、 の、 の、 の、 の、 の、 の、 の、 の	る。 研らCO2分別に 原内でCO2価 のでのCO2が開開の炉のでは のでのCO2が開開の炉のでは のでのでのでは のでのでのでは のでのでのでは のでのでのでは のでのでのででで のでのででで のでのででで のでのでで のでのでで のでのでで のでのでで のでので のでので のでで のでで のでで のでで のでで のでで のでで のでで のでで のでで ので の	分離してO2分離回収技術開発 (1) と (1) を (2) を (2) を (3) を (4) を (5) を (5) を (6) を (6) を (7) を (7) を (8) を	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いた大会会石で脱術 本の人は「本の人」というでは、 本の人は「不同の人」とでは、 本の人は「不同の人」とで、 を表示して、 を表示して、 の本の、 の、 の、 の、 の、 の、 の、 の、 の、 の、	る。研らO2分別では、 高技技技力の 20回回に A T 試試す離る C O 2 位	分離 CO2分離回収技術開発 (1) と で (1) を (1) を (2) と で (2) を (2) と で で (2) と で (3) を で (4) と で (4) を で (5) を で (5) を で (6) を で (7) を で (7) を で (8) を で (8) を で (8) を で (9) を で	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いた大会会石で脱術 本の人は「本の人」というでは、 本の人は「不同の人」とでは、 本の人は「不同の人」とで、 を表示して、 を表示して、 の本の、 の、 の、 の、 の、 の、 の、 の、 の、 の、	る。研らO2分別では、 高技技技力の 20回回に A T 試試す離る C O 2 位	分離 CO2分離回収技術開発 (1) と で (1) を (1) を (2) と で (2) を (2) と で で (2) と で (3) を で (4) と で (4) を で (5) を で (5) を で (6) を で (7) を で (7) を で (8) を で (8) を で (8) を で (9) を で	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	
	本の発送いた大会会石で脱術 本の人は「本の人」というでは、 本の人は「不同の人」とでは、 本の人は「不同の人」とで、 を表示して、 を表示して、 の本の、 の、 の、 の、 の、 の、 の、 の、 の、 の、	る。 研らCO2分別に 原内でCO2価 のでのCO2が開開の炉のでは のでのCO2が開開の炉のでは のでのでのでは のでのでのでは のでのでのでは のでのでのでは のでのでのででで のでのででで のでのででで のでのでで のでのでで のでのでで のでのでで のでので のでので のでで のでで のでで のでで のでで のでで のでで のでで のでで のでで ので の	分離してO2分離回収技術開発 (1) と (1) を (2) を (2) を (3) を (4) を (5) を (5) を (6) を (6) を (7) を (7) を (8) を	果を確認。また、高炉内数学モデルは、水素 還元反応を詳細に反映することで予測精度 が向上し、試験高炉での水素還元効果実績値	

State Court of the					
	ルアップのための設備関連デ				
バランスを踏まえた、乾燥	ータを採取する。				
技術、改質技術についての					
調査を行うとともに、必要					
な技術開発を行う。 製					
鉄プロセスにおけるCO2					
削減に資するべく、排出さ					
れる二酸化炭素の約3					
0%削減を目指し、環境調					
和型製鉄プロセス技術開					
発を推進する。第3期中期					
目標期間においては、Ph					
a s e I s t e p 1 で得					
られた要素技術を基に、1					
0m ³ 規模のミニ高炉、コ					
ークスガス (COG) 改質					
設備等を製作し、総合的な					
高炉からの二酸化炭素排					
出削減技術及び二酸化炭					
素分離回収技術の開発を					
行うとともに、Phase					
Ⅱ へのスケールアップの					
ためのデータを得る。ま					
た、製鉄プロセスにおける					
CO2排出量を約30%削					
減及びCO2分離回収コス					
ト2,000円/t-CO					
2を可能とする技術を確立					
する。					
	2. 次世代火力発電等技術開	—	2. 次世代火力発電等技術開発 [平成		
	発 [平成28年度~平成3		28年度~平成33年度]		
	3年度]		究極の高効率石炭火力発電と期待さ		
	究極の高効率石炭火力発電		れるIGFC(石炭ガス化燃料電池複合		
	と期待されるIGFC(石炭		発電)の基盤技術となる酸素吹きIGC		
	ガス化燃料電池複合発電)の		Cの実証、火力発電所からのCO2を大		
	,				
	基盤技術となる酸素吹きIG		幅に削減できる、CO2分離・回収技術の		
	CCの実証、火力発電所から		開発等、火力発電の低炭素化に資する技		
	のCO2を大幅に削減できる、		術開発を実施した。		
	CO2分離・回収技術の開発				
	等、火力発電の低炭素化に資				
	する技術開発を実施する。				
	研究開発項目① 石炭ガス化			●石炭ガス化燃料電池複合発電実証事業を開	
	燃料電池複合発電実証事業		複合発電実証事業	始。第1段階である酸素吹IGCC設備の建	
	(1)酸素吹きIGCC実証		(1)酸素吹き I G C C 実証	設・試運転を行い、定格出力166MWを達	
	酸素吹IGCC実証試験設		酸素吹IGCC実証試験設備の据付	成、実証試験に移行した。また、試運転にお	
	備の据付工事、付帯設備工事、		工事、付帯設備工事、機器単体試運転等	いて目標である送電端効率40.5%を上回	
	機器単体試運転等を実施し、		を実施し、各機器との連携試験及びIG	る40.8%を達成した。また、燃料電池被	
	各機器との連携試験及びIG		CC総合試運転を経て、平成29年度3	毒成分の影響確認試験や燃料電池への石炭	
	CC総合試運転を経て実証試		月28日から実証試験を開始した。	ガス適用性研究など、CO2分離・回収型I	
	験を開始する。		(2)CO ₂ 分離・回収型酸素吹IGCC	GFCに関する基盤研究を実施した。	
	(2)CO ₂ 分離·回収型酸素		実証		
	吹IGCC実証		物理吸収型CO₂分離・回収設備等の		
	分離・回収設備等の工事計		基本設計を実施し、購入仕様を検討し		
	画の詳細検討及び詳細設計を		た。また、低温サワーシフト触媒実証研		
	実施する。また、建設用地の		究に関しては、基本設計を実施し、シス		
	詳細設計及び造成工事を実施		一テム構成、機器仕様を決定した。		
	する。並行して、設備等設置		/ 一門内へ 1及前上1水で1八尺 した。		
	工事に必要な準備工事、許認				
	可手続き等を実施する。		1		

研究開発項目② 高効:	⊠ガス 研究開発	経項目② 高効率ガスタービン	
タービン実証事業	実証事業		
(1) 1, 7 0 0 ℃級	<i>i</i> スタ	, 700℃級ガスタービン	
ービン		00℃級ガスタービンにおける	
1,700℃級ガス		、信頼性向上に関する要素技術	
ンにおける性能向上、		施するにあたり、13項目に亘	
向上に関する要素技術		素試験、改良試験、模擬試験や	
実施する。		出、仕様・コンセプト・技術の	
(2)高湿分空気利用			
ービン (AHAT)		湿分空気利用ガスタービン(A	
実証プラント用ガス			
ンの単体性能確認試験		T実証プラントによる実証運	
するとともに、実証プ		実施するにあたり、試験計画、	
の製作を実施する。ま		信頼性化技術適用ガスタービン	
験結果を用いた商用機		転、性能評価、及び実証試験設	
た設計等の検討を実施		実施した。また、商用機の概念	
に既由寺が援助と大旭	設計を実		
TIMBENGE I O LYK		- L	
研究開発項目③ 先進		经項目③ 先進超々臨界圧火力	
界圧火力発電実用化要		化要素技術開発	
		・及びタービン材料の長期材料	
ボイラ及びタービンジ	†料の 評価試験	を実施し、実缶試験及び回転試	
長期材料評価試験を領	[施す 験を実施	した。また、前倒し事後評価の	
る。また、実缶試験及り	『回転 結果、事	業の位置付け・必要性、研究開	
試験を完了させる。	発マネジ	ジメント、研究開発成果および事	
	業化に向]けた取組について妥当との評	
		、最終目標である送電端熱効率	
	I I	7%の見通しを得ることがで	
	きた。		

# 会理基础技術開発 (1) 次世代ガス化シスケム 技術開発 (1) 次世代ガス化シスケム 技術開発 環施形型ガス化炉、の高温 の水蒸気の注入による冷ガス できるかが、効率の向上について、小型ガ ス化炉での検証に同りまション・ションを実施する。 (2) 熱料電池回りまといい。 (3) が大きないに、 小型ガ と 大きない できる 大きない 大きない できる 大きない 大きない できる 大きない たい できる 大きない たい できる 大きない たい 大きない できる 大きない たい 大きない 大きない できる 大きない たい 大きない 大きない 大きない 大きない 大きない 大きない 大きない 大きな			
(1) 次世代ガス化システム 技術開発 (1) 次世代ガスセシステム 技術開発 (1) 次世代ガスセシステム技術開発 ・ 地流床型ガス化炉への高温の水蒸気の ・ は入れがでの検証に向けたシミ ・ レーションを決験する。 (2) 燃料電池同け石炭ガス クリーンナップ技術要素研究 ・ セル核毒耐性評価として、	研究開発項目④ 次世代火力 -	研究開発項目④ 次世代火力発電基盤	
(1) 水世代ガス化システム技術開発 ・ 特演末型ガス化がへの高温 の水素気の注入による治ガス か中の向上について、小型ガ ス化かでの特証に同けたシミ レーションを実施する。 (2) 燃料電池向け石炭ガスス クリーンナッツ技術要素研究 セル報 無性肝能して、 便別被海影響評価記較及び長 期接番評価試験を収入 (3) ガスターセン燃料電池 各/密電技術開発 ・ 小型 の			
被補限発 · · · · · · · · · · · · · · · · · · ·			
「明末			
の水気気の注入による帝ガス 効かの向上について、小型ガス化炉での検証を行うための 防線計画を策定するため、 (2) 燃料電池向け右反対ス グリーンナップ技術要素研究 セル被審測性評価として、(2) 燃料電池向け方度ガスクリーンナップ技術要素研究 セル被審測性評価として、(2) 燃料電池向け方度ガスクリーンナック・実施する。 (2) 燃料電池向け方度ガスクリーンナック・実施する。 セル被審測性評価として、(2) 燃料電池向け方度ガスクリーンナック・対称使要素研究 セル被審測性評価として、(2) 燃料電池 用力 不替製技 情性診解 として、(2) 燃料電池 用力 不替製技 情性診解 として、吸音剤のスクリーニング 対域を実施する。 (3) ガスタービン燃料電池 複合発電技術開発 小型G T F C (1, 000 k W後) 用 S O F C モジュールの基本設計表しび、小型G T F C (1, 00 k W後) 加 用 の k W 般) の 高用化に向けて、設計及び製造を実施する。 (4) 燃料電池 の 大型・ローア・ジュール 表記 質が化性接向 ア・セルスタック 低コストーア・フェジュール 表記 前が化性接向 ア・セルスタック 低コストーア・フェジュール 表記 で に 大き た で に 入り 水料電池 の よた こ に 人 保証 設置 対 よ に 作 シ 変素 検討 な に 例 が で は 人 に が 関連で また た で インスクック 低コストーア・フェジュール 表面 だ で は た た を 人 ア・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・フ・ア・フ・フ・ス の 歯 は お に が 関連で と また に 人 体 対 地 が に か に よ い 数 は か に か に よ い 数 は か に か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い な は か に よ い た は な は か に よ い な は か に よ い な は は な に い か に よ い な は か に い た な は か に よ い な は た な な は か に い な は か に よ い な は か に い な は か に い た な は か に い な は か に い な な は か に い た な は か に い な は は な は か に い な は か に い な な は は な は な は な は な は な は な は な は な			
効率の向上について、小型ガス人間がでの検証に向けてとき。			
本			
(2) 燃料電池向け石炭ガスクリーンナップ技術要素研究 セル状歯離をして			
(2) 燃料電池向け石炭ガス クリーンナッフ技術要素研究 セル核毒剤性評価として、 側別被毒影響評価は製皮が長期接種評価として、 側別被毒影響評価は製皮が長期接種評価として、 のまた、燃料電池用ガス精製技術 性能評価として、吸音剤のスクリーニン が大統領等値として、吸音剤のスクリーニン のスクリーニング試験を実施する。 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000 kW級)用 複合発電技術開発 小型GTFC(1,000 kW級)用 をGTFC(1,000 kW級) をGTFC(1,000 kWM) をGTFC(1,000 k			
クリーンナップ技術要素研究 セル被害耐性評価として、個別被毒影 響評価試験及び長期被毒評価試験及び長期接毒評価試験を実施する。 また、燃料電池用力ス特製技術 性能評価として、吸着剤の スクリーニング試験を実施する。 (3) ガスターピン燃料電池 複合発電技術開発 小型GTFC(1,000 kW級)の商用化に向けて、 設計及び製造を実施する。 (4) が現る実施する。 (4) が発力を実施する。 (4) が発力を実施する。 (4) 燃料電池石炭ガス適用性試験 用設備に係る設計、製作、据 「付け等を行う。 (5) CO 公開型化学燃焼石炭利用技術問発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種物性を把握するとともに、流物によい、素は、生物に表しまた、大き、大き、大き、大き、大き、大き、大き、大き、大き、大き、大き、大き、大き、			
セル被毒動性評価として、個別被毒影響無能験を及場合。 また、燃料電池用ガス精製技術性語が動を実施する。 また、燃料電池用ガス精製技術性能評価として、吸着剤のスタリーニング試験を実施した。 また、燃料電池用ガス精製技術性能評価として、吸着剤のスタリーニング試験を実施した。 また、燃料電池相を接て、吸着剤のスタリーニング試験を実施した。 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)用 表の中で、企業機器の仕様検討を実施した。また、セルスタック低コスト品質安定化技術開発では、検証設定導入した。また、セルスタック低コスト品質安定化技術開発では、検証設定導入、上げを行った。 (4) 燃料電池石炭ガス適用性研究			
個別被毒影響評価試験を実施する。 また、燃料電池用ガス精製技術性能評価として、吸着剤のスクリーニング試験を実施する。 また、燃料電池用ガス精製技術性能評価として、吸着剤のスクリーニング試験を実施する。 (3) ガスタービン燃料電池機合発電技術開発 小型GTFC(1,000kW級)用 SOFCモジュールの基本設計および、小型GTFC(1,000kW級)の間所に向けて、設計及び製造を実施する。 (4) 燃料電池石炭ガス適用性研究 石炭ガス燃料の適用性試験用設備に係る設計、製作、据行けでな行う。 (5) CO2分離型化学燃焼石炭利用技術開発 キャリアの反応性・耐久性、流動混合性等の要素試験を行い、各種物性を把握するとともに、試験結果を踏まえゃす			
期被審評価試験を実施する。 また、燃料電池用ガス精製技術 情能評価として、吸着剤のスクリーニン が試験を実施した。 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000 k W級)の商用化に向けて、設計及び製造を実施する。 (4) 燃料電池石放ガス適用 性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据 付け等を行う。 (5) CO₂分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえゃす	セル被毒耐性評価として、	セル被毒耐性評価として、個別被毒影	
また、燃料電池用ガス精製技術性能評価として、吸着剤のスクリーニング試験を実施する。 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000kW級)用 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000kW級)用 (4) 燃料電池石炭ガス適用性味解 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 石炭ガス燃料の適用性試験 開発では、検証装置導入に伴う要素検討 及び検証装置 の導入、立上げを行った。 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (5) CO2分離型化学燃焼石炭利用技術開発 (4) 燃料電池石炭ガス適用性研究 (5) CO2分離型化学燃焼石炭利用技術開発 (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用発 (5) CO2分離型化学燃焼石炭利用技術用発	個別被毒影響評価試験及び長	響評価試験及び長期被毒評価試験を実	
また、燃料電池用ガス精製技術性能評価として、吸着剤のスクリーニング試験を実施する。 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000kW級)用 (3) ガスタービン燃料電池 複合発電技術開発 小型GTFC(1,000kW級)用 (4) 燃料電池石炭ガス適用性味解 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 石炭ガス燃料の適用性試験 開発では、検証装置導入に伴う要素検討 及び検証装置 の導入、立上げを行った。 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (5) CO2分離型化学燃焼石炭利用技術開発 (4) 燃料電池石炭ガス適用性研究 (5) CO2分離型化学燃焼石炭利用技術開発 (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用な (5) CO2分離型化学燃焼石炭利用技術用発 (5) CO2分離型化学燃焼石炭利用技術用発	期被毒評価試験を実施する。	施した。また、燃料電池用ガス精製技術	
(3) ガスターピン燃料電池 (3) ガスターピン燃料電池複合発電技 (3) ガスターピン燃料電池 (3) ガスターピン燃料電池 (6) が開発 (初開発 小型GTFC (1, 000 k W級) 用 (2) (4) が型GTFC (1, 000 k W級) 用 (3) がスターピン燃料電池 (4) が型GTFC (1, 000 k W級) 用 (4) が型GTFC (1, 000 k W級) 用 (5) に (4) 燃料電池石炭ガス適用 (4) 燃料電池石炭ガス適用 (4) 燃料電池石炭ガス適用 (4) 燃料電池石炭ガス適用性試験 用設備に係る設計、製作、据 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池石炭ガス適用性研究 (4) 燃料電池モデュール試験設備に関する設計 計場よび工場製作を実施した。また、燃料電池カートリッジを用いて水素リッチガスを適用した場合の基礎データを取得した。 (5) に (6)			
スクリーニング試験を実施する。			
(3) ガスタービン燃料電池 複合発電技術開発 小型GTFC (1,000 k W級) 用 SOFCモジュールの基本設計および 小型GTFCハーフモジュール実証用 主要機器の仕様検討を実施した。また、 20 (4) 燃料電池石炭ガス適用 性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据 付け等を行う。 (5) CO2分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、 流動混合性等の要素試験を行い、各種特性を把握すると もに、試験結果を踏まえきャ			
(3) ガスタービン燃料電池 複合発電技術開発 小型GTFC (1, 000 kW級)の商用化に向けて、 設計及び製造を実施する。 (4) 燃料電池石炭ガス適用 性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据 付け等を行う。 (5) CO2分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、 流動混合性等の要素試験を行い、各種特性を把握するとと もに、試験結果を踏まえキャ			
複合発電技術開発			
小型GTFC(1,000 kW級)の商用化に向けて、 設計及び製造を実施する。			
は W級)の商用化に向けて、設計及び製造を実施する。 (4) 燃料電池石炭ガス適用性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据付け等を変化技術 の (5) CO₂分離型化学燃焼石炭利用技術開発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、就験結果を踏まえキャ	I I		
世ルスタック低コスト品質安定化技術 開発では、検証装置導入に伴う要素検討 及び検証装置の導入、立上がを行った。			
(4) 燃料電池石炭ガス適用性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据付け等を行う。 (5) CO2分離型化学燃焼石炭利用技術開発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャ			
性研究 石炭ガス燃料の適用性試験 用設備に係る設計、製作、据付け等を行う。 (5) CO2分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャ			
石炭ガス燃料の適用性試験 用設備に係る設計、製作、据 付け等を行う。 (5) CO2分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、 流動混合性等の要素試験を行い、各種特性を把握するとと もに、試験結果を踏まえキャ			
用設備に係る設計、製作、据付け等を行う。 (5) C O 2 分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャ	性研究	及び検証装置の導入,立上げを行った。	
付け等を行う。 コーティリティー供給設備に関する設計および工場製作を実施した。また、燃料電池カートリッジを用いて水素リッキャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャ 対スを適用した場合の基礎データを取得した。 (5) CO2分離型化学燃焼石炭利用技術発 (5) CO2分離型化学燃焼石炭利用技術開発	石炭ガス燃料の適用性試験	(4)燃料電池石炭ガス適用性研究	
付け等を行う。 コーティリティー供給設備に関する設計および工場製作を実施した。また、燃料電池カートリッジを用いて水素リッキャリアの反応性、耐久性、流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャ 対スを適用した場合の基礎データを取得した。 (5) CO2分離型化学燃焼石炭利用技術開発 (5) CO2分離型化学燃焼石炭利用技術開発	用設備に係る設計、製作、据	燃料電池モジュール試験設備および	
(5) CO ₂ 分離型化学燃焼石 炭利用技術開発 キャリアの反応性、耐久性、 流動混合性等の要素試験を行い、各種特性を把握するとと もに、試験結果を踏まえキャ	付け等を行う。		
炭利用技術開発 料電池カートリッジを用いて水素リッチガスを適用した場合の基礎データを 所動混合性等の要素試験を行い、各種特性を把握するとと もに、試験結果を踏まえキャ 新電池カートリッジを用いて水素リッチガスを適用した場合の基礎データを 取得した。 (5) CO2分離型化学燃焼石炭利用技 術開発			
キャリアの反応性、耐久性、 流動混合性等の要素試験を行い、各種特性を把握するとと もに、試験結果を踏まえキャ チガスを適用した場合の基礎データを 取得した。 (5) CO2分離型化学燃焼石炭利用技 術開発			
流動混合性等の要素試験を行い、各種特性を把握するとともに、試験結果を踏まえキャー取得した。 (5) CO2分離型化学燃焼石炭利用技術開発			
い、各種特性を把握するとと (5) CO2分離型化学燃焼石炭利用技 もに、試験結果を踏まえキャ 術開発			
もに、試験結果を踏まえキャートートートートートートートートートートートートートートートートートートート			
11マの佐いコスナケに コート・リマの巨大地 石垣地 法利用人			
リアの絞り込みを行う。 キャリアの反応性、耐久性、流動混合 キャリアの反応性、耐久性、流動混合 特殊の悪素が除えない。 名称性性は 棚根	リノの収り込みで117。		
性等の要素試験を行い、各種特性を把握			
するとともに、試験結果を踏まえキャリ			
アの絞り込みを行った。			
研究開発項目⑤ CO2回収 研究開発項目⑤ CO2回収型クローズ		7.7 = 7.4. 0 21. 17. = 1	
型クローズドIGCC ドIGCC			
5 0 T P D 炉への C O 2 供 5 0 T P D 炉への C O 2 供給設備等の		50TPD炉へのCO2供給設備等の	
給設備等の追設及び3TPD 追設を進めた。また、3TPD炉への高	給設備等の追設及び3TPD	追設を進めた。また、3TPD炉への高	
炉への高濃度搬送設備の追設 濃度搬送設備の追設を行った。	炉への高濃度搬送設備の追設	濃度搬送設備の追設を行った。	
を進める。			
3. クリーンコール技術開発 3. クリーンコール技術開発 「平成 2		3. クリーンコール技術開発 「平成2	
[平成28年度~平成31年] 8年度~平成31年[
度			
石炭の効率的利用、環境対しというに低品位炭利用や石炭灰利用に関し			
一名灰の効率的利用、環境対			
		9 句剛且·1X門開先・夫証を夫旭した。	
利用や石炭灰利用に関する調			
	る。		

研究開発項目① 低品位炭利	研究開発項目① 低品位炭利用促進事	
用促進事業	業	
(1) 低品位炭利用促進事業	(1)低品位炭利用促進事業可能性に関	
可能性に関する検討	する検討	
炭鉱から製造設備、輸送イ	ビジネスモデル検討に必要な低品位	
ンフラ整備及び製品需要者ま	炭価格、製品価格及び輸送コストについ	
でを含むビジネスモデルの検	て調査を行った。また、低品位炭の具体	
討を行い、このビジネスモデ	的産炭国を選定し、低品位炭を原料とし	
ルの実現に向けた経済及び技	た化学製品等の製造システムの概念設	
	た化子袋の等の袋垣シベノムの帆心板	
術面からの課題の抽出と解決	11 - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
策の策定等の実現可能性調査	討した。	
を行う。	(2)低品位炭利用促進技術開発	
(2) 低品位炭利用促進技術	ビジネスモデルの構築に向け、技術開	
開発	発項目とロードマップが明確化できる	
ビジネスモデルの構築に向	案件について、ビジネスモデルが実現可	
け、ビジネスモデルが実現可	能なプラントコストを目指した技術開	
能なプラントコストを目指し	発を実施した。	
た技術開発を行う。	また、低品位炭利用によるビジネスモ	
また、低品位炭利用による	デル実現に資する基盤技術として、自然	
ビジネスモデル実現に資する	発熱に係るメカニズムや特性評価手法	
基盤技術として、自然発熱に	について技術検討を実施した。	
係るメカニズムや特性評価に	(3) 低品位炭利用促進技術実証	
ついて技術開発を行う。		
(3) 低品位炭利用促進技術	や改質する製造プロセス及び発電シス	
実証	テムの実証試験を実施し、プラント性	
	能・機器信頼性、並びに運用性を確認し	
てガス化及び改質する製造プ		
	$ \mathcal{T}_{c} $	
ロセス並びに発電システムの		
実証試験を実施し、プラント		
性能・機器信頼性及び運用性		
を確認する。		
研究開発項目② 石炭利用環	研究開発項目② 石炭利用環境対策事	
境対策事業	業	
(1) 石炭利用環境対策推進	(1) 石炭利用環境対策推進事業	
事業	石炭利用時に必要な環境対策に関わ	
石炭利用時に必要な環境対	る調査を実施した。また、コールバンク	
策に関わる調査を実施する。	の拡充を行った。石炭灰基礎調査とし	
また、コールバンクの拡充を	て、石炭灰全国実態調査及び海外の石炭	
行う。石炭灰基礎調査として、	灰利用状況調査等を実施した。	
石炭灰全国実態調査、海外の	(2) 石炭利用技術開発	
石炭灰利用状況調査等を実施	セメントを使用しないフライアッシ	
する。	ュコンクリート製造技術の開発を開始	
(2) 石炭利用技術開発	し実用化パートナーの発掘を実施した。	
石炭灰やスラグの有効利用		
技術に関する開発を実施す		
る。		

FC、PFC、SF6、NF3)については、競争力をより強化するためのシステムの効率化や、コストダウン等を視野に入れつつ、新たな低温室効果冷媒の合成開発や高効率な空調機器の技術開発を推進し、併せて低温室効果冷媒の性能評価及び安全性評価に取り組むものとする。 FC、PFC、SF6、NF3)については、京都議定書約束期間後の枠組みにおいても、温室効果ガス排出削減を取ることがあると想定される。特にな対策を推進し、併せて低温室効果冷媒の性能評価及び安全性評価に取り組むものとする。 FC、PFC、SF6、NF3)については、京都議定書約束期間後の枠組みにおいても、温室効果があると想定される。特に、他の分野に比べ今後10~20年間で比べ今後10~20年間でより、他温室効果冷域の代替フリンから代替フリンから大大変が表し、大大変が表し、大大変が表し、大大変を表し、大力を表し、大力を表し、大大変を表し、大力を表し	低GWP※1冷媒(低温室 効果冷媒)を適用しなが高機 効率を達成する中小型空調機 器を実現するための機器の確 立を財産を要素下の研究 開発を実施する。 以所の実施者を選定して、 開発を実施者を選定して、 以実施者を選定して、 が開発動向、技術開発動向、 技術開発動向、技術の共和の 技術開発動向、技術関をとと をの共有を図るに、 をの共有を図がして、 をのまました。 なお、国内外の規制動で、 をいて情報ととも によりまでは、 をといて、 をといて、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	(v)環境・省資源分野 1.高効率低GWP冷媒を使用した中小型空調機器技術の開発 [平成28年度 ~平成29年度] 平成28年度は、下記研究開発項目について新規公募を実施し、実施体制を構築した(採択テーマ:8件)。 研究開発期間を平成28年度~平成32年度(5年間)から平成28年度~平成29年度(2年間)に変更した。	
等を視野に入れつつ、新たな低温室効果冷媒の合成開発(新たな低温室効果冷媒を少なくとも1種類開発)や高効率な空調機器の技術開発を推進し、併せて低温室効果冷媒の性能評価及び安全性評価(燃焼・爆発特性やフィジカルハザード等の評価)に取り組むことで、市中におけるフロン機器の代替を図り、温室効果ガスの削減により広くかつ直接的に寄与することを目指す。	冷媒適用で高効率を達成する空調機器のための要素技術開発 機器開発として、低温室効果冷媒を使用する機器の主要な要素部品(熱交換器、圧縮機等)の仕様検討、設計等を行う。冷媒開発として、HFO(※2)系冷媒の分子設計、合成試作等を行う。また、機器・冷媒開発についての共通基盤的な設計・評価手法の技術開発等を行う。	研究開発項目① 低温室効果冷媒適用で高効率を達成する空調機器のための要素技術開発 機器開発として、低温室効果冷媒を使用する機器の主要な要素部品(熱交換器、圧縮機等)の試作・評価を実施した。冷媒開発として、新規低温室効果冷媒に構となるHFO系混合冷媒の合成試作及び基本特性評価等を実施した。これFC※排出削減目標達成に貢献する。 ※HFC(ハイドロフルオロカーボン): 代替フロンと呼ばれ、オゾン層を他は、パリ協定における日本の出版と、が、GWPの高いフッ素系化合物。主に、冷凍空調機器の冷媒に使用される。	
	研究開発項目② 低温室効果 冷媒の性能、安全性評価 低温室効果冷媒に関する共 通基盤的なリスク評価等を検 討・実施する。 ※ 1 GWP (Global Warming Potential):地球温 暖化係数。CO2を1.0として、温暖化影響の強さを表す。 ※ 2 HFO (ハイドロフル オロオレフィン):二重結合を もつフッ素系化合物。GWP が代替フロンよりも圧倒的に 低い。	研究開発項目② 低温室効果冷媒の性能、安全性評価 低温室効果冷媒に関する共通基盤的な冷媒性能評価及び安全性評価等を検討・実施するため、低温室効果冷媒の候補であるHFO系混合冷媒の物性・性能評価や、可燃性冷媒のルームエアコン使用に係る安全性データの取得を実施した。これらの成果は、低温室効果冷媒適用空調機器に関する国際標準の提案に寄与する。	
b. 3 R 分野 資源確保の観点から、レ アメタル等の希少資源に関 するリサイクルシステムの 構築に向けた技術開発を実 施することとする。 また、リサイクル産業の 海外展開に向けた技術の開発・実証が	(b) 3 R 分野 1. アジア省エネルギー型資源循環制度導入実証事業 [平成28年度~平成32年度] リサイクルによる資源・エネルギーの安定供給及び温室	(b) 3 R 分野 1. アジア省エネルギー型資源循環制度 導入実証事業 リサイクルによる資源・エネルギーの 安定供給及び温室効果ガス削減の達成 に向け、アジア規模での省エネルギー型 資源循環制度の実現を目的に、以下を実 施した。	

を	型に 対対 は で	証い築体境の公等、性相度の国脈な目効を実適れが荷策と通証検国技。内産資育をできる資うに減ルつ提を多る資子に対して業すのののののののののののののののののののののののののののののののののののの	資源循環に有字をなって、 (実現可能性調査)で2件、国内が、 (実現可能性調査)で2件、国内が、 (実現可能性調査)で2件、国内が、 (実現可能性調査を高級・・ (実現の、 (実現の、 (実現の、 (実現の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、 (実理の、)のの、 (実理の、)のの、 (の、)ので、 (の、)ので、)ので、 (の、)ので、 、	
	水循環分野 競争力強化に資す 環要をとという。 なり海外市場でであるという。 では、大変であるとのです。 では、大変である。 ができるとのです。 大を図るできる。 ができるできる。 ができるできるが、またが、大変である。 がでは、大変では、大変のできるできる。 ができるできるが、大変できる。 ができるできるが、大変できる。 ができるできるが、大変できる。 ができるできるが、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないできる。 はないでは、大変できる。 はないでは、大変できる。 はないできる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないできる。 はないでは、大変できる。 はないでは、大変できる。 はないでは、大変できる。 はないできる。 はないできる。 はないでは、大変できる。 はないできないできないできないできないできないできないできないできないできないでき		(c) 水循環分野(該当プロジェクトなし)	

	確立を推進する。					
	さらに、国内における要素					
	技術の開発にとどまらず、					
	国内水関連企業の保有す					
	る膜分離活性汚泥法(MB					
	R)等の個別要素技術のパ					
	ッケージ化を促進させ、省					
	エネ性等の国際競争力を					
	有する水処理システムを					
	確立し、国内外への展開を					
	支援する。					
d. 環境化学分野	(d) 環境化学分野	(d)環境化学分野	_	(d) 環境化学分野		
将来にわたっても持続的に	. ,			1. 二酸化炭素原料化基幹化学品製造プ		
		学品製造プロセス技術開発		ロセス技術開発 [平成26年度~平成		
	を有し、経済社会の発展を			3 3 年度]		
	支えている一方で、地球温			太陽エネルギーを利用して、水から水		
C)プロセスの技術開発を、				素を製造し、この水素と二酸化炭素から		
引き続き行うこととする。	現実化しつつある中で			プラスチック原料等となる基幹化学品		
110 / July 2 C C / Jo	様々な課題を抱えている。	の水素と二酸化炭素からプラ		を高選択的に製造することを目的とし		
	例えば、国内の化学関連産			て、以下の研究開発を実施した。		
	業の二酸化炭素排出量は、	学品を高選択的に製造するこ		-, Stranding Commonce		
		とを目的として、以下の研究				
	造業全体の約15%を占					
		研究開発項目①ソーラー水素	_	研究開発項目①ソーラー水素等製造プ	●二段型光触媒シートでは、光触媒の形成プロ	
	なる等、化学品の高機能化			ロセス技術開発	セスとデバイス構造の改良により、植物の光	
		(1) 光触媒や助触媒及びこ		(1) 光触媒や助触媒及びこれらのモジ	合成と同等だった開発当初の変換効率と比	
		れらのモジュール化技術等の		ュール化技術等の研究開発	べ約10倍の3.0%を達成。	
	費増が喫緊の課題となっ			光触媒については、前年度に引き続	, = 1 = 7, 10	
	ている。	光触媒については、重点的			●開発したMTO(メタノール-to-オレフィ	
	これらの問題を克服し、	に研究開発を行う材料系候補		化の検討を行った。具体的には、波長5		
		の絞り込み及び合成方法の最		00~600 n m に吸収端を持つ材料		
		適化を継続して行う。また、		系の知見を利用して、波長600~70		
		光触媒の活性劣化の要因につ		0 n m以上に吸収端を持つ材料系の検		
		いて、実験とシミュレーショ		討、最適化を継続し、平成28年度の中	1,500时间仍然殊分明を建成。	
	組が活発に行われている。	ンの両方からの解明を継続		間目標である太陽エネルギー変換効率		
		し、光触媒の寿命を向上させ		3%を達成した。また、活性劣化要因に		
		る。また、候補となる光触媒		ついての解析を継続し、前年度に策定し		
		こ最適な助触媒材料の探索や		た光触媒寿命の数値目標を達成した。さ		
		性能向上を検討し、光触媒へ		たれ風燥が明り数値 P 標を達成した。 らに、モジュール化を視野に入れて、重		
		住能向上を検討し、元熙媒へ の助触媒材料の担持方法の確		らに、モンュール化を視野に入れて、里点的に研究開発を行う材料系候補をあ		
		立を継続して目指す。これら		る程度絞り込んだ。また、前年度に引き		
	とするものである。	により、光触媒の太陽エネル		続き、候補となる光触媒材料系に対して		
		ギー変換効率3%を達成する		最適な助触媒材料系の探索や性能向上なかました。		
		とともに、平成27年度に策		を検討し、光触媒と助触媒の界面の設計		
		定した光触媒の寿命の数値目		等についてコンタクト層を含めた光触		
		標を達成する。モジュール化		媒への助触媒材料の担持方法の確立を		
		技術では、分離膜分野との連		図った。		
		結整合性を考慮し、光触媒の		モジュール化技術において、光触媒モ		
		性能を維持可能でかつ安全性		ジュールの設計等については、前年度に		
		を考慮したモジュール構造及		引き続き、分離膜モジュールとの連結整		
	すべく、①触媒によりナフ			合性を考慮して研究開発を進めた。具体		
	サの分解温度を従来の熱	1 1 1		的には、光触媒モジュールの最小単位と		
	分解法に比べ200℃下			なる光触媒パネル及びパネルを装着し		
	げ、基幹物質の生成比率の	1-241114 71721172		た反応器全体について、光触媒の性能を		
	制御を可能にするナフサ			維持しかつ安全性を考慮した構造と構		
	接触分解技術(石油化学品			成の検討を継続した。またモジュール化		
		て、使用条件を考慮して抽出		のための個別要素技術の確立を図り、小		
	チレン、プロピレンの収率			面積モジュールを試作した。		
		継続して行う。それにより、		(2) 水素分離膜及びモジュール化技術		
	を開発する。)、②イソプロ	1 / / 1 / 2 / 1 / 2 / 1 / 2 / 1 / 2 / 1 / 2 / 2		等の研究開発		
	ピルアルコールや酢酸か	性能の目標を達成する分離膜		水素分離膜の研究開発では、前年度ま		
	C/V//VC /V (Brbx/)			73 77 73 144 150 175 175 175 175 175 175 175 175 175 175		

ら水を	分離する蒸留プロー材料を開発し、分離膜の候補	- の候補 での結果を踏まえ、ゼ	ジナライト玄 シ川	
	おいて、水透過度2 材料を確定する。分離膜のモ			
	- ⁷ m o 1 / (m ² s ジュール化技術の検討では、			
	分離係数200以 爆発範囲外方式及び着火非抗			
	現する分離膜技術、大方式に関して、分離膜候補		~ - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	プロセス等から発 材料の性能を反映させる。そ			
	二酸化炭素等の副 れにより、安全に水素と酸素	と酸素 を確定した。分離膜の)モジュール化技術	
生ガスを	を高濃度(99. の混合気体を分離できるモシ	るモジーでは、爆発範囲外方式	【及び着火非拡大方	
9%以上	上)に分離・濃縮で ユール構造及び仕様の明確化	明確化 式の2つの分離方式に	工関して、前年度ま	
きる新規	規材料を開発し、高 を図る。	でに検討を行ってきた		
	れた二酸化炭素等	形状等に、分離膜候補		
	として有用な化学	させた。それにより安		
	リーンに生産する	混合気体を分離でき		
	基盤技術、④微生物	及び基本仕様の明確化		
	池システムを工場 研究開発項目② 二酸化炭素		敗化灰系貨源化ノ	
	理に用いて、廃水処 資源化プロセス技術開発			
	が現行の活性汚泥 低級オレフィン高選択性F			
	同等以上で、かつ、 T合成反応及びFT合成反応			
لِ 8 0 % إ	以上の省エネルギ / /クラッキング反応の2方式	2 方式 2 つの方式については	t、副生するCO2	
	能な廃水処理基盤 においては、副生CO2の抑制	の抑制 の抑制による収率向」	上を目指した触媒	
技術等を	を確立する。 による収率向上を目指した触			
	、化石資源からの脱 媒及びプロセスの改良を継続			
	炭素社会の実現のし、基盤技術を確立する。		** * * * * * * * * * * * * * * * * * * *	
	キーテクノロジータノール合成/MTO反応力			
	、我が国が世界トッ 式においては、触媒及びプロ			
	ルの技術を有するセスの改良と併せて、小型パ			
	術を活用し、国際的 イロット設備の製作及び設置			
	を確保しながら、資を完了し、次期パイロットフ			
	環境問題を同時に ラントの設計に有用なデータ			
	ることを目指して の取得及びプロセス評価を完	「価を完 の取得及びプロセス評	平価を完了した。	
新規な(GSCプロセスの一了する。上記取組により、技	り、投 上記取組により、投	と入された二酸化炭	
技術開発	発を実施する。 入された二酸化炭素由来の炭		フィンへの導入率	
	素のオレフィンへの導入率8			
	0% (ラボレベル)を達成す			
	るとともに、小型パイロット			
	規模でのプロセスを確立す			
	//= // - /	PE ソ- 9		
	5.			
	2. 有機ケイ素機能性化学品			
	製造プロセス技術開発 [平		6年度~平成33	
	成26年度~平成33年度]			
	我が国の有機ケイ素工業が	工業が	素工業が抱えるエ	
	抱えるエネルギー面及びコス	びコス ネルギー面及びコス	ト面の問題を解決	
	ト面の問題を解決し、安定的	安定的し、安定的に高機能な	*有機ケイ素部材を	
	に高機能な有機ケイ素部材を			
	提供するための革新的触媒技			
	術及び触媒プロセス技術の確			
	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		/IC0	
		V/训 元		
	開発を実施する。			

研究開発項目① 砂からの有		●高価な原料を使わず短時間かつ高収率な有	
機ケイ素原料製造プロセス技	原料製造プロセス技術開発	機ケイ素基幹原料合成プロセスを開発した	
術開発	アルコールとケイ砂(SiO ₂)の反応	ことで、平成26年度時点と比べ約1/3の	
アルコールとケイ砂 (SiO	について、ケイ砂を原料に用いる際の技	コスト低減を実現。	
2) の反応について、ケイ砂	術課題を抽出し、反応経路と触媒につい		
等の原料の種類や反応条件の		●また、使用する無機脱水剤は有機ケイ素原材	
検討を進めるとともに、プロ	した。さらに、砂とアルコールの反応に	料から容易に分離できるため、回収や再利用	
セス開発を行う。アルコキシ	より、テトラアルコキシシランを高収率	も可能なサステイナビリティに優れたプロ	
7 17 - 7 1 2			
シランの変換については、水	で得る実用的な反応経路を見出すなど、	セスを実現。	
素による還元反応やアルキル	目標を大きく上回る成果を得た。また、		
化反応等の検討を継続する。	プロセスシミュレーションにより、テト		
砂等の原料の部分構造を保持	ラアルコキシシランの製造コストが、金		
した変換については、原料種、	属ケイ素を経由した従来法に比べ優位		
触媒等の検討を継続する。高	である可能性を示した。これらにより、		
活性ケイ素化学種を用いる新	工業化へ向けた技術の検討を6ヶ月前		
規製造法の検討を継続し、有	倒しで着手できる見通しが得られた。		
効性を見極める。プラズマ利	アルコキシシランの変換については、		
用技術等の可能性について検	更なる検討を行う価値のある触媒や反		
計を継続する。	応経路の候補を絞り込むことができた。		
以上の検討により、ケイ砂を	また、固体触媒及び均一系触媒において		
原料に用いる際の技術課題を	も更なる検討を行う価値のある候補を		
抽出するとともに、反応経路	校り込み、目標をほぼ達成した。		
抽山りることもに、及心経路 と触媒の有望な組合せを絞り	12 1 7 1 2 7 1 1 1 1 1 1 2 1 1 2 1 2 1 2		
	砂等の原料の部分構造を保持した変		
込む。	換については、砂由来のQ単位構造を基		
	本構造とするビルディングブロック型		
	から有機ケイ素原料を製造する手法の		
	開発として、更なる検討を行う価値のあ		
	る触媒や反応経路の候補を絞り込み、低		
	収率ながらもケイ酸塩骨格を部分的に		
	切り出すことに成功し、目標をほぼ達成		
	した。		
	高活性ケイ素化学種を用いる新規製		
	造法の検討を継続し、製造法の手法の有		
	効性について見極めを行ったが、高活性		
	ケイ素化学種を経由する製造法は有機		
	ケイ素原料製造法としては不適である		
	と判断した。		
	プラズマ利用技術等の可能性につい		
	て検討を継続し、合成経路の可能性につ		
	いて技術調査に基づき予備的検討を行		
	った。		
研究開発項目② 有機ケイ素	研究開発項目② 有機ケイ素原料から		
原料からの高機能有機ケイ素	の高機能有機ケイ素部材製造プロセス		
部材製造プロセス技術開発	大術開発		
ドロシリル化反応用の触	ヒドロシリル化反応用の触媒開発に		
媒開発に関しては、それぞれ	ついて、アリル化合物のヒドロシリル化		
の触媒の特性に合わせた反応	などについて有効な反応経路や触媒の		
系を定めて、触媒、反応条件	組合せを絞り込むことにより、世界最高		
等の検討を継続するととも	性能の鉄触媒を開発し、工業的重要性の		
に、一部の触媒についての固	高いアリル系等の基質に有効な触媒開		
定化検討を継続する。カップ	発等に成功し、目標を達成した。		
リング反応について触媒種、	触媒固定化検討について、その技術の		
反応条件等の検討を継続す	有効性について工業的な有用性の観点		
る。	も含め見極めを行うとともに、ヒドロシ		
シラノール合成法及び分析	リル化反応等に有効な鉄錯体触媒固定		
法の改良を進め、多種のシラ	化の検討を行い、分析結果から鉄錯体が		
ノール類を原料として扱える	担持されていることを確認し、目標を達		
ようにする。また、これらを	成した。		
原料とした反応を引き続き検	シラノール合成法及び分析法の改良		
討する。非対称アルコキシシ	について、不安定なシラノールを合成・		
ランを原料とする構造制御ポ	単離する製造プロセスの開発に成功し		
リシロキサンの製造法につい	た。また、シラノール原料を用いた構造		
	0 61		

	ても、引き続き検討する。ク	制御されたオリゴおよびポリシロキサー
	ロスカップリング反応に関し	ン合成に関し、生成したポリシロキサン
	ては、原料としてアシロキシ	の構造を解析し、重合条件の最適化を行
	シランを用いた反応等につい	うことで、構造が制御された直鎖状ポリ
	て検討を継続する。	シロキサンの合成法を確立した。各種非
	モノシランの脱水素カップ	対称アルコキシシランを原料とした反
	リング反応について、触媒活	応に関し、それらの反応性の違いを明ら
	性、選択性及び触媒寿命の向	かにし、アルコキシ基の新しい変換反応
	上のための検討を継続する。	を見出した。クロスカップリング反応に
	以上の検討により、工業化の	関し、アシロキシシラン類を用いた反応
	ための課題を抽出するととも	条件や精製条件について改良を行い、生
	に、今後更に取り組んでいく	成物の単離収率を向上させた。また、原
	反応経路と触媒について有望	料の種類を拡張して、新しい構造の環状
	な組合せを絞り込む。	オリゴシロキサンを合成した。さらに、
	6/ALT C C/N / NC S (構造制御されたレジン構造、ポリシロキ
		サン、及びオリゴシロキサンの形成に有
		効な反応経路と触媒の組合せを絞り込
		むことにより、反応性官能基を持つシロ
		キサンオリゴマーの高選択合成法開発、
		およびシロキサンポリマーの構造を精
		密に制御できる実用的な触媒反応開発
		に成功し、目標を大きく上回る成果を達し
		成した。
		ー モノシランの脱水素カップリング反
		応について、工業的な有用性の観点も含
		めて有効な触媒を絞り込むことにより、
		モノシランの脱水素カップリングにおし
		いて実用化に耐え得る収率、選択性及び
		寿命を有する触媒を見いだし、目標を大
		きく上回る成果を達成した。
e. 民間航空機基盤技術 (e)民間航空機基盤技術	(e)民間航空機基盤技術 —	(e)民間航空機基盤技術
環境負荷低減、運航安全 環境負荷低減、運航安全	1. 航空機用先進システム実	1. 航空機用先進システム実用化プロジ
性向上等の要請に対応した 性向上等の要請に対応し	用化プロジェクト [平成2]	エクト
航空分野の基盤技術力の強した航空分野の基盤技術力		研究開発項目⑥及び⑦について公募
化を図るための技術の開め強化を図るため、操縦容		を実施し、平成28年7月から研究開発
	性・経済性に対応した、安全	を実施した。研究開発項目ごとの業務実
		積については以下の通り。
	性が高く軽量・低コストな航	根については以下の通り。
る技術の開発及び実証試		
験等を実施する。	ることを目的に、以下の研究	
	開発項目について事業を実施	
	する。また、研究開発項目⑥、	
	⑦について、追加公募を行う。	
	研究開発項目① 次世代エン -	研究開発項目① 次世代エンジン熱制
	ジン用熱制御システム研究開	御システム研究開発
	発	エンジンメーカーとの意見交換を踏
	ASACOC/HFCOC/	まえ、オイルクーラー (ASACOC/H
	OFCVの試作品の形状を定	FCOC) 及び流量調節バルブ (OFC)
	め、性能・強度が仕様を満足	V) の仕様を確定した。また、平成27
	することを計算・解析により	年度に引き続き、軽量及び低コストを実
	確認する。また、必要に応じ	現するためのオイルクーラーの製造方
	てスケールモデルを製作し、	法や材料について、調査検討及び解析・
	試験による検証を行う。	試験による性能確認を行った。さらに、
		最適化ツールを用いてオイルクーラー
		のフィン形状の最適化検討を行い、従来
		よりも性能が向上する形状を見出した。
	研究開発項目② 次世代降着 -	研究開発項目② 次世代降着システム
	システム研究開発	研究開発
	脚揚降システムは、温度試	脚揚降システムについては、振動試験
	齢及び提動試験を実施 環	- 「において、解析結果と試験結果を比較」
	験及び振動試験を実施し、環境試験のの適合性について確し	において、解析結果と試験結果を比較
	境試験への適合性について確	し、解析結果が妥当であることを確認す

から強度余裕を見積もり、強	質量軽減を図り、強度面での最適化を行	
度最適化による質量軽減の検	った。また、ポンプについては、トルク	
計を行う。電動タキシングシ	効率の改善(すなわち耐久性の向上)を	
ステムは、インホイール・モ	目的として3種類の改善案について試	
一夕の小型軽量化及び高出力	作・評価を行い、改善効果を確認した。	
化のため、損失低減検討及び	さらに、電動アップロックについては、	
強度検討を行う。また、タキ	概念設計を完了し、基本設計に着手し	
	拠心以引て元」し、巫平以引に有すし	
シングシステムの制御方法及	た。	
び脚への取り付け方法につい	電動タキシングシステムについては、	
ての検討を行う。また、電磁	インホイール・モータの小型軽量化及び	
ブレーキシステムは、電磁ブ	高出力化の検討において、更なる損失の	
レーキに適応した電磁流体の	低減検討のためモータ方式を改良し、想	
開発を行う。また、電磁ブレ	定しているホイール内に装着可能な目	
ーキの非使用時における抵抗	途を得た。また、モータの制御方式につ	
低減について、要素試験によ	いて、制御解析用の機体運動シミュレー	
る検証を行う。	ションモデルを構築し、制御ロジックの	
る快証を行う。		
	構築に着手した。さらに、脚振動(シミ	
	一振動)を考慮した機体運動シミュレー	
	ションモデルの作成に着手した。	
	電磁ブレーキシステムについては、電	
	磁ブレーキに適した電磁流体の特性改一	
	善に関する調査・検討を行い、文献調査	
	の結果、磁性微粒子に特殊な表面処理を	
	施すことにより、非使用時のトルクが低	
	い電磁流体が得られる可能性のあるこ	
	とを確認した。また、電磁ブレーキの冷	
	却方式について検討し、シミュレーショ	
	ンにより冷却効果を検証した。さらに、	
	電磁ブレーキのディスクを多板とした	
	ブレーキ構造の概略検討、及びブレーキ	
	- 全体構造の検討を空子した	
TOTAL STATE OF THE PARTY OF THE	全体構造の検討を完了した。	
研究開発項目③ 次世代コッ -	研究開発項目③ 次世代コックピット	
	研究開発項目③ 次世代コックピット	
研究開発項目③ 次世代コッ - クピットディスプレイ研究開	研究開発項目③ 次世代コックピット ディスプレイ研究開発	
クピットディスプレイ研究開 発	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュ	
クピットディスプレイ研究開 発 ディスプレイモジュール及	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュ ール及び当該ディスプレイモジュール	
クピットディスプレイ研究開 発 ディスプレイモジュール及	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュ ール及び当該ディスプレイモジュール	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュ ール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディ	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュ ール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様 に基づく評価を行った。また、平成27	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27 年度に受けた外部有識者によるレビュ	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正す	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27 年度に受けた外部有識者によるレビュ	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製 作を行う。	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製	研究開発項目③ 次世代コックピット ディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の 方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製 作を行う。	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製 作を行う。 研究開発項目④ 次世代空調 ー システム研究開発	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製 作を行う。 研究開発項目④ 次世代空調 システム研究開発 二相流体熱輸送システム	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発	
クピットディスプレイ研究開発 ディスプレイモジュール及 びタッチパネルの部分試作品 の製作・評価を行う。また、次 世代コックピットディスプレ イのプロトタイプの設計・製 作を行う。 研究開発項目④ 次世代空調 ー システム研究開発	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調ーシステム研究開発 二相流体熱輸送システムは、Active Pump 方式及び	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュールので型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素(熱	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システム研究開発 ニ相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュールので型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 ニ相流体熱輸送システムについては、Active Pump方式において、構成要素(熱交換器、ポンプ等)及び要素試験装置を	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調ーシステム研究開発 ニ相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、試作品の詳細設計を完了し、	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 二相流体熱輸送システムについては、Active Pump方式において、構成要素(熱交換器、ポンプ等)及び要素試験装置を設計・製作し、構成要素の試験評価を行	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システム研究開発 二相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、試作品の詳細設計を完了し、試験により特性データを取得	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュールので型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 ニ相流体熱輸送システムについては、Active Pump方式において、構成要素(熱交換器、ポンプ等)及び要素試験装置を	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システム研究開発 二相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、試作品の詳細設計を完了し、試験により特性データを取得	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。 研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素(熱交換器、ポンプ等)及び要素試験装置を設計・製作し、構成要素の試験評価を行った結果、消費電力低減の目標達成の目	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システム研究開発 二相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、試作品の詳細設計を完了し、試験により特性データを取得する。また、スマート軸流フ	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール 適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素(熱交換器、ポンプ等)及び要素試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump 方式につ	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システム研究開発 二相流体熱輸送システムは、Active Pump 方式及びPassive Pump 方式について、試作品の詳細設計を完了し、試験により特性データを取得する。また、スマート軸流ファンは、モータ及び制御回路	研究開発項目③ 次世代コックピットディスプレイ研究開発大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まって開発で必要となる文書を作成し、外部有識者によるレビューを行った。研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素(熱交換器、ポンプ等)及び要素試験装置を設計・製作し、構成要素の試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump 方式について、構成要素及び要素試験装置を設	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システムは、Active Pump 方式について、試験により特性データを取得する。また、スマート軸流ファンは、モータ及び制御回路の詳細設計並びに製作を行	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュールの選がネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素の計験によるで、構成要素の試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump 方式について、構成要素及び要素試験装置を設計・製作し、構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コックピットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調・システムは、Active Pump 方式について、試験により特性データを取得する。また、スマート軸流ファンは、モータ及び制御回路の詳細設計並びに製作を行	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュールの選がネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められる仕様に基づく評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するとともに、ハードウェア認証取得の第1フェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発項目④ 次世代空調システム研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素の計験によるで、構成要素の試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump 方式について、構成要素及び要素試験装置を設計・製作し、構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った構成要素の試験評価を行った	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調で表現の一を行う。 研究開発 工相流体熱輸送システムは、Active Pump 方式について、試作品の詳細設計を完すを取得する。また、スタ及び制御回路の詳細設計がに製作を行う。また、動翼の試作品に対	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール 適応型タッチパネルについて、数種類の方式について部分試作品の製作し、ディスプレイモジュールに求められるとででは、 不で開発では、 で必要となる文書を作成し、 外部有識者によるレビューを行った。 研究開発 「中、 大世代空調システム でが、 大世代空調システム 研究開発 「中、 大世代空調システム 「大大神器、 大世代空調システムについては、 大は、 大き、 ないで、 大神、 大き、 大き、 大き、 大き、 大き、 大き、 大き、 大き、 大き、 大き	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当まパネルについて、数種類の方式について部分分にに求められて、な仕ででいて、表して、では、本でで受けた。者によるを修り、ののでは、人ので開発では、大きなといった。ので、関発では、大きなのは、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチパネルの部分試作品の製作・評価を行う。また、次世代コットディスプレイのプロトタイプの設計・製作を行う。 研究開発項目④ 次世代空調で表現の一を行う。 研究開発 工相流体熱輸送システムは、Active Pump 方式について、試作品の詳細設計を完すを取得する。また、スタ及び制御回路の詳細設計がに製作を行う。また、動翼の試作品に対	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及が当大パネルにの製作し、数種ディスプレイモジュールの流式について、数種ディスプレイモジュールにでは、本のでのでは、不可にないでは、本のでのでは、本のでのでは、本のでのでは、本のでのでは、本のでのででは、本のでのででは、本のでのでででは、本のでのでででは、本のでのででででは、本のでのでででででででででで	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当まパネルについて、数種類の方式について部分分にに求められて、な仕ででいて、表して、では、本でで受けた。者によるを修り、ののでは、人ので開発では、大きなといった。ので、関発では、大きなのは、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、ないで、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな、大きな	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、では、名で評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修成し、外部有識者によるレビューを行った。研究開発 コフェーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発 二相流体熱輸送システムについては、Active Pump 方式において、構成要素の目標達成の目途を得た。また、Passive Pump 方式について、構成要素及び要素試験評価を行った結果、特定の日途を得た。また、で表記を設計・製作し、構成要素の試験評価を行った結果、特定の日途を得た。また、方の作動特性の試験、及び顧客で表した小型システムを設計・製作し	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、では、名で評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するととも、ハードウェスで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発 ニーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発ニー構体熱輸送システムについては、Active Pump方式において、構成要素の試験評価を行った結果、ポンプ等)及び要素試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump方式について、構成要素及び要素試験評価を設計・製作し、構成要素の試験評価を設計・製作し、構成要素の試験評価を設計・製作し、構成要素の計・製作して熱等によるとした、対して熱等によるといるといるといるといる。	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュールの方式について、数種ディスプレイモジュールに成立の大きに、ないでは、ないでで、大きなといるでは、大部有識者によるレビューを持った。ので、大部有識者によるレビューを表して、大部有識者によるレビューをでは、大部有職発の大きが表して、大部を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、まままます。まり、表も、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、大語を表して、まり、表も、表も、表も、表も、表も、表も、表も、表も、表も、表も、表も、表も、表も、	
クピットディスプレイ研究開発 ディスプレイモジュール及びタッチがネルのう。また、次世代コットタイプの設計・製作を行う。 研究開発項目④ 次世代空調である。 「大型の下のでする。 「大型のでする。 「大	研究開発項目③ 次世代コックピットディスプレイ研究開発 大画面・任意形状ディスプレイモジュール及び当該ディスプレイモジュール及び当該ディスプレイモジュール適応型タッチパネルについて、数種類の方式について部分試作品の製作し、では、名で評価を行った。また、平成27年度に受けた外部有識者によるレビューの結果を踏まえて開発標準を修正するととも、ハードウェスで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発 ニーズで必要となる文書を作成し、外部有識者によるレビューを行った。研究開発ニー構体熱輸送システムについては、Active Pump方式において、構成要素の試験評価を行った結果、ポンプ等)及び要素試験評価を行った結果、消費電力低減の目標達成の目途を得た。また、Passive Pump方式について、構成要素及び要素試験評価を設計・製作し、構成要素の試験評価を設計・製作し、構成要素の試験評価を設計・製作し、構成要素の計・製作して熱等によるとした、対して熱等によるといるといるといるといる。	

	高効率な翼車の二次試作品を設計・製作
	し、試験評価を行うことにより、翼車の
	性能向上を確認するとともに、製造コス
	ト低減について検討した。また、モータ
	及び制御回路については、小型化・製造
	コスト低減の検討を行うとともに、基本
	特性取得のための試作を行った。
	14 EARING 16 20 20 EVI 16 11 2 16 0
TUNTER VETT (A) VALUE IN TOTAL	TT 00 HB 70 x 5 D (A) VL III / D 70 6 C Hu (40 62)
研究開発項目⑤ 次世代飛行	
制御/操縦システム研究開発	
ピトー管については、量産	産
型ピトー管を設計・製作し、	、 トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
認証取得に向けた準備を行	
う。また、操縦バックアップ	
システムについては、シスランは世界では、ウストー	
ム構想設計を完了し、詳細記	
計に着手する。	用品を用いて有負荷時の基本的な制御
	技術を習得し、実機搭載品の設計及び制
	御アルゴリズムのノウハウを得た。さら
	に、操縦バックアップシステムについて
	は、システムの構想設計が完了し、詳細
	設計に着手した。
研究開発項目⑥ 次世代自動	
飛行システム研究開発	テム研究開発
自動飛行システムの構成型	要している。 「GPS/ILS異常時の自動着陸シ」
素となる画像処理システムの	
試作及び舵面故障シナリオの	
作成を行い、画像による故障	
検出及び自動着陸が適切に行	
われるかをシミュレーション	
により評価する。	ムの機能・性能を確認した。また、無人
	機の自動着陸に関して、位置検出・自動
	着陸の制御アルゴリズムを検討し、シミ
	ュレーションを実施するとともに、小型
	の無人機による飛行試験を行った。さら
	に、GPS/ILSの通常動作時おける
	誤差モデルの構築に着手した。
	舵面故障時の飛行維持システムにつ
	いては、舵面の故障状態を検知するシス
	テムにおいて、画像システム試作品の仕
	様を決定し、舵面状態の検知アルゴリズ
	ム検討に着手した。また、飛行維持シス
	テムについては、特定の舵面故障状態に
	対する制御アルゴリズムを開発し、シミ
	ュレーションにより効果を確認した。さ
	らに、実験用航空機の機体運動シミュレ
	ーションモデルの設計仕様を検討し、設
	計仕様に基づいたシミュレーションツ
	ールの作成に着手した。

研究開発項目⑦ 次世代エン	研究開発項目⑦ 次世代エンジン電動
ジン電動化システム研究開発	化システム研究開発
高温に耐えうる高耐熱電動	高耐熱電動機については、電動機から
機の試作・評価を行う。また、	の排熱を効率良く行うための巻線熱構
エンジン内蔵型電動機を実現	造のシステム仕様について検討を行う
するための統合システムの設	とともに、電動機における発熱部位を特
計を行う。	定した。また、高耐熱を実現するための
рі с 11 7 0	被膜について、耐熱性を評価するため、
	高温炉を用いた温度試験を実施した。
	効率の良い排熱システムについては、 コンパンの発型の動物をはなった。
	エンジン内蔵型電動機を核としたエン
	ジン電動化システム実現に向けて、エン
	ジン軸直結様式、従来のエンジン排熱シ
	ステム及び空調システムとの連携につ
	いて検討するため、システム系統設計に
	関する技術動向や、当該システムに必要
	な熱交換器のサイズ、空調システムの仕 以上の内容を踏まえ、顕著な成果が出ている
	様について調査した。 ことから、本項目の自己評価をAとした。

様式2-1-4-1 国立研究開発法人 年度評価 項目別評価調書(研究開発成果の最大化その他業務の質の向上に関する事項)様式

I (ク)技術分野ごとの計画 (産業技術分野)

3	. 中長期目標、中長期計画	、年度計画、主な評価軸、	、業務実績等、年度評価に係	系る自己評価及び主務	大臣による評価		
	中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実績等・自己評価		主務大臣による評価
				の視点)、指標等	主な業務実績等	自己評価	
						<自己評価> A	評定
	えつつ、我が国経済・社会 が国経済・・社会 での基盤としての発展を促する。 通信産業の発展をイスンピーを での発展をイスンピーを でのでである。 でのでは、できる。 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたででは、 でのいたがでのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのために、 でのいたが、 でのいたが、 でのいたが、 でのために、 でのいたが、 でのために、 でのいたが、 でのいたが、 でのいたが、 でのために、 でのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでのでの	は等高等ン器リい普のて(産なれ 台よーに情工引っ でののがて発デーグ重しすい での速に、とかる及活お I 業ピて他頭り段、報ネきて第はス変国の展バクに点、以の速に、とかる及活お I 業ピて他頭り段、報ネきで第はス変国の展バクに点、スのクーどい広ラグが情えよが の規争りを大の課 標技ネつ基信めネーでお取り、の速に、とかる及活お I 業ピで投票では、当年では、一年では、一年では、一年では、一年では、一年では、一年では、一年では、一			(vi)電子・情報通信分野	<自己評価の根拠>	
		ト化に対応していくため、	世代パワーエレクトロニクスプロジェクト [平成21年度~平成31年度] 研究開発項目① 低炭素社会を実現する新材料パワー半導体プロジェクト 本事業では、Siパワーデバイスについて、従来技術の延長線上にない新世代Siパワーデバイスを開発すること	_	(a)電子デバイス 1.低炭素社会を実現する次世代パワーエレクトロニクスプロジェクト [平成21年度~平成31年度] 研究開発項目① 低炭素社会を実現する新材料パワー半導体プロジェクト (10)新世代Siパワーデバイス技術開発 平成27年度に開発したIGBT作製プロセスと高耐圧終端プロセスのインテグレーションを行い、1kV系の高耐圧・大電流IGBTの試作を行った。また、ウェハ・プロセス評価では、ウエハ成長時の	電力損失実現。 ●耐圧 6.5 k VのSiC-MOSFETを開発し、電流密度従来比2倍を達成。	

以細の微細加工技術につ		炭素濃度を低減し、高温プロセスを経ても	
いて検査技術、レジスト材	(1) 高品質・大口径 S i C	ライフタイムが大幅には劣化しないこと	
料等の開発を進める。ま		を示した。ドライブ回路開発では、試作し	
た、現在のフラッシュメモ		たIGBTモジュール/ゲート実装基板	
		/デジタルゲートドライブ I C / インタ	
リよりも高速で動作可能	(2) 大口径S i C ウエハ加		
な高速不揮発メモリやマ		ーフェース内蔵周辺回路と組み合わせ、ノ	
	(3) SiCエピタキシャル	イズ耐性とゲート波形制御の実証を行っ	
イス等の開発を推進する。	膜成長技術(大口径対応技術	l te.	
また、ロジック分野にお			
いては、低電圧動作や高速	(4) Si C高耐圧スイッチ		
不揮発メモリとの混載等			
により消費電力を1/1	平成26年度終了。		
0に低減する低消費電力	(5) SiCウエハ量産化技		
技術等の開発を行う。	術開発		
さらに、パワー半導体の			
分野では、社会的にニーズ			
の高い低損失化を目指し	(7) S i C高耐圧大容量パ		
て、従来のシリコン(Si)			
への代替が期待される炭	(8) 大口径対応デバイスプ		
(S i C)、窒化	ロセス装置開発		
ガリウム (G a N) 等の半			
導体について、6インチウ			
エハの成長技術、従来のS			
i と比べて電力損失が1	平成26年度終了。		
/100となるデバイス	(10)新世代Siパワーデ		
製造技術、高温動作(20	バイス技術開発		
0℃以上)でも使用可能な	新世代Siパワーデバイス		
抵抗器・コンデンサ等受動			
部品の開発等を推進する。	年度までの成果であるIGB		
半導体の実装技術につ			
いても注力する。半導体の	プロセスのインテグレーショ		
微細加工技術も限界が近	ンを行い、目標とするパワー		
づいてきていることから、	デバイスの先行実証を目指		
	す。また、高耐圧・大電流IG		
	BTデバイスの試作及び評価		
	l		
短縮化、データ伝送量の増			
大を図ることで、高速処			
理、多機能集積化、低消費	ウエハ・プロセス評価では、		
電力化が可能となるデバ			
イスを開発する。	し、ライフタイムを劣化させ		
イスを開光する。			
	るプロセス要因を特定すると		
	ともに、10 μ s 以上のライ		
	フタイムを有するIGBTの		
	動作を示す。ドライブ回路開		
	発では、試作したIGBTモ		
	ジュール/ゲート実装基板/		
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1 1-1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	C/インターフェース内蔵周		
	辺回路と組合せ、平成27年		
	度にシミュレーション実証し		
	たノイズ耐性の3倍化とゲー		
	ト波形制御の実証を行う。		
	研究開発項目②次世代パー	研究開発項目② 次世代パワーエレクト	
	ワーエレクトロニクス技術	ロニクス技術開発(グリーンITプロジ	
	開発(グリーンITプロジェ	エクト)	
	(クト)	平成24年度終了。	
	平成24年度終了。		
	研究開発項目③ 次世代パー	研究開発項目③ 次世代パワーエレクト	
	ワーエレクトロニクス応用	ロニクス応用システム開発	
	ンステム開発	(1)次世代パワーエレクトロニクス応用	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	次世代パワーエレクトロニ	システム開発の先導研究	

クス応用システムに関する	2年間の最終年度に当たり、各6テーマと
技術の開発を目的に、以下の	もに当初目標の達成を確認した。さらに次
研究開発を実施するととも	年度以降の助成での継続についてステー
に、民間企業等が実施する実	ジゲート評価を実施し、継続希望3テーマ
用化開発を支援する。	のうち1テーマを採択した。
(1) 次世代パワーエレクト	(2)次世代パワーエレクトロニクス応用
ロニクス応用システム開発の	システム開発の実用化助成
先導研究	2電源2インバータ方式の電動システム
新材料パワーデバイスを用し	開発については、実車にて検証を実施し、
いた革新的な応用システムの	全ての開発項目で予定通りの進捗を確認
コンセプト実証に取り組み、	した。6.5kVモジュール開発について
実証を通じて、今後の技術的	は、試作評価においてSiと比較しSiC
課題の抽出等を行う。	では出力密度が2倍であることを確認し、
(2) 次世代パワーエレクト	アセンブリー性、絶縁性も目標達成を確認
ロニクス応用システム開発の	した。パワーモジュール製品の実用化とそ
実用化助成	の短期納入のための生産システムの構築
新材料パワーデバイスを用	については、モジュール試作ライン構築な
いたインバータ等の実現に必	ど順調な開発を確認した。デバイスについ
要となる材料、設計技術、実	ては、競争力強化に向けトレンチMOSの
装技術等の開発に向けた要素	組み込みを実施した。また、当初平成31
技術の研究開発と統合技術の	年末までの延長予定を平成29年度末ま
研究開発に取り組む。また、	でに短縮し、早期実用化を図る。
その開発状況を評価すること	
で最終目標達成のための課題	
を抽出し、解決の技術的見通	
しを明確にする。	
2. 次世代スマートデバイス -	2. 次世代スマートデバイス開発プロジェ
開発プロジェクト [平成2]	クト [平成25年度~平成29年度]
5年度~平成29年度]	研究開発項目① 車載用障害物センシン
次世代交通社会の実現に必	グデバイスの開発
須となるエレクトロニクス技	(1)平成27年度に試作した128画素
術の開発を目的に、以下の研	アレー状の受光デバイス及び回路をベー
究開発を実施するとともに、	スに、3,120画素の大規模アレー測距
民間企業等が実施する実用化	センサデバイス及び回路を設計し、シミュ
開発を支援する。	レーションにより成立性を確認後、ウエハ
	試作に着手した。
研究開発項目① 車載用障害	(2)平成27年度までに開発した三次元
物センシングデバイスの開発	積層プロセスの各要素技術について、車載
(1) 平成27年度に試作し	信頼性確立のための課題抽出し、課題の解し
たアレー状の受光デバイス及	決及び車載信頼性の評価に着手した。Cu
び回路をベースに、大規模ア	メッキTSVの車載信頼性の確認を完了
レー測距センサデバイス及び	し、はんだTSVの接続に関する課題解決
回路を設計し、シミュレーシ	の目途を得た。一方三次元積層のプロセス
ョンにより成立性を検証す	条件については、印刷TSVのコスト低
る。	減、生産性向上に寄与するプロセス装置の
(2) 平成27年度までに開	設計、部品製造を終え、平成29年度の信
発した三次元積層プロセスの	頼性、コスト検証に目途を付けた。
各要素技術について、車載信	(3)一体型測距センサモジュールにおい
頼性確立のための課題抽出及	て、委託事業で開発中の大規模アレー測距
びプロセス条件のブラッシュ	センサデバイスとともに使用する、高出力
アップを図る。	LD、電子スキャナ、受発光レンズ及び同
(3) 平成27年度に製作し	期制御マイコンボードの設計、試作、動作
た、高出力LD、電子スキャ	検証を完了した。
ナ、アレー状受光デバイス、	
受発光レンズ及び同期制御マ	
イコンボードから成る一体型	
測距センサモジュールを試作	
= : ::	
し、動作検証を行う。	

	研究開発項目② 障害物検知・危険認識ア
知・危険認識アプリケーショ	プリケーションプロセッサの開発
ンプロセッサの開発	平成27年度終了。
平成27年度終了。	
	│ 研究開発項目③ プローブデータ処理プ │
ータ処理プロセッサの開発	ロセッサの開発
(1) 平成27年度までに基	(1) 三次元プロセッサに関して、レイア
本仕様の設計を終えた三次元	ウト設計を行い、タイミング、P I 、S I
プロセッサに関し、レイアウ	等の観点でシミュレーションにより製造
	, we want to the second of the
ト設計を完了させ、タイミン	可能なことを確認した上で、実証プロセッ
	サのウエハ試作に着手し、完成した。
検証により製造可能なことを	(2)パッケージ基板の設計・試作並びに
確認し、その半導体ウエハの	電源及び冷却を含めた評価システムの設
試作等を開始する。	計を完了し、(1) で完成したウエハの3
(2) 平成27年度までに得	次元積層化のための処理やシステムの試
られた成果を基に、パッケー	作を行い、一部完了した。
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ジ基板の設計・試作並びに電	
源及び冷却を含めた評価シス	
テムの設計・試作を行う。	
3. クリーンデバイス (※) 社 -	3. クリーンデバイス社会実装推進事業 ●世界でも歴史的に著名な東大寺のクリー
会実装推進事業 [平成26	[平成26年度~平成28年度] ンビーコンの観光ガイド実証、埼玉新交
年度~平成28年度]	平成26年度採択の5テーマと平成2 通で車両の窓に国内初の透明ディスプレ
クリーンデバイス製造事業	
	の成果目標を達成した。各テーマについ SPring-8でSiC (炭化ケイ素)
携の上で省エネルギーに資す	┃ て、実装・実証を行い各ユースケースへの ┃ 小型電源モジュールを用いた加速器電源 ┃
るクリーンデバイスを活用し	実用化と普及に必要な共通仕様を策定し 装置の実証、KTN光制御デバイス用い
た社会課題解決及びユースケ	た。 た硬性内視鏡で世界初の生体組織の3次
一人 一人 一人 一人 具体的な製品とサービ	特に、おもてなしや公共性のあるユース 元イメージング実証実験より共通仕様を
スの明確化)を創出する。さ	ケース実証として、埼玉新交通での車両の 策定。
	車窓への透明ディスプレイ実装・実証、東
の仕様を整理し、実装・実証	大寺でのクリーンビーコンの観光ガイド ●策定した共通仕様は、コンソーシアム(W
することにより、クリーンデ	(ナビゲ―ション)の実装・実証、SPr INDSネットワーク、可視光半導体応
バイス普及に向けた信頼性・	ing-8でのSiCを用いた加速器電源 用コンソーシアム、WGB ^{※2} 実装コンソ
安全性及び標準化の方針と計	装置の実証により医療用加速器の信頼性 一シアム)やWG(半導体利活用委員会)
画を策定する。	の検証、化学合成プラントへのマイクロ波 等を設立して、事業終了後も国際標準化
平成28年度は、これまで	GaN増幅器適用による省エネ性の検証 やデファクト標準を目指す体制を構築。
に採択されたテーマを継続し	を行なった。本実証では、記者会見および
て実施する。	ニュースリリースを発行し、広く技術の普 ※2:Wide Gap Band の略。SiCを含む次
※クリーンデバイス:省エネ	及に向けた広報活動も行った。 世代半導体の半導体物性を表す用語
ルギーに資する革新的デバイ	市場を広げる取組として、環境発電デバ
スであり、高周波半導体、不	イス(TC47)、平面ディスプレイ(T
揮発メモリ、光エレクトロニ	C110)の標準規格のドラフト案を策定
クス、低電力LSI、パワー	して国際標準化委員会に提案した。さら
デバイス、環境(光、熱、振動)	に、技術の普及と標準化を図るため、コン
発電デバイス等の特定用途向	ソ ー シアムを設立 (W I N D S ^{*1} ネット
けに実用化間近で、社会に実	ワーク、可視光半導体応用コンソーシア
装されることで省エネルギー	ム)し、シンポジュウム(排熱発電シンポー
効果が期待されるデバイスと	ジュウム) を開催した (P J 終了後も継続
定義する。	して開催を計画)。
7232 / 00	
	W. 1 . W 1 J. T ; ; ; ;
	※ 1:World Initiative of Novel Devices
	and Systems の略。
(b)家電(ディスプレイ、(b)家電(ディスプレイ、有 -	(b) 家電 (ディスプレイ、有機トランジ
有機トランジスタ、照明 機トランジスタ、照明等)	スタ、照明等)
等) 1. 次世代プリンテッドエレ	1. 次世代プリンテッドエレクトロニクス
家電分野においては、低 クトロニクス材料・プロセス	材料・プロセス基盤技術開発 [平成22
消費電力化、軽量化、低コ 基盤技術開発 [平成22年]	年度~平成30年度]
スト化等を目指した技術 度~平成30年度]	プリンテッドエレクトロニクスの本格
開発を行う。 プリンテッドエレクトロニ	的な実用化のために要求される製造技術
ティスプレイ分野では、「クスの本格的た実用化のため」	()
ディスプレイ分野では、クスの本格的な実用化のため	の高度化及び信頼性向上、標準化の推進等
ディスプレイ分野では、 クスの本格的な実用化のため 今後もスマートフォン、タ に要求される製造技術の高度	の高度化及び信頼性向上、標準化の推進等に資する基盤技術開発を行った。さらに、

ブレット笑中小刑ディ	スト化及び信頼性向上、標準化のト	モデルデバイスの製作を通じて、市場拡
プレイの市場拡大が予	想│推進等に資する基盤技術開発│	大・普及促進等に資する実用化技術開発を
されることから 従本の	夜 を行う。さらに、モデルデバ	総合的に推進することを目的に、以下の研
	肖 イスの製作を通じて、市場拡	究開発を実施した。
農電力が1/9以下か	○│大・普及促進等に資する実用│	
	ら 化技術開発を総合的に推進す	研究開発項目① 印刷技術による高度フ
に入力やセンシンが機	能│ることを目的に、以下の研究│	レキシブル電子基板の連続製造技術開発
も兼ね備えたインタラ	ク 開発を実施する。	平成27年度終了。
ティブな有機ELディ	ス	
プレイ等の開発を進める		
また、高機能材料、印	레 よる高度フレキシブル電子基 	
, , , , , , , , , , , , , , , , , , , ,		
	ク 板の連続製造技術開発	
ス技術の融合を図り、省	エー 平成27年度終了。	
	研究開発項目② 高度TFT -	研究開発項目② 高度TFTアレイ印刷
フレキシブル性を実現	す│アレイ印刷製造のための材│	製造のための材料・プロセス技術開発
	車 料・プロセス技術開発	平成27年度終了。
	*********	十成乙十七次於丁。
続製造技術及びその実	用 平成27年度終了。	
化技術の確立を目指す。		
1-24111 1 - 11411 1	`	研究開発項目③ 印刷技術による電子ペ
体的には、A4サイズの	3	
ランジスタアレイを連	・ よる電子ペーパーの開発	ーパーの開発
50枚生産可能な製造	7 ¹	平成27年度終了。
		,,,,
ロセスの技術、生産タク		研究開発項目④ 印刷技術によるフレキ
は1平米あたり90秒		シブルセンサの開発
下を実現する技術等を	確 発	平成27年度終了。
立する。	平成27年度終了。	
		研究開発項目⑤ カスタマイズ化プロセ
照明分野では、短・中	# 1 1 1 1 1 1 1 1	
	居 ズ化プロセス基盤技術の開発	ス基盤技術の開発
えたLED照明技術の		(1)高生産性カスタマイズ化プロセス技
発と、中・長期的な市場	の 化プロセス技術の開発	術の開発
ニーズを見据えた有機	E 30秒/枚以内の生産性を	カスタマイズ版作製技術の検討を行い、
=		
L照明技術の開発を進		変量多品種生産が可能で、30秒/枚以内
る。LED照明につい	て│変量多品種生産が可能で、プ│	の生産性とプロセス再現性が±10%以
は、GaN基板生成等の	支 ロセス再現性が±10%以内	内となる製造プロセス技術の印刷版の開
	ッ となる製造プロセス技術の開	発指針を得た。
111111111111111111111111111111111111111		7 1111 1 = 17 9
プで蛍光灯を超える発		(2) 高速高精度基板搬送技術の開発
効率や蛍光灯と同レベ	ル (2)高速高精度基板搬送技	TFTアレイ作製工程においてのフィー
72. 1 1 2 12 - 1 1		ルム変形要因を抽出することで、フリーフ
の低コスト化等を目指す	9 7 1 7 1 7	
有機EL照明については	、	ィルム基板を、固定時の精度±10μm以
	・ フィルム基板を、被印刷物セ	内、30秒/枚(A3相当シート)以内の
	ス ット固定時の精度±10μm	速度で生産機中を搬送させるためのフィ
トル等についても技術	開│以内で、30秒/枚(A3相│	ルム変形抑制手段の指針を示した。
発を行う。	当シート)以内の速度で生産	
これらの技術開発は、	L 機中を搬送させる基板搬送技	
	明 術の開発指針を示す。	
上 リ 思 切 で 有 機 上 し 思	り M */	TT MEH TAST II (A)
一 の国際標準化の動きを	考 研究開発項目⑥ フレキシブ	研究開発項目⑥ フレキシブル複合機能
慮しつつ、関係機関と連		デバイス技術の開発
	77 76 178 178 17 18 17 18 17 18 17 18 17 18 17 18 18	
して推進する。	年	(1) フレキシブルデバイスの高感度化、
	(1) フレキシブルデバイス	高信頼性化技術の開発
	の高感度化、高信頼性化技術	フィルム基板上に印刷で形成したセン
	の開発	サ素子において、5 V以下の駆動電圧で動
	フィルム基板上に印刷で形	作し、感度ばらつき10%以下となるセン
	成したセンサ素子において、	サ素子を得るために、誘電率の異なるゲー
	5 V以下の駆動電圧で動作	ト絶縁膜材料の開発指針を得た。
	し、感度ばらつき10%以下	(2)フレキシブルデバイス実装技術の開
	となるセンサ素子の開発指針	発
	を得る。	導電バンプ方式を検討し、100℃以下
	(2) フレキシブルデバイス	の温度でフレキシブル基板間導通を確保
	実装技術の開発	できる接合接着技術の開発指針を示した。
	100℃以下の温度でフレ	(3)フレキシブルデバイスの機能複合化
		, , , , , , , , , , , , , , , , , , , ,
	キシブル基板間導通を確保で	技術の開発
	きる接合接着技術の開発指針	感圧素子と感温素子の同一平面上形成
	を示す。	を検討し、フィルム基板上に入力、出力(表

	Τ	(3) フレキシブルデバイス	Т	示)、通信等の機能を複数有する素子を印		
		の機能複合化技術の開発		刷で形成し、電気的に接続制御するための		
		フィルム基板上に入力、出 力(表示)、通信等の機能を複		指針を示した。		
		数有する素子を印刷で形成し、電気的に接続制御するた				
		めの指針を示す。				
	, , , , , , , , , , , , , , , , , , , ,	(c) ネットワーク/コンピ -			●「光 I / Oコア」の実用化に必要な信頼 性の確認及び実装技術を開発するととも	
		ューティング 1. 超低消費電力型光エレク		1.超低消費電力型光エレクトロニクス実装システム技術開発 [平成25年度~平		
		トロニクス実装システム技術		成29年度]	究組合から研究成果の知的財産権と技術	
)普及、ストリーム糸コ テンツサービスの増加	開発 [平成25年度~平成] 29年度]		研究開発項目① 光エレクトロニクス実 装基盤技術の開発	の一部を承継して新設分割する初めての 事例となる新会社の設立準備を推進。	
によ	よる情報トラフィック	省電力かつ高速で小型な光		光エレクトロニクス実装技術に関し、ウ		
		接続を可能にする光電子ハイブリッド回路技術を開発する		エーハレベルで複数のIC、LDを一括実 装し、光ピンを一括露光する実装技術を確		
5,	高速、低消費電力化等	ことにより、LSIを高集積		立した。3 m V / G b p s の実現に必要と		
		化し、I T機器の情報処理機能を高めつつ、省エネ化を実		なる新規光デバイスの開発において、変調 器と受光器の部分試作を行い、CMOSド		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	た技術開発を行うと	現することを目的に、以下の		ライバIC、TIA-ICと組み合わせる		
	こに、それらを組み合わ	研究開発を実施する。 研究開発項目① 光エレクト		ことによって特性を評価することで、3 m V/G b p s 達成の目途を得た。		
って	ていく。具体的には、次	ロニクス実装基盤技術の開発		革新的デバイス技術に関し、空乏型Si		
		光エレクトロニクス実装技 術に関し、光回路、電気回路		Ge光変調器の特性改善を進め、波長1. 3μmにおいて0.6 Vcmの変調効率		
幹系	系のみならずアクセス	及び実装技術における課題抽		を達成した。フォトニック結晶光ナノ共振		
		出・最適化を行い、消費電力 3 mW/G b p s の実現に向		器については、Q値1,100万を達成した		
		けて、回路設計及び試作等を		た。		
		行う。 革新的デバイス技術に関				
		し、シリコン上集積量子ドッ				
		トレーザー技術、スローライ ト光変調器技術等の基本動作				
電子	子のハイブリット技術	実証等を継続する。				
	より現状電気配線に比 3割の省電力かつ高速					
	を実現する技術等を開					
発す	トる。 ミた、システムとしての					
	当費電力性能(電力当た					
	の処理性能)を10倍に るため、集積回路内の電					
, -	17世紀、朱原四路四の电					
	ナフ化を実現する新し					
	コンピューティング技 等を開発する。					
		研究開発項目② 光エレクト - ロニクス実装システム化技術		研究開発項目② 光エレクトロニクス実装システム化技術の開発		
		の開発		サーバボードのシステム化技術に関し、		
		サーバボードのシステム化技術に関し、ハイエンドサー		大規模 LSIと小型集積光トランシーバ を同一のパッケージ基板に搭載する光 I		
		バにおけるCPU間の光イン		/Oの課題抽出、基本設計を行い、CPU		
		ターコネクションに最適な光 デバイスの構成及び実装構造		間接続向け高密度光 I / Oの仕様を決定した。		
		の部分試作を開始する等、実		ボード間接続機器及び筐体間接続機器		
		用化に向けた課題抽出を行		のシステム化技術に関し、光 I / Oコアを 搭載した光モジュールを用いた評価シス		
		ボード間接続機器及び筐体		テムの仕様を検討し、実用化に向けた性		
		間接続機器のシステム化技術 に関し、集積光トランシーバ		能、機能検討および信頼性評価を継続した		
		に因し、朱傾儿ドノイン一ハ		た。		

を搭載したAOC(Active	データセンタ間接続機器のシステム化
Optical Cable) を実際のシス	技術に関し、実装面積において中間目標の
テムを模した評価用ボード間	1/2の小型化、30W程度の消費電力低
システムを模した機器に組込	減の目処を得た。
み性能及び機能評価を行うと	企業間ネットワーク接続機器のシステ
/ 1=11=2 = 1/11=11 1 = 1 = 1 = 1	
ともに信頼性評価を継続す	ム化技術に関し、送受一体型モジュールの
	光損失低減のための構造最適化を行い、T
データセンタ間接続機器の	WDM-PON用一芯双方向光トランシ
システム化技術に関し、トラー	ーバのアナログフロントエンド回路を含
	むモジュールの基本構成を検討した。
し、トランシーバ実装面積に	IEEE、ITU-T等の関連標準化動
	, , , , , , , , , , , , , , , , , , , ,
ついて中間目標の1/2の小	向の情報収集を行うとともに、IECにお
型化等を検証する。	ける光接続部品のデジュール標準化提案
企業間ネットワーク接続機	を行った。また、CFP4級デジタルコヒ
7,7,7,7	
器のシステム化技術に関し、	ーレントトランシーバに搭載する超小型
一芯双方向光トランシーバの	光送受信デバイス等の標準化を推進した。
実用化に向けて省電力化開発	
を進めるとともに、モジュー	
ルの信頼性評価に着手する。	
O I F (Optical Internet-	
working Forum) において、小	
型光トランシーバ等に搭載す	
き続き行う	
	O Wemp わり () ペーン (全D サージー ガニ)
2. 戦略的イノベーション創	- 2. 戦略的イノベーション創造プログラム
造プログラム (SIP) 次	(SIP) 次世代パワーエレクトロニク
世代パワーエレクトロニクス	ス [平成26年度~平成30年度]
[平成26年度~平成30年]	SiCやGaN等の次世代材料を中心
	に、次世代パワーエレクトロニクスの適用
本事業では、SiCやGa	用途の拡大や普及拡大、性能向上を図ると
N等の次世代材料を中心に、	ともに、一層の省エネルギー化の促進と産
次世代パワーエレクトロニク	業競争力強化を目指し、各々の研究開発を
スの適用用途の拡大や普及拡	進め、一部の研究では連携や統合による体
大、性能向上を図り、今後一層	
	制強化を進めた。
の産業競争力の強化及び省エ	
ネルギー化を推進することを	研究開発項目① SiCに関する拠点型
目的に、以下の研究開発を実	共通基盤技術開発
施する。	SiCウエハ・デバイス・モジュールと
	も、当年度目標をほぼ達成した。デバイス
研究開発項目① SiCに関	開発で注力すべき課題を整理し研究加速
する拠点型共通基盤技術開発	を行った。また、出口に向けた取組として
SiCパワーエレクトロニ	モジュール分野では他テーマとの連携を
クスの基盤技術を強化するた	開始した。
め、引き続き次世代SiCウ	PAPE CCO
エハの技術開発、次世代Si	
Cデバイスの技術開発及び次	
世代SiCモジュールの技術	
開発を実施する。	
研究開発項目② G a Nに関	研究開発項目② GaNに関する拠点型
する拠点型共通基盤技術開発	共通基盤技術開発
G a Nパワーエレクトロニ	縦型GaNパワーデバイスの基礎特性
クスの基盤技術を強化するた	獲得や基礎プロセス確立を推進し、実現性
め、引き続き次世代G a Nウ	を向上させた。さらにウエハの高品質化も
「W、JIO MIO 外 ETN G a N ツ	
© TTVGHEAN II SOON III IV ©	着実に推進した。
エハの技術開発及び次世代G	15/1-1E/C 0.100
エハの技術開発及び次世代G a Nデバイスの技術開発を実	
a Nデバイスの技術開発を実	
a Nデバイスの技術開発を実施する。	
a Nデバイスの技術開発を実施する。 施する。 研究開発項目③ 次世代パワ	研究開発項目③ 次世代パワーモジュー
a Nデバイスの技術開発を実施する。	
a Nデバイスの技術開発を実施する。 施する。 研究開発項目③ 次世代パワーモジュールの応用に関する	研究開発項目③ 次世代パワーモジュー ルの応用に関する基盤研究開発
a Nデバイスの技術開発を実施する。 研究開発項目③ 次世代パワーモジュールの応用に関する基盤研究開発	研究開発項目③ 次世代パワーモジュー ルの応用に関する基盤研究開発 SiC適用の次世代パワーモジュール
a Nデバイスの技術開発を実施する。	研究開発項目③ 次世代パワーモジュー ルの応用に関する基盤研究開発 SiC適用の次世代パワーモジュール を使いこなすための基礎研究及び産業応
a Nデバイスの技術開発を実施する。 研究開発項目③ 次世代パワーモジュールの応用に関する基盤研究開発	研究開発項目③ 次世代パワーモジュー ルの応用に関する基盤研究開発 SiC適用の次世代パワーモジュール

幅を拡げるために、引き続き 次世代パワーモジュールを用 いた高効率・高性能電力変換 システム等の開発を行う。	は、連携先を研究体制に含めたことによ
研究開発項目④ 将来のパワーエレクトロニクスを支える基盤研究開発 革新的な性能向上に資する基礎的な領域の研究を行うため、引き続き新材料基盤技術、新プロセス・評価技術、新回路及びソフトウエアの開発を実施する。	ロニクスを支える基盤研究開発 酸化ガリウム及びダイヤモンドの新材料領域では注力部分を決め、着実に推進した。新回路・ソフトウエア領域では動作実証を開始し、産業応用開始のために成果の見える化を推進し、研究開発を加速させ
3. 戦略的イノベーション創造プログラム(SIP) 重要インフラ等におけるサイバーセキュリティの確保 [平成27年度~平成31年度] 本事業では、重要インフラ等におけるサイバーセキュリティを確保するために、重要インフラサービスの安定運用を担う制御ネットワーク及び制御ネットワークを構成する制御・通信機器(以下「制御・通信機器」という。)のサイバー攻撃対策を目的として、以下の研究開発を実施する。	(SIP) 重要インフラ等におけるサイバーセキュリティの確保 [平成27年度~平成31年度] 本事業では、重要インフラ等におけるサイバーセキュリティを確保するために、重要インフラサービスの安定運用を担う制御ネットワーク及び制御ネットワークを構成する制御・通信機器(以下「制御・通信機器」という。)のサイバー攻撃対策を目的として、以下の研究開発を実施した。
研究開発項目① 制御・通信機器と制御ネットワークのセキュリティ対策技術の研究開発 制御・通信機器のセキュリティ確認技術、制御・通信機器及び制御ネットワークの動作監視・解析技術並びに防御技術の研究開発を引き続き実施する。	ットワークのセキュリティ対策技術の研究開発
研究開発項目② 社会実装に向けた共通プラットフォームの実現とセキュリティ人材育成 今後普及・拡大が見込まれるIoTシステムのセキュリティ確保に向けて前記技術を拡張するとともに、技術導入を支援する認証制度の設計、分野を超えた運用のための共通プラットフォームの実現及びセキュリティ人材育成に引き続き取り組む。	研究開発項目② 社会実装に向けた共通 プラットフォームの実現とセキュリティ 人材育成 セキュリティ技術の第三者認証の動向 を調査し、戦略提言を纏めた。また、重要 インフラ事業者の要請に応え、情報共有プ ラットフォーム早期版の開発を3ヶ月前 倒しで完了した。「無線LANの脆弱性」 「システム攻撃・防御演習」など4種類の 基礎教材と指導要領を開発した。

4. I o T推進のための横断 4. I o T推進のための横断技術開発プロ ●一部のテーマについて、初年度からユー ザー側のアドバイザーを含めた委員会を 技術開発プロジェクト ジェクト 「平成28年度~平成32年 成28年度~平成32年度] 開催。本プロジェクトでの構想を説明し、 本事業は、実世界を基にデ I o T社会のスマート化を実現する革 開発対象の端末・システムの要求仕様等 ータが生成され、サイバー世 新的基盤技術の開発に関して、新たに11 について意見交換を実施。 界での処理を経て実世界に反 テーマを採択し、研究開発を開始した。 研究開発面においては、電力効率10倍 映され、更に新たなデータが ●横断的適用分野の拡張に向け、開発段階 生成される一連の経路におい 以上としうる要素技術の確立に向け必要 から潜在ユーザーや構成機器ベンダー、 となる試作チップ・機器等の仕様策定、部 て必要となるデータの収集、 商社等(23社)により構成されるコン 蓄積、解析、セキュリティ等 分的試作の実施、シミュレータによる実現 ソーシアムの設立準備(平成29年6月 設立)、脳型推論ハードウェア等に係る人 性確認等を行った。 の次世代のIoT社会を支 え、複数の応用分野への適用 マネジメント面においては、プロジェク 材育成スクールを実施。 が可能な横断的基盤技術開発 トリーダーによる全ての実施者の研究現 に幅広く取り組むとともに、 場訪問を実施し、研究開発及び実用化に向 既に確立されている要素技術 けた取組に関して指導を行った。 また、外部有識者により構成される技術 も含めて個別技術を統合化 し、システムとして最適にデ 推進委員会を開催し、研究進捗の確認及び ータ処理・制御を行うために 事業化の見通しに係る指導を実施した。 必要となる基盤技術、実装技 IoT推進コンソーシアム/IoT推 術等の研究開発を行う。 進ラボと連携した公募等を実施し、IoT また、経済産業省の政策、 社会の実現に向けて必要となる技術に関 する技術課題や周辺技術に関する7件の IoT推進コンソーシアム等 と適切に連携するともに、成 テーマを新たに採択し、研究開発を実施し 果最大化のため、最新の技術・ 市場動向把握、研究開発から ユーザ・ドリブン型で出口を見据えた基 盤技術開発を行うため、一部のテーマにつ 社会実装までの一貫した戦略 策定、ユーザー企業との連携 いて初年度からユーザー側のアドバイザ ーを含めた委員会の開催、潜在ユーザーや 促進に係る支援等を行う。 具体的には、以下の研究開 構成機器ベンダー等により構成されるコ 発項目について公募を行い、 ンソーシアムの設立準備、脳型推論ハード 研究開発を実施する。 ウェア等に係る人材育成スクールを行っ 研究開発項目① 革新的基盤 技術の開発 2030年時点において高 度な技術が浸透した社会を実 現するために必要となる革新 的基盤技術を確立する。 研究開発項目② 先導調査研 IoT技術に関連する分野 において技術シーズを発掘・ 育成をするため、先導調査研 究を行う。先導研究で技術の 確立に見通しがついた研究開 発等については必要に応じ公 募あるいはステージゲート審 査等を経て、基盤技術の研究 開発等へ繋げていく。 また、イノベーションの創 出や本事業における成果の最 大化に繋げるためには、より 広域な分野において関連する 技術シーズの育成及び技術課 題の解決に努める必要がある と考えられることから、周辺 技術や関連課題に係る開発及 び研究開発に直結する調査を 実施する。

	- T - 平井保田が加出のよ	□ Ⅰ . 平井採田が加油のよはのユープ	▲十、プンノ)が、ション場上の排放)マル	
	5. IoT技術開発加速のたかまでは、1 oT技術開発加速のたかまでは、2 8年度 1 では、2 9年度 1 では、2 9年度 1 では、3 では、4 では、4 では、5 では、5 では、6 では、6 では、6 では、6 では、6 では、6 では、6 では、6	5. I o T技術開発加速のためのオープンイノベーション推進事業 [平成28年度〜平成29年度] 平成28年度は公募を行い、研究開発項目①(委託)1件、研究開発項目②(助成)6件のテーマを採択し、実施体制を構築した。	●オープンイノベーション拠点の構築においては、平成29年度から本格的に実施する拠点を活用したIoT技術開発に向けて、主要研究開発装置の仕様検討と導入を進め、拠点の整備を開始。拠点を活用した研究開発に関する6テーマにおいては、試作に向けた設計を進めるなど、各助成先の研究実施場所で検討できる内容を中心に研究開発を実施。	
	研究開発項目① IoT技術開発加速のための設計・製造基盤開発 IoT社会に対応するためのシリコン系半導体、有機半導体、MEMS、RFモジュール等の電子デバイスの開発に対し、開発装置コスト、リスク等から民間企業単独では挑戦できないような開発・試作を行うための設計・製造基盤を構築する。	研究開発項目① I o T技術開発加速のための設計・製造基盤開発 平成29年度から本格的に実施する設計・製造基盤を活用したIoT技術開発に向けて、主要研究開発装置の仕様検討と導入を進め、設計・製造基盤の整備を開始した。		
	研究開発項目② I o T技術開発の実用化研究開発 事用化研究開発 事業 で ままな で ままな で 表表 で 表表 で 表表 で 表表 で 表表 で	研究開発項目② I o T技術開発の実用 化研究開発 研究開発項目①の設計・製造基盤は平成 29年度半ばに整う予定であり、平成28 年度は試作に向けた設計を進めるなど、各 助成先の研究実施場所で検討できる内容 を中心に研究開発を行った。		
vii)材料・ナノテクノロジー分野	(vii) 材料・ナノテクノロジー分野	(vii)材料・ナノテクノロジー分野		

		T	T			
	ノチューブやグラフェン					
	などこれまでにない優れ					
	た特性を持つ新材料も登					
	場しており、今後の産業へ					
	の応用が大きく期待され					
	ている。また、自動車や電					
	子機器等の製品性向上の					
	ためには、希少金属が使用					
	されているが、希少金属は					
	世界での産出地域が限定					
	されているため、需給状況					
	によって価格が変動し、使					
	用する産業が影響を受け					
	る可能性がある。このため					
	資源セキュリティの観点					
	から希少金属の代替技術					
	や使用量低減技術も重要					
	性を増している。					
	第3期中期目標期間中					
	では、我が国の産業構造の					
	特徴を生かし、川上、川下					
	産業の連携、異分野異業種					
	の連携を図りつつ、革新的					
	材料技術・ナノテクノロジ					
	ーや希少金属代替・使用量					
	低減技術等の課題につい					
	て重点的に取り組むこと					
	とし、以下の技術開発を推					
	進する。					
a. 革新的材料技術・ナノ	_ , _ ,	(a) 革新的材料技術・ナノ	_	(a) 革新的材料技術・ナノテクノロジー	●CNTを利用した材料開発として、世界	
テクノロジー	ノテクノロジー	テクノロジー		1. 低炭素社会を実現するナノ炭素材料実	最高水準の耐熱性(耐熱性450℃で2	
市場ニーズに対応した高	1 1 1 1 1			用化プロジェクト [平成22年度~平成	時間安定)等を有するスーパーエンジニ	
強度化、軽量化等の高機能				28年度]	アリングプラスチックの開発や、サーバ	
材料に関する技術開発をユ	- // // - //			ナノ炭素材料の実用化に向けた開発及	一等の熱問題を解決する高性能シート系	
	め、市場ニーズに対応した			びそれに資する共通基盤技術の民間企業	熱界面材料 (熱抵抗 0.05℃/W)の量	
製造コストダウンも考慮し				等が実施する実用化開発を支援した。	産化、CFRPの衝撃強度向上でゴルフ	
て実施することとする。		けた開発及びそれに資する共			クラブ応用を見込むなど、幅広い分野で	
	をユーザー企業と連携し、	通基盤技術の民間企業等が実			革新材料を創出。	
	将来の製造コストダウン	施する実用化開発を支援す			1 WITTE CATEGO	
	も考慮して実施する。	S.				
	具体的には、カーボンナ					
	ノチューブ、グラフェン等	TTが明が云口(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		开办明水蛋口() .) .) 出土垃圾 ~ 点里 !!		
	について、特定の産業用途	圳九川光頃日① // 灰糸竹	_	研究開発項目① ナノ炭素材料の実用化		
	に用いることが可能な製	料の実用化技術開発		技術開発		
	造技術や複合化技術を確	ナノ炭素材料を用い、高耐熱性なる大		事業化に向けて24テーマを実施した。		
	立する。	熱性及び高熱伝導性を有す		このうち、1テーマは前倒しで事業化予定		
	また、有機ELや有機薄	る、又は機械的に高強度を有		である。19テーマは計画通り進捗して5		
	膜太陽電池に用いられる	する高分子複合部材を開発す		年以内に、3テーマは7年以内に事業化の		
	有機材料等について、信頼	つ。		見込みである。研究開発の進捗について、		
	性評価手法の確立等を行	ナノ炭素材料が有する高電		委員による評価では、各社目標はほぼ達成したの評価が		
	うとともに、得られた知見	一丁炒别及、牲里住、电燃似效		との評価を受けた。		
	を活かし、関連分野の国際	収特性、熱伝導性を利用した		多くの助成事業の中でも、特に上市が早		
	標準化を推進する。	半導体デバイス、軽量導線、		いのは複合材であり、電波吸収材、放熱材、		
	さらに、将来的に化石資	フレキシブル薄膜及び電磁波		シール材等がターゲット製品となる。特に		
	源の枯渇リスクに対応す	吸収部材を開発する。		放熱材に関しては、前倒しで工場を建設済		
	るため、非可食性バイオマ	ナノ炭素材料が有する高い		であり、数年以内の上市が見込まれてい		
	スなどから化学品を一貫	比表面積、ラジカル捕捉等の		る。一方、高い導電率を必要とする電線や		
	して製造するプロセスを	特性を利用した高密度エネル		半導体用途は、計画より若干遅れて、7年		
	技術的に確立する。	ギーデバイス及び長寿命の二		以内の事業化を見込んでいる。電線や半導		
	1人村は日江一井田二二 7 つり	次電池部材を開発する。		体用途はCNTのキラーアプリとなる可		
		上記ナノ炭素材料を利用し		能性が高い分野であり、今後もフォローア		
		たアプリケーションを実用化		ップを継続して実施する予定である。		
	•					

する場合に必要となるナノ炭	事業成果として助成事業のニュースリ	
素材料を大量生産するための	リースを5件実施、その内記者発表は2件	
技術開発を行う。	実施した。nano-tech2017展	
TXMM/LEH 70	示会では、ナノ炭素のテーマから12社の	
	展示を行った。展示期間中のアクティビテ	
	ィは、サンプル提供依頼65件、共同研究・	
	事業連携依頼23件、名刺交換数582枚	
	であり、活発なビジネスマッチングの場と	
	することができた。	
	7 - 9	
	本事業は平成28年度が最終年度であ	
	り、より高い成果を出すために、PL同行	
	の事業者訪問を実施し、課題の洗い出しを	
	行い、それを基に最終年度のマネジメント	
	を実施した。また、進捗が思わしくない事	
	業者に関しては、更に主任研究員あるいは	
	PM含むメンバーで事業者を訪問し、最終	
	目標に到達できるよう、指導を実施した。	
	また、期末には平成29年度実施予定で	
	ある事後評価に向けて、最終審査を目的と	
	した委員会を開催し、各テーマの評価を行	
	った。	
研究開発項目② ナノ炭素材 -	研究開発項目② ナノ炭素材料の応用基	
料の応用基盤技術開発	盤技術開発	
安全性評価技術として、ナ	事業成果の広報活動として、ニュースリ	
ノ炭素の複合材料の切断、摩	リース3件、サンプル提供26件、論文発	
耗、破砕等のプロセスで発生	表29件、特許出願9件、講演101件を	
する混合粒子からの暴露計測	行った。	
データを蓄積する。また、培	CNTの今後の実用化のため、安全性評	
養細胞試験による有害評価を	価技術開発として、ナノ炭素材料全般の自	
実施する。これらの結果を基	主安全管理支援技術を開発し、安全手引書	
に安全手引書を作成する。	を作成し、ホームページで公開した。	
ナノ炭素材料の分散体評価	ナノ炭素材料の分散体評価技術に関し	
技術として、液中の分散体を	ては、母材中に存在しているCNT分散体	
定量的に示す指針を開発す	の状態を評価する手法を開発した。本技術	
る。母材中に存在するCNT	は複合材開発におけるキーとなる技術で	
分散体の状態を総合的に評価	あり、今後企業による製品開発への貢献が	
する手法の開発を行う。安全	期待される。	
安価で脱離可能なCNT可溶	革新的応用材料開発として、CNT-P	
化剤を開発する。	EEK複合材料開発を行い、その結果射出	
革新的応用材料開発とし	成形可能で高強度・高耐熱な材料を創製し	
て、高耐熱性を有するナノ炭	た。 100μ Fの電気容量を持つマイクロ	
素ゴム応用材料及び樹脂応用	キャパシタを $0.4 \text{mm} \times 0.2 \text{mm}$ のサ	
材料を開発する。CNT銅シ	イズで実現した。また、10個直列接続で	
ート及び線材の生産効率向上	集積化することにより、10V動作電圧で	
並びに大面積化を可能とする	の駆動に成功した。	
技術の開発を行う。高電気容	革新的薄膜形成技術として、連続フィル	
量マイクロキャパシタを標準	ム成膜技術による合成グラフェンで透過	
規格サイズで実現する。	率94%シート抵抗124Ωのものが得	
革新的薄膜形成技術とし	られた。また、キャリヤ移動度10,00	
て、より高品質なグラフェン	$0 \text{ c m}^2/\text{V s}$ を達成した。グラファイト	
を得る指針を獲得し、透明導	剥離によりグラフェン積層膜(基盤から外	
電フィルムの高品質化を達成	して使用可能な自立膜で曲げて使用する	
する。h-BN基板とグラフ	こともできるフレキシブル性を発現)を作	
ェンのデバイスを作製する技	製し、抵抗率2,500Ω・cmを達成し	
	た。グラフェンの電子移動度評価に使用	
術を確立する。更に薄い高分		
	た。 グラフェンの電子移動度評価に使用 される六方晶窒化ホウ素 (h-BN) の評 価および作製を行った。	

2. 次世代材料評価基盤技術	_	2. 次世代材料評価基盤技術開発 [平成		
開発 [平成22年度~平成		22年度~平成29年度]		
29年度]		化学産業の材料開発効率を向上・加速化		
1 1 1				
化学産業の材料開発効率を	I	させることを目的に、有機EL材料及び有機ない。		
向上・加速化させることを目	I .	機薄膜太陽電池材料に関する共通的な評		
的に、有機EL材料及び有機	I	価基盤技術を開発するため、以下の研究開		
薄膜太陽電池材料に関する共		発を実施した。		
通的な評価基盤技術を開発す				
るため、以下の研究開発を実	I	研究開発項目① 有機EL材料の評価基		
施する	±	盤技術開発		
		平成28年度は有機EL照明環境の生		
研究開発項目① 有機EL材		理的・心理的効果の評価技術の開発を実施		
料の評価基盤技術開発		した。		
従来の有機ELの光学的評		人の生理的効果への影響に関して、有機		
価に加え、照明環境の生理的・		EL照明下における心拍数減衰効果、光源		
心理的効果の評価技術の開発	I .	を直視した場合における脳波 α 波の持続		
を行う。人のリラックス度、	I .	等から、リラックス効果が示された。また、		
生体へのストレス等を光源の	I .	OLED照明下での片頭痛減少効果が心		
波長、波長分布等を変えて、	I	理的、生理的評価から認められた。		
医学的手法(生理学手法)及		照明空間評価法として輝度・色度分布を		
		東明至同評価伝として輝及・巴及万布を 全方位的に測定する手法を用いて測定し、		
び心理学手法で測定すること				
で、生理的効果指標及び心理		生理的・心理的効果との相関を評価するこ		
的効果指標を導き、これらを	I	とで、照明空間を効果的に記述するパラメ		
分光波長等の光学的指標と相	'	ータを抽出することができた。		
関付を行う。		これらの成果の情報発信を目的とし、平		
照明空間評価法として輝		成29年2月に新産業技術促進検討会(日		
度・色度分布を全方位的に測		刊工業新聞、モノづくり日本会議主催、N		
定する手法を導入し、生理的・				
		EDO共催)にて成果報告を実施した。		
心理的効果との相関を評価す		EDO共催)にて成果報告を実施した。		
心理的効果との相関を評価することで、照明空間を効果的		EDO共催)にて成果報告を実施した。		
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出		EDO共催)にて成果報告を実施した。		
心理的効果との相関を評価することで、照明空間を効果的				
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出			●有機薄膜太陽電池に関して、既存装置を	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。			●有機薄膜太陽電池に関して、既存装置を 用いて従来よりも1桁高い感度(測定感	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太		研究開発項目② 有機薄膜太陽電池材料		
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発	用いて従来よりも1桁高い感度(測定感	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 フレキシブル基板を用いた 基準素子をロールツーロール		研究開発項目② 有機薄膜太陽電池材料 評価基盤技術開発 バルクヘテロ型基準素子について、水蒸 気透過度及び酸素透過度が異なるフレキ	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発フレキシブル基板を用いた		研究開発項目② 有機薄膜太陽電池材料 評価基盤技術開発 バルクヘテロ型基準素子について、水蒸	用いて従来よりも1桁高い感度 (測定感 度10 ⁻³ cc·m ⁻² ·day ⁻¹ ・atm	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発フレキシブル基板を用いた基準素子をロールツーロールの製膜装置により作製し、フレキシブル素子特有の課題を		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入によ	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発フレキシブル基板を用いた基準素子をロールツーロールの製膜装置により作製し、フレキシブル素子特有の課題を抽出する。短期寿命評価とし		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングに	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発フレキシブル基板を用いた基準素子をロールツーロールの製膜装置により作製し、フレキシブル素子特有の課題を抽出する。短期寿命評価として光加速信頼性試験データの		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 フレキシブル基板を用いた基準素子をロールツの製膜装置により作製し、フレキシブル素子特有の課題を抽出する。短期寿命評価として光加速信頼性試験データの補てん及び解析を進める。		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 フレキシブル基板を用いた基準素子をロールツの製膜装置により作製し、の製膜装置により作製し、フレキシブル素子特有の課題を抽出する。短期寿命評価として光加速信頼性試験データの補てん及び解析を進める。バリアフィルム関連では、		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 フレキシブル基板を用ロルルの製膜装置により作製し、選集を加速を対し、変更が変更が変更がある。 対りアフィルム関連では、有機薄膜太陽電池の信頼性阻		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、照明空間を効果的に記述するパラメータの抽出を行う。 研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 フレキシブル基板を用いし、製膜装置により作製により作製による。短期寿命評価として当りに表現性試験がある。は、対アフィルを連続である。がリアフィルの関連では、有機薄膜太陽電池の信頼性阻害要因を洗い出し、設計性能		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することで、別等を対して、別等を対して、別等を対して、別等を対して、別等でで、別ので、関係で、関係で、関係で、関係で、関係で、関係で、関係で、対ので、対ので、対ので、対ので、対ので、対ので、対ので、対ので、対ので、対の		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における実使用環境評価試験を行った。特に屋内用	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を評価することでするの。 理的効果との相関を評価するので、のので、のので、のので、のので、のので、のので、のので、のので、のので、		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における実使用環境評価試験を行った。特に屋内用無線センサー向けの評価として、a - Si	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ での は 関 を で で で の に で で の は と で で で の は と で で で の が 、 の で い で で で の が で で の で で の で で の で で の で で の で で の で で の で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングによる素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における実使用環境評価試験を行った。特に屋内用無線センサー向けの評価として、a.Si太陽電池に比べ、より低照度でもOPVは	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を対果との相関を評価することでするパラメータの抽とでするのがでは、では、では、では、では、では、では、では、では、では、では、では、では、で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における実使用環境評価試験を行った。特に屋内用無線センサー向けの評価として、a.Si太陽電池に比べ、より低照度でもOPVはセンサーを駆動できることを見出した。	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
心理的効果との相関を対象に記述するに記述するのでは、いっとでするのでででは、いっとですが、ででは、ないででは、ででは、ででは、ないでは、ででは、ないでは、ないでは、ない		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用途や無線センサー用途における実使用環境評価試験を行った。特に屋内用無線センサー向けの評価として、a‐Si太陽電池に比べ、より低照度でもOPVはセンサーを駆動できることを見出した。スズ及びビスマスを用いた素子構造の	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ では、		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクへテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレキシブル基板を用いて素子作製を行い、バリアフィルムからの水蒸気・酸素の侵入による素子劣化の影響を二次元マッピングにより評価した。 Sn系非鉛ペロブスカイト基準セルの作製手法を確立し、光照射試験での安定性を確認した。 農業用環境評価試験を行った。特に屋内用無線センサー向けの評価として、a‐Si太陽電池に比べ、より低照度でもOPVはセンサーを駆動できることを見出した。スズ及びビスマスを用いた素子構造のエネルギー準位図を求め、発電特性との関	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ では、		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレリアフィルムからの水蒸気・酸素の侵入による素子作製を行い、によりの水蒸気・酸素のピングにる素子のよりをでした。 Sn系非鉛ペロブスカイト基準セルの作製・電池により、光照射試験での安定とを確認した。 農業用境・評価試験を行った。特に屋内 i はを確認した。 とり低照度でもOPVはを確認した。 とり低照度でもOPVはを駆動できることを見出した。 スズ及びビスマスを用いた素子構造の異係を議論し、評価解析技術を確立した。 X	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフ、バリアフィルムからの水蒸気・酸素の侵入がによりである素子のでは、ないの影響を二次元がでである。 Sn系非鉛での影響を二次元がでの安定によりに、 Sn系非鉛でし、光照射試験での安定はを確認した。 農業用境に対して、a - Si に屋が出たの といば、ないまでは、より低照度でもOPVはを確認した。 といば、より低照度でもOPVはを駆動できることを見出した。 スズルギーを駆動できるととを見出した。 スズルギーを駆動できるが、発電特性との スズルギーを認識し、評価解析技術を確立した。 X PS法によりスズ酸化状態の定量解析を	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ では、		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフノバス 気透過度及び酸素透過度が異な行い、によりアフィルムからの水蒸気・酸素の侵入がによりの水蒸気・酸素のピングにる素子の形式をでした。 Sn系非鉛立し、光照射試験での安定性を確認した。 との事法を確立し、光照射試験での安定性を確認した。 農業環境評価試験を行った。はないより低照度でもOPVはを発見出した。 との事法によりの事価に関度でもOPVは スズ及びビスマスを見出した。 スズルギーを駆動できるとを見出した。 スズルギーを駆動できるより、発電特性とた。 スズ酸により、水で、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、水が、	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクヘテロ型基準素子について、水蒸気透過度及び酸素透過度が異なるフレバリアフィルムからの水蒸気・酸素の侵入グによる素子(他の影響を二次元マッピングが表別である。 Sn系子劣化の影響を二次元イト基準で安定とよりにた。 Sn系非鉛でし、光照射試験ではといりでものとした。 とは、 とは、 といけのには、 といれば、 とい	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクマラ型基準素子について、水蒸気透過度及び酸素透過度が異なるファスを関系で表現をでは、ないりました。 Sn系子(を変して、水薬を上れるの影響を二次のでは、 Sn系子では、 Sn系子をでは、 Sn系子の関が、 Sn系子をでは、 Sn系子をでは、 Sn系子をでは、 Sn系子の関が、 Sn系子ののでは、 Sn系子のので	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 不可型基準素子について、水蒸気透過度が異なるい、こので、水素気が異なるが異なるが異なるが異なるが異なるが異なるが異なる。といれが、ないの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの地域の一般には一つの地域の一般には一つの地域の一般には、また、の関系をでは、といるのでは、いるのでは、いる	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 バルクマラ型基準素子について、水蒸気透過度及び酸素透過度が異なるファスを関系で表現をでは、ないりました。 Sn系子(を変して、水薬を上れるの影響を二次のでは、 Sn系子では、 Sn系子をでは、 Sn系子の関が、 Sn系子をでは、 Sn系子をでは、 Sn系子をでは、 Sn系子の関が、 Sn系子ののでは、 Sn系子のので	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	
・ で		研究開発項目② 有機薄膜太陽電池材料評価基盤技術開発 不可型基準素子について、水蒸気透過度が異なるい、こので、水素気が異なるが異なるが異なるが異なるが異なるが異なるが異なる。といれが、ないの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を二次のの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの影響を一つの地域の一般には一つの地域の一般には一つの地域の一般には、また、の関系をでは、といるのでは、いるのでは、いる	用いて従来よりも 1 析高い感度(測定感度 10^{-3} c c・m ⁻² ・d a y ⁻¹ ・a t m $^{-1}$ レベルまで可)で評価する高精度な手	

3. 非可食性植物由来化学品 │ -	3. 非可食性植物由来化学品製造プロセス	●試作物の提供先候補に対して使用用途や	
製造プロセス技術開発 [平	技術開発 「平成25年度~平成31年	応用製品の実用化イメージ等のヒアリン	
成25年度~平成31年度]	度]	グを個別に行い製造プロセスの最適化を	
771			
将来的に石油資源の供給リ	将来的に石油資源の供給リスクを克服	効率的に進めたことで、10kg/日の	
スクを克服し、かつ、持続可	し、かつ、持続可能な低炭素社会を実現す	製造体制を計画より6ヶ月早く確立する	
能な低炭素社会を実現するこ	ることを目的に、以下の研究開発を実施す	ことができ、ユーザー企業等への試作物	
とを目的に、以下の研究開発	るとともに、民間企業等が実施する実用化	提供を開始。	
= : : : : : : : : : : : : : : : : : : :		ルドで所知。	
を実施するとともに、民間企	開発を支援した。		
業等が実施する実用化開発を			
支援する。	研究開発項目① 非可食性バイオマスか		
	ら化学品製造までの実用化技術の開発		
研究開発項目① 非可食性バ	(1)植物イソプレノイド由来高機能バイ		
イオマスから化学品製造まで	オポリマーの開発		
の実用化技術の開発	開発したバイオトランスポリイソプレ		
(1) 植物イソプレノイド由	ンの高度精製技術をスケールアップし、パ		
来高機能バイオポリマーの開	イロットプラント設備において、試運転を		
発	行い、連続運転操業性を確認した。耐衝撃		
市場導入へ向けて、各々の	性バイオ素材の技術開発では、混錬技術開		
商品に求める特性を見極め、	発と試作品の商品価値検討を行った。炭素		
既存の競合素材との差別化を	繊維強化バイオ素材の技術開発では、連続		
図るべく、製造技術の改良に	押し出しにおける加工性の検証と耐衝撃		
取り組むとともに、コスト試	性の検討により、1バッチ100g~kg		
算による事業性評価を行う。	の製造方法を確立した。コスト試算によ		
(2) 非可食性バイオマス由	り、事業化、商品化の見通しを得た。		
来フルフラール法THF製造	(2)非可食性バイオマス由来フルフラー		
技術開発	ル法THF製造技術開発		
ベンチスケール設備を用い	フルフラールからのTHF連続プロセ		
た実証試験を継続し、製造コ	スを構築し、ベンチスケール設備を用いた		
ストの評価等の事業化に関す	実証試験を継続し、木質系フルフラールか		
るFSを進めるとともに、非	らも一貫製造可能であることを示した。併		
可食性バイオマス由来の製品	せて、非可食性バイオマス由来の製品サン		
サンプルを作製し、純度や物	プルを作製し、純度や物性を確認した。		
性を確認する。			
研究開発項目② 木質系バイー	研究開発項目② 木質系バイオマスから		
	1朔 九河元字日② 「小貝が~~」4 ・ ハイ・ワー		
ナーコムとルヴロナベの 母	ルヴロナズの一世制光プロレフの明秋		
オマスから化学品までの一貫	化学品までの一貫製造プロセスの開発		
製造プロセスの開発	(1)高機能リグノセルロースナノファイ		
製造プロセスの開発	(1)高機能リグノセルロースナノファイ		
製造プロセスの開発 (1) 高機能リグノセルロー	1 - 1 - 1 - 1		
製造プロセスの開発 (1) 高機能リグノセルロー スナノファイバーの一貫製造	(1)高機能リグノセルロースナノファイ バーの一貫製造プロセスと部材化技術開 発		
製造プロセスの開発 (1) 高機能リグノセルロー スナノファイバーの一貫製造 プロセスと部材化技術開発	(1) 高機能リグノセルロースナノファイ バーの一貫製造プロセスと部材化技術開 発 平成27年度までに完成した変性リグ		
製造プロセスの開発 (1) 高機能リグノセルロー スナノファイバーの一貫製造 プロセスと部材化技術開発 昨年度までに完成した試料	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料作製プラントを活用し、部材	(1) 高機能リグノセルロースナノファイ バーの一貫製造プロセスと部材化技術開 発 平成27年度までに完成した変性リグ		
製造プロセスの開発 (1) 高機能リグノセルロー スナノファイバーの一貫製造 プロセスと部材化技術開発 昨年度までに完成した試料	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアッ	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発によ		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユ		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC NF強化樹脂材料の社会実装	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC NF強化樹脂材料の社会実装において重要な加工技術の開	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモ		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC NF強化樹脂材料の社会実装において重要な加工技術の開発に着手する。また、サンプ	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開		
製造プロセスの開発 (1) 高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC NF強化樹脂材料の社会実装において重要な加工技術の開	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモ		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部材 製造プロセスのスケールアップを図るとともに、リグノC NF強化樹脂材料の社会実装において重要な加工技術の開発に着手する。また、サンプル提供によるユーザー評価を	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料作製プロセスと部材と意味の表がした。部材製造プロセスのスケールアップを図るとともに、リグノCNF強化樹脂材料の社会実装において重要な加工技術の開発に着手する。また、一評価を促進し、製造技術の確立・改	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料作製プラントを活用し、部材製造でを活用し、部分で図るとともに、リグノCNF強化樹脂材料工技術の開発において重要な加工技術の開発において重要なまで、サンプル提供によるユーザーを促進し、製造技術の確立・改善を進める。	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部グリクとともに、リグノC NF強化樹脂材料の社会実装において重要な出て技術の開発に着手する。また、サンプル提供に製造技術の確立・改善を進める。 (2)木質バイオマスから各	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発平成27年度に絞り込んだ前処理技術		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した部材 を選プロセスと部材に完成した部材 を選プロセスとがある。 (2)木質バイオマスから各種化学品原料の一貫製造プロ	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。 (2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発平成27年度に絞り込んだ前処理技術を用いて中間原料サンプルを提供できる		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した試料 作製プラントを活用し、部グリクとともに、リグノC NF強化樹脂材料の社会実装において重要な出て技術の開発に着手する。また、サンプル提供に製造技術の確立・改善を進める。 (2)木質バイオマスから各	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発平成27年度に絞り込んだ前処理技術		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 昨年度までに完成した部材 実までに完成した部材 とまでに完成した部分である。 (2)木質バイオマスから各種化学品原料の一貫製造プロセスの開発	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立し、ユーザー企業等への試作物提供を開始した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。 (2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発平成27年度に絞り込んだ前処理技術を用いて中間原料サンプルを提供できる体制作りを行い、各成分利用開発者へ供給		
製造プロセスの開発 (1)高機能リグノセルロースナノファイバーの一貫製造 アロセスと部材化技術開発 昨年度までに完成した説料 作製プラントを活用し、アクト 強造 図るとは がり とと といると を で とと を で で で で で で で で で で で で で で で	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発により、10kg/日の製造体制を確立した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発 平成27年度に絞り込んだ前処理技術を用いて中間原料サンプルを提供できる体制作りを行い、各成分利用開発者は供給された中間		
製造プロセスの開発 (1)高機能リグノセルロリグノーの一貫製造 アイバーの一貫製発 アリノフと部材化技術開発 昨年度までに成した。 で製造でに活用し、かりのでは、 で製造を図れて、 で製造を図れて、 で製造を図れて、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社には、 の社に、 の社に、 ものは、 の社に、 ものは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグノセルロースナノファイバー・樹脂複別ロセスとが関連を関連を関連を関連を関連した。より、10kg/日の製造体制を確立した。また、リグノCNF強化樹脂材料のインによる表面補強・加飾技術の開発というがした。る成分利用開発を提供を開始した。各成分利用開発者は供給された中間原料をベースに化学品原料への変換を検		
製造プロセスの開発 (1)高機能リグノセルロー スナノファ部材化技術開発 昨年度までに成した。部分では、部ででは、部ででは、まずででは、まずででは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグレセルロースナノファイバー・樹脂複合材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発し、より、10kg/日の製造体制を確立した。また、リグノCNF強化樹脂材料のインモールド成形による表面補強・加飾技術の開発を開始した。(2)木質バイオマスから各種化学薬品原料の一貫製造プロセスの開発 平成27年度に絞り込んだ前処理技術を開始した。各成分利用開発者は供給された中間原料サンプルを提供ではもる体制作りを行い、各成分利用開発者に供給された中間原料をベースに化学品原料への変換を対した。また、これらのプロセスをベースに化力では、		
製造プロセスの開発 (1)高機能リグノセルロリグノーの一貫製造 アイバーの一貫製発 アリノフと部材化技術開発 昨年度までに成した。 で製造でに活用し、かりのでは、 で製造を図れて、 で製造を図れて、 で製造を図れて、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社において、 の社には、 の社に、 の社に、 ものは、 の社に、 ものは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグ材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発した。り、10kg/日の製造体制を確立した。また、リグノCNF強化樹脂材料のイン・リグノCNF強化樹脂材料のイン・また、リグノCNF強化樹脂材料のイン・また、リグノCNF強化樹脂材料のイン・ストの一貫製造プロセスの開発 平成27年度に絞り込んだ前処理技術を開始した。十世の一貫製造プロセスの開発 平成27年度に絞り入れた。場所の一貫製造プロセスの開発 平成27年度に絞り入り利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、方面、各域のプロセスの物質収支・コストの最		
製造プロセスの開発 (1)高機能リグノセルロ豊 に元ナノファ部材化技術した開発 に対して、アロセを部がしたがでを活用し、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグ材料の一貫製造プロセス(京都プロセス)において、スケールアップ技術の開発した。り、10kg/日の製造体制を確立した。また、リグノCNF強化樹脂材料のイン・リグノCNF強化樹脂材料のイン・また、リグノCNF強化樹脂材料のイン・また、リグノCNF強化樹脂材料のイン・ストの一貫製造プロセスの開発 平成27年度に絞り込んだ前処理技術を開始した。十世の一貫製造プロセスの開発 平成27年度に絞り入れた。場所の一貫製造プロセスの開発 平成27年度に絞り入り利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、各成分利用開発者に、方面、各域のプロセスの物質収支・コストの最		
製造プロセスの開発 (1) ファン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性リグ材料の一貫製造インアイバー・樹脂を強力では、「京都プロセス(京都プロセス(京都プロセス)の開発し、より、10kg/日の製造体制を確開始した。また、リグノCNF強化樹脂材料の行いよる表面補強・加飾技術の開発した。より、10kg/日の設性物提供を開始した。また、リグノCNF強化樹脂材料の行いよる表面補強・加飾技術の開発を開始した。オマスから各種化学薬品の一貫といるが関連でで、大変を開始した。なり、といるの関系を開始した。おけれた。といるのでは、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に、大変に		
製造プロセスの開発 (1) ファレー 世界 に対して、アリーの一時 に対して、アリーでをでして、アリーでをできるでは、できなが、できるでは、できるできるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるできるできる。 「は、これば、これば、これば、これば、これば、これば、これば、これば、これば、これば	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性複合とでに完成した変性を関立した変性を関立したの一貫製造体制の一貫製造体制を確立した。また、リグノCNF強化樹脂材料の一貫製造体制を開始した。また、リグノCNF強化樹脂材料のの開発した。また、リグノCNF強化樹脂材料のが高いで、10kg/のの試作物提供を開始した。また、リグノCNF強化樹脂材料のが高いで、10kg/ででは、10kg/では、10kg/では、10kg/ででは、10kg/ででは、10kg/ででは、10kg/では、10kg/では、10kg/ででは、10kg/		
製造プロセスの開発 (1) ファン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(1)高機能リグノセルロースナノファイアンティーの一貫製造プロセスと部材化技術開発 でに完成した樹脂を変性り合うになって、一切では、一切では、一切では、一切では、一切では、一切では、一切では、一切では		
製造プロセスの開発 (1) ファレー 世界 に対して、アリーの一時 に対して、アリーでをでして、アリーでをできるでは、できなが、できるでは、できるできるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるでは、できるできるできる。 「は、これば、これば、これば、これば、これば、これば、これば、これば、これば、これば	(1)高機能リグノセルロースナノファイバーの一貫製造プロセスと部材化技術開発 平成27年度までに完成した変性複合とでに完成した変性を関立した変性を関立したの一貫製造体制の一貫製造体制を確立した。また、リグノCNF強化樹脂材料の一貫製造体制を開始した。また、リグノCNF強化樹脂材料のの開発した。また、リグノCNF強化樹脂材料のが高いで、10kg/のの試作物提供を開始した。また、リグノCNF強化樹脂材料のが高いで、10kg/ででは、10kg/では、10kg/では、10kg/ででは、10kg/ででは、10kg/ででは、10kg/では、10kg/では、10kg/ででは、10kg/		

4. 革新的新構造材料等研究開発 [平成26年度~平成34年度] 本事業では、国内での全消費エネルギーのうち24%を占める運輸部門でのエネルギー使用量を輸送機器の軽量化により削減につなげる。軽量の輸送機器構造体を製作する上で軽量・高強度材料の開発が必要であり、更に本事業で開発している様々な材料を適材適所で利用するためには従来の接合技術の適用が困難になる。そのため、異種構造材	26年度~平成34年度] 参画によ 本事業では、国内での全消費エネルギー 速成形等	ーカーや炭素繊維メーカー等の り、自動車部材製造で必要な高 のニーズを踏まえた、CFRP 型プレス成形システムを完成。
料の接合に摩擦撹拌接合と構造接着技術の研究開発が重要になる。このようなことから軽量輸送機器の実現を目的に、以下の研究開発を実施する。 研究開発項目① 接合技術開発 中高炭素鋼板の接合技術では、外加圧抵抗スポット溶接法でJIS-A級せん断荷重を目指す。アルミナウボでは、良好な継手接合強度が得られる接合条件探索を進場では、根好な継手接合に関しては、東好な継手接合に関しては、東好な継手接合に関しては、東好な継手接合に関しては、東が関し、表述の表述を実施する。また、研究では関しては、東が表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表	研究開発項目① 接合技術開発 中高炭素鋼板の接合技術では、外加圧抵抗スポット溶接法で継手強度18kNを達成し中間目標を達成した。アルミニウム/CFRPの新規接合要件を明らかにした。摩擦撹拌接合に関しては、研究テーマ横断的な共通基盤研究を実施し、リニア摩擦撹拌の手法において、接合の新規メカニズムの解明を行った。また、新規技術開発である構造用接着技術について公募を行い、1件の採択を行った。	
研究開発項目② 革新的チタン材の開発 溶解脱酸技術(酸素濃度300pm以下)を実現する実機プロセスの技術課題の明確化に着手するとともに、チタン薄板製造技術開発では、工業的に薄板を製造できるプロセスを提案するための最適条件把握を進める。	研究開発項目② 革新的チタン材の開発 溶解脱酸技術では、脱酸材を使用した場合の引抜溶解工程や希釈溶解工程による 副生成物の除去効果を検証し、プロセスフローに目途を得た。チタン薄板製造技術開発では、製造プロセスの最適条件把握を進め、小型梱包体を試作した。	
研究開発項目③ 革新的アルミニウム材の開発アルミニウム合金中の含有水素量の低減並びに鋳造組織の微細化を可能とする溶解鋳造法の確立に注力し、引張強度750MPa及び耐力700MPa伸び12%を目標とした合金開発に着手する。開発材である難燃性マグネシウム合金展伸材を接合する基礎条件を見出し、生産に則した施工条件範囲を明確にする。	研究開発項目③ 革新的アルミニウム材の開発 アルミニウム合金鋳造塊における含有水素量の低減並びに鋳造・鍛造組織の微細化を可能とする鋳造・鍛造法の確立に注力し、ラボ材にて目標性能である引張強度750MPa、耐力700MPa伸び12%を達成した合金を得た。	

研究開発項目④ 革新的マグネシウム材の開発 車体向けの材料として、UTS270MPa以上かつ伸び20%以上を達成するために、押し出し材の大口径ビレット鋳造プロセスの開発と高速押出材を得るための加工プロセスの開発に着手する。 研究開発項目⑤ 革新鋼板の開発では、中高炭素鋼板の最終目標である引	の開発 押し出し材において、開発合金による1 2インチ大径(φ320mm×2.5m× 2本)連続鋳造ビレットの量産条件を導出した。他の開発材及び接合技術の開発成果も合わせ、工業レベルの実製品設計・製造に結びつけるため、高速車両の小型部材(側パネル)の試作を実施した。 研究開発項目⑤ 革新鋼板の開発 最終目標である引張強度1.5GPa、伸び20%を達成する目途を得た。協調課題として、革新鋼板の実用化にあたって懸度1.5GPa、伸び20%)を5年早く	
張強度1.5GPaかつ伸び20%に向かった開発を行っていく。 研究開発項目⑥ 熱可塑性CFRPの開発 熱可塑性CFRPの開発では、大物高速成型技術の開発 及び量産プロセスに適用できる熱可塑性CFRPと金属材料との接合技術・接合部の耐久性等評価解析技術の開発を行っていく。	会活動を行い、FSテーマで実施する内容を決定した。 一 研究開発項目⑥ 熱可塑性CFRPの開発 大物高速成型技術の開発では、1分サイクルプロセスの基本条件を把握した。マテリアルハンドリング改良設計を実施した。接合技術・接合部の耐久性等評価解析技術の開発では、要素技術の見極め、データベ	
研究開発項目⑦ 革新炭素繊維基盤技術開発 維基盤技術開発 新規炭素繊維前駆体化合物 から異形状炭素繊維を製造す る。また、マイクロ波による 太繊度前駆体繊維の安定的炭 素化を可能とする技術を開発 する。 研究開発項目® 戦略・基盤	開発 新規炭素繊維前駆体化合物から異形状 炭素繊維の製造に成功した。また、マイク 口波による太繊度前駆体繊維の安定的炭 素化に向けて、照射過程の物質構造変化や シミュレーションを通じて、目的に適合し た炉体構造を実現し、炭素化条件の検討を 実施した。	
研究 構造材料技術について、テーマ化のための重点調査を行うとともに、接合技術と個別 課題(材料)に関する研究開発と自動車等の輸送機器への 適用との関係を踏まえた定点 観測的な調査を行う。また、 研究テーマ横断的な共通基盤 研究を実施する。	構造解析技術、Mg材のMIに関する委員会活動を行い、FSテーマで実施する内容を決定した。中性子を用いた解析技術の開発と構造材料用接着技術の開発については、FS研究を終了し公募を実施した。平成29年度より、本格的に研究開発を実施する。 自動車用接合技術の動向について、主として海外企業について調査した。	
5.次世代構造部材創製・加工技術開発 [平成27年度 ~平成31年度] 航空機の燃費改善、環境適合性向上、整備性向上及び安全性向上といった要請に応えるため、複合材料及び軽金属材料技術を基に、航空機に必要な信頼性・コスト等の課題を解決する。平成28年度は公募を行い、以下の研究開発を実施する。	[平成27年度~平成31年度] 航空機の燃費改善、環境適合性向上、整 備性向上及び安全性向上といった要請に 応えるため、複合材料及び軽金属材料技術 を基に、航空機に必要な信頼性・コスト等 の課題を解決するための要素技術を開発 する。平成28年度は公募を行い、以下の 研究開発を実施した。	

研究開発項目① 次世代複合	研究開発項目① 次世代複合材及び軽金
材及び軽金属構造部材創製・	属構造部材創製・加工技術開発(第二期)
加工技術開発(第二期)	構造健全性診断の一つである複合材構
複合材の高生産性・低コス	一
ト生産技術の研究開発、複合	適用構想、機能実証に必要な実証データ、
材構造に由来する内部剥離等	認証取得の鍵となる安全性の実証データ
一 の検査技術確立及び複合材本	と関係先との協議を通じて設定し、実証デ
来の特性を生かした軽量化技	ータ取得のための実証試験を構想した。
術開発を実施する。	航空機内装品の主要構造部材として使
マグネシウム合金の航空機構	
造材料への適用技術開発を実	化を図る研究開発を実施した。
施する。	マグネシウム合金の製造条件が強度特
	. , , = , . = ,
国内外の研究開発動向や政	性に及ぼす影響を調査した。航空機二次構
策支援の状況、ボーイング、	造へのKUMADAI 鋳造マグネシウム
エアバス等OEM及びエアラ	合金適用について、材料特性を確認し、適
インの動向等を調査・分析し、	用部位の検討を行った。
研究開発を効率的・効果的に	
推進していくための調査を実	
1,2-2 1 1,1-1 1,1-2 1,1	
施する。	
研究開発項目② 航空機用複	│ 研究開発項目② 航空機用複合材料の複 │
合材料の複雑形状積層技術開	雑形状積層技術開発(第二期)
発(第二期)	小型タイプ自動積層装置について、改
小型タイプ自動積層装置に	良・試作した構成要素に対し動作試験を行
ついて、複合材部材製造の高	い、技術課題への対策が妥当なことを確認
生産性・低コスト生産に対応	して、要素技術の深化・成熟化を図り、複
可能な安価で汎用性・量産性	合材部材製造の高生産性・低コスト生産に
	対応可能な安価で汎用性・量産性を持った
	装置を開発する目処を得た。
TT 00 HB 70 75 D @ 64 00 W D 14%	
研究開発項目③ 航空機用難	研究開発項目③ 航空機用難削材高速切
(第二期)	ドリル加工及びオービタル加工(ヘリカ
予測技術をベースとしたスマ	ルミリング)による、炭素繊維複合材とチ
トな航空機難削材高速切削	タン合金の重積材の大口径の穿孔過程に
加工技術の高度化を図り、革	対し、切削エネルギー最小理論に基づく切
新的な切削加工技術開発を促	
進する。	実験での切削力データから解析における
	特性データを同定し、シミュレーションの
	妥当性を確認した。
研究開発項目④ 軽量耐熱複	
合材CMC技術開発(高性能	技術開発(高性能材料開発)
材料開発)	(1) CMC材料の開発
(1) CMC材料の開発	試作設備を新たに設置し、引張強度 2.
SiC繊維を安定的に製造	0 G P a 以上、表面粗さR a 2~3 n mの
できる最適焼結条件を確立す	SiC繊維を安定的に製造できる最適焼
	│ 結条件を確立した。タービン部材用3Dプ │
三次元形状を有するプリフォ	リフォームを試作し、繊維体積割合につい
	A STATE OF THE STA
ームの試作を行う。	て30%以上を実現した。燃焼器パネル形
(2) 高性能SiC繊維の開	状案を策定し、一体型のプリフォーム形状
発	や賦形方法の検討を行い、複数の製織条件
強度と高温クリープ特性を	により、部分的に模擬したプリフォームの
両立するSiC繊維前駆体ポ	試作を実施した。
リマー中の助剤成分の最適化	
を図る。	(2) 高性能SiC繊維の開発
高温クリープ特性評価技術	強度と高温クリープ特性を両立するS
(単繊維法)の検討を行う。	i C繊維前駆体ポリマー中の助剤成分(B
	及びA1)の最適化を行うとともに、安定
	的に紡糸可能な前駆体ポリマーの合成法
	を検討した。高温クリープ特性評価技術
	(単繊維法)の検討を行い、評価法として、
	BSR (Bend Stress Relaxation) 法を検
	討し、高温クリープ特性の相対評価に有用

	1 (((((((((((((((((((
	であることを明らかにした。
研究開発項目⑤ 低コスト航 -	- 研究開発項目⑤ 低コスト航空機体開発
空機体開発を実現するための	を実現するための数値シミュレーション
数値シミュレーション技術開	技術開発
	(1)分野横断(空力・構造・強度)シー
	ムレス機体設計シミュレーターの開発
強度)シームレス機体設計シ	平成27年度に開発した主翼に関する
ミュレーターの開発	数値シミュレーターの検証を行い、解析
平成27年度に開発した主	にかかる空気力学における計算コストを
翼に関する数値シミュレータ	少なくすると共に、最適化、詳細構造解析、
一の検証を行う。	ズームイン解析が行えるように拡張を行
(2)シミュレーション援用	った。これにより主翼に関してツールは完
による認証プロセスの低コス	成した。
平成27年度に作成した航	(2)シミュレーション援用による認証プ
空機の認定に必要なクーポン	ロセスの低コスト化
試験についてバーチャルテス	平成27年度に作成した航空機の認定
ト解析ツール及び理論解の精	に必要なクーポン試験について、連続体要
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
度を高め、ツールを構造供試	素を用いた拡張有限要素法(XFEM)に サベイ特度が展開を表現している。
体にまで拡張する。	基づく損傷進展解析コード(NLXP3
(3) 着氷に関する非定常空	D)を整備した。損傷の大きさを推定する
力設計シミュレーターの開発	基礎となる理論式を導出してコードの整
三次元後退翼について、着	備は完了した。
氷形態について数値流体力学	
解析を行い、着氷による空力	(3)着氷に関する非定常空力設計シミュ
的な影響を評価・考察する。	レーターの開発
(4) 複合材の特性を活かし	三次元後退翼の着氷形態に対して、数値
た機体構造設計シミュレータ	流体力学解析を行った。参考文献(着氷翼
一の開発と実験的検証	の風洞実験)では不明な情報(胴体形状、
面内曲線繊維配向最適化に	翼ねじり角分布)については、解析結果が
必要な基礎データを取得する	風洞実験結果と対応するように同定した。
とともに積層板について最適	
化を実施する。	(4)複合材の特性を活かした機体構造設
	計シミュレーターの開発と実験的検証
	曲線配向を許容する最適構造設計シミ
	ュレーターの開発を目指し、最大曲率やフ
	ィラメントの干渉を拘束条件として導入
	した繊維配向最適化法を構築した。円孔引
	張試験に適用したところ、一方向材と比較
	してTsai-Wu値で10%改善した
	CFEP成形が可能であることを示した。
6. 超先端材料超高速開発基 -	6. 超先端材料超高速開発基盤技術プロジ
盤技術プロジェクト [平成	エクト [平成28年度~平成33年度]
28年度~平成33年度]	機能性材料の革新的に高速な材料開発
機能性材料の革新的に高速	基盤技術を構築するため、以下の研究開発
な材料開発基盤技術を構築す	項目に対して公募を行い、委託先を選定し
るため、以下の研究開発項目	
に対して公募を行い、研究開	
発を実施する。	研究開発項目① 計算機支援次世代ナノ
元で大心りつ	構造設計基盤技術
研究開発項目① 計算機支援	(1) 1 μ m チャネル長程度のデバイスに
次世代ナノ構造設計基盤技術	適用可能な大規模電子状態計算手法に基
粗視化分子動力学等を活用	づく第一原理電子輸送シミュレーターの
し、以下材料設計を信頼性高	開発に着手し、熱伝導度等の予測機能の新
	たな付与やホッピング領域などにおける
シミュレーション手法の開発	電気伝導度の温度依存性の記述を改良す
に着手する。	るための基本アルゴリズムの検討等を行
(1) 有機系材料の光電変換	った。
(・	

		_ _	
デバイス等への応用を想定し			
たヘテロ接合構造と電子・熱・	(2)高分子/無機粒子ハイブリッド材料		
イオン等の挙動の相関をシミ	の溶融混練時の粒子分散状態予測シミュ		
コレーションするキャリア輸	レーター開発のため、OCTA/COGN		
送設計	AC、KAPSELなどシミュレーターを		
(2)機能性高分子材料への	検証し、開発すべき技術課題の抽出を行っ		
応用を想定したコンポジット	た。さらに、今後開発するシミュレーター		
素材の相分離、微粒子分散、	のプラットフォームとする予定の「ソフト		
ナノ空孔等を最適に制御し、	マテリアル統合シミュレーターOCTA		
相反する機能の両立をシミュ	の大規模データ対応やAIとの連携等の		
レーションする相反機能両立	拡張を検討・開発を行った。		
材料設計	MARC 1841 11170 G 11 2 100		
(3) ハイスループットな有	(3)量子化学計算による触媒反応経路の		
機材料合成への応用を想定し	自動探索法である人工力誘起反応法(AF		
た触媒の反応過程の網羅的な	IR)を触媒活性種が確定されていない系		
	,		
探索技術と反応速度計算及び	への適用を行った。また、触媒塊等のミク		
触媒一流体界面設計を一連で	口構造を考慮した均質化法を流体計算に		
シミュレーションするリアク	適用するための検討等を行った。		
多一反応設計 (1/4/4 A) (1/4/4 A) (1	また、高効率材料探索計算及び解析実行		
また、AI(機械学習やデー	のための深層・機械学習実行プラットフォー		
タマイニング等)を活用した	ームを構築し、その規模拡大のために必要		
材料探索手法の開発するに着	なGPGPUサーバの導入に着手した。		
手する。			
研究開発項目② 高速試作・	研究開発項目② 高速試作・革新プロセス		
革新プロセス技術開発	技術開発		
研究開発項目①に対応する	研究開発項目①に対応する様々なプロ		
様々なプロセス条件パラメー	セス条件パラメータを制御し、設計通りの		
タを制御し、設計通りのサン	サンプルを自在に試作する高精度なサン		
プルを自在に試作する高精度	プル作製技術の開発に着手した。小型溶融		
なサンプル作製技術の開発に	混練装置、小型発泡成形装置、マイクロ波		
着手する。	を用いたナノ粒子合成システム等の導入		
	を図った。		
研究開発項目③ 先端ナノ計	研究開発項目③ 先端ナノ計測評価技術		
測評価技術開発	開発		
研究開発項目②で試作した	研究開発項目②で試作したサンプル等		
サンプル等を"非破壊"又は	を"非破壊"又は"In situ"で構		
『Insitu"で構造評			
	造評価・機能評価を可能とする計測装置・		
価・機能評価を可能とする計	手法の開発に着手した。表面・界面の構造		
測装置・手法の開発に着手す	計測の高度化を図るために、高速で和周波		
	発生(SFG)測定が可能なSFG分光装		
	置やフロープロセス中の触媒反応をin		
	s i t u で観測出来るDNP固体NMR		
	装置の導入等を図った。また、ナノ物質計		
	測技術、ナノ欠陥検査用計測標準技術の構		
	築を図った。		
7. 植物等の生物を用いた高	- 7.植物等の生物を用いた高機能品生産技		
機能品生産技術の開発 [平	術の開発		
成28年度~平成32年度]	植物等の生物が持つ物質生産能力を人		
植物等の生物が持つ物質生	工的に最大限引き出した細胞"スマートセ		
産能力を人工的に最大限引き	ル"を構築し、化学合成では生産が難しい		
出した細胞 "スマートセル"	有用物質の創製又は従来法の生産性を凌		
を構築し、化学合成では生産	駕することを目的に、以下の研究開発項目		
が難しい有用物質の創製又は	に対して公募を行い、委託先・助成先を選		
従来法の生産性を凌駕するこ	定した。		
とを目的に、以下の研究開発	/2 0 / 20		
項目に対して公募を行い、研	研究開発項目① 植物の生産性制御に係		
実用発を実施するとともに、	る共通基盤技術開発		
大開発を美施するとともに、 大開発を美施するとともに、 民間企業等が実施する実用化	○共通基盤技術開発 (1) ゲノム編集技術		
	1, , , , , , , , , , , , , , , , , , ,		
開発を支援する。	既存のゲノム編集では対応できない新		
TIT AND THE TAN THE FIRST AND THE	規の国産ゲノム編集関連技術の開発を開		
研究開発項目① 植物の生産	始した。また、開発した成果の実用化を睨		

性制御に係る共通基盤技術開発 (1)ゲノム編集技術 既存のゲノム編集では対応 できない新規の国産ゲノム編集を引力の調査を別の関発を計動向調査を開始する。 (2)代謝系遺伝子発現制御技術 遺伝子メチル化誘導技術や遺伝子発現の抑制を効率的に複数の遺伝子で制御する技術、目的技術等の開発を開始する。 (3)栽培・生育環境による発現制御技術 目的代謝物の効率的生産に効果的な栽培ストレス条件を利用可能にする技術の開発を開始する。	んだ知財戦略の策定に向けて、各要素技術に関連する文献・特許を調査し、外部の研究開発状況を整理した。 (2)代謝系遺伝子発現制御技術遺伝子メチル化誘導技術や遺伝子発現の抑制を効率的に複数の遺伝子で制御する技術、目的代謝物の蓄積機構を制御する技術等の開発を開始し、ツール設計・手法の構築・関連因子の同定等を行った。 (3)栽培・生育環境による発現制御技術目的代謝物の効率的生産に効果的な栽培ストレス条件を利用可能にする技術の開発を開始した。2種類の光波長環境や15種類程度の薬剤処理栽培で生育させた植物を狙い、栽培環境による主要な二次代謝系遺伝子の発現解析等を行った。	
THE BOX TO A LAW YOUR	TO BOOK TO BE A STATE OF THE ST	
研究開発項目② 植物による 高機能品生産技術開発 実用植物種における特定物 質の生産実用化技術の開発を 開始する。	研究開発項目② 植物による高機能品生産技術開発 実用植物種における特定物質の生産実用化技術の開発を開始した。対象とする実用植物の遺伝子組換え系の構築、ターゲットとする代謝物に関連する遺伝子の単離、未知遺伝子の探索、高収量となる栽培条件・方法の検討等の研究開発基盤構築に向けた検討を行った。	
研究開発項目③ 高生産性微 -	研究開発項目③ 高生産性微生物創製に	
生物創製に資する情報解析システムの開発 (1)遺伝子配列設計システムの開発 機械学習等の情報解析技術を用いて、微生物のDNA、mRNA、タンパ質間の制御を開展を開始を開始を推定する。 (2)ハイスループット合成・分析・評価手法の開発 DNA断片の合成からプラスミドの構築、精力の合成をで行う長鎖DNA合成技術、ハイスループット化したしての開発を開始する。	資する情報解析システムの開発 (1)遺伝子配列設計システムの開発 遺伝子配列設計システムの構築に向け て、遺伝子発現制御ネットワークモデル、 タンパク質発現量調節法、タンパク質高機 能化法、新規代謝経路設計・最適化手法、 最適代謝モデル等の各要素技術の開発に 着手した。また、測定データの規格化、て、 系化されたデータベースの構築に向けて、まず原核生物を対象としたオミクス解析の標準プロトコルを策定するとともに、データベースの基本設計を行った。 (2)ハイスループット合成・分析・評価 手法の開発 DNA断片の合成からプラスミドの構築、精製、長鎖DNA合成までをハイスループットでう長鎖DNA合成技術、ハイスループットでしたLCMS及び生産性評価技術の開発を開始した。装置等の ない、微生物の色素生産経路を利用して数千株以上の評価系の構築等を を利用して数千株以上の評価系の構築等を 行った。	

ととする。	低減技術 1.次世代自動車向け高効率 モーター用磁性材料技術開発 [平成26年度~平成33年度] レアアースに依存しない革 新的高性能磁石の開発、更に はモーターのエネルギーの損 失を少なくする高性能軟磁性 材料の開発を行うとともに、	(b) 希少金属代替・使用量低減技術 1.次世代自動車向け高効率モーター用磁性材料技術開発 [平成26年度~平成33年度] レアアースに依存しない革新的高性能磁石の開発、更にはモーターのエネルギーの損失を少なくする高性能軟磁性材料の開発を行うとともに、新規磁石及び新規軟磁性材料の性能を最大限に生かして更なる高効率を達成できるモーター設計の開発を通じて、モーターの省エネ化に寄与することでは、1000円で開発されます。
族 (Pt) は製品における 使用量のうち50%以上、 蛍光体向けテルビウム・ユ ウロピウム (Tb・Eu)	ター設計の開発を通じて、モーターの省エネ化に寄与する ことを目的とし、以下の研究 開発を実施する。平成28年 度は中間評価の結果を反映し て基本計画と実施体制の見直 しを実施する。	ることを目的とし、以下の研究開発を実施した。 中間評価では、自動車メーカーの意見や情報をより積極的に取り入れ技術課題を明確にするべきと評価を受け、基本計画と実施体制の見直しを実施した。
	研究 (1) シウ高 性能 と (1) シウ高 性能 で (1) シウ高 性能 化 技術 ジスム で (2) と (1) を (2) と (1) を (2) と (1) を (2) と (2) を (3) を (4) を (研究開発項目① 新規高性能破石の開発 (1)ジスプロンウムを使わないネオジム 磁石の高性能化技術開発 ナノ結晶粒ネオジム焼結磁石の開発に ついては、G a 窓加色金を用いた結晶粒敵 細化の検討を実施し、酸素や炭素といった 不純物低減と起向度を向上とさ技術を 確立した結果、180℃の最大エネルギー 積28MGOeを達成した。この数値は目標値38MGOeには達していないが現 行のDyフリーネオジム磁石では世界最 高の値である。本テーマは平成28年度で 予定通り終了し、今後実施者で実用化を図っていく。 Dyフリー高B r・高保磁力を有するネオジムHDDR磁石開発については、異方 性ボンド磁石の空温での最大エネルギー 積の目標値50MGOeに対して45M GOeまで達成していたが、角形比に課題 があったので、その改善に取組んだ。粉末 粒子1個の減破曲線を測定する技術を活 用し、磁粉コーディング・コンパウンド・成形法の改善により角形比が目標通り1 2%故書とした、本テーマは平成28年度で 予定通り終了し、今後実施者で実用化を図っていく。 (2)ネオジム焼結磁石を超えるレアアー スを使わない新磁石の開発 世界のは機をレアアースフリーから重 希土類フリーに変更することを決定した。 窒化鉄ナノ粒子のバルク体化技術研究 開発については、保磁力の発現が困難であ ることから、磁化の目標値(17kG)を 電光のは対した。本子のは現なりまります。 第七類リリーに変更することを決定した。 窒化鉄ナノ粒子のバルク体化技術研究 開発については、保磁力の発現が困難であ ることから、磁化の目標値(17kG)を 設定し開発に取り組んだ。積層配向化プロセスの検討と、急性機動分の対プロセスに おいて焼結防止剤を低減することで高磁 化の磁粉を得た。達成した配向値、磁化値 から算用される残電磁化B rは16.7 k

ターの開発 既存・新規磁性材料を用いて、産業競争力がある小型・ 高効率モーターを開発するため、実機モーター組込時の磁性特性評価技術、モーター構造設計技術及びそのモーターを低損失にて駆動できるインバータ制御技術を開発し、そ	次世代モーター・磁性特性評価技術開発については、磁化・保磁力測定手法の高精度化として運転中の磁石温度測定システムを開発し、計測結果を減磁分布への反映を行うとともに、磁化・保磁力測定の簡易システムの試作を行った。また、ステータコア損失の分離方法を検討するため、磁気軸受の損失評価装置を導入し、さらに、掘り込み方式Hコイル法によるモーター駆
を開発する。	行い、ガス-水急冷アトマイズ装置では量産の基礎評価を行った。また、超高圧水アトマイズ量産設備の基礎仕様検討を行った。磁心化プロセス・熱処理プロセスの開発に関しては、試作した超急冷粉末を熱間プレス機等で高密度成形を行い、ナノ結晶の安定析出を達成することで圧粉コアの損失(400Hz・1T)は4.7W/Kgまで到達した。また積層バルクコアでは熱暴走なくナノ結晶が安定析出する熱処理プロセス検討を行い、飽和磁來密度(Bs)は1.61T、損失 は3.8W/Kgとなり最終目標(4W/Kg未満)を達成。これらの圧粉コア、積層バルクコアをモーター・磁性材料技術開発センターへ提供し、連携して試作モーターを作製し、特性解析ののち実用評価を行った。本テーマは平成28年度で予定通り終了し、今後実施者で実用化を図る。研究開発項目③高効率モーターの開発
研究開発項目② 次世代高効 ー 率モーター用高性能軟磁性材料の開発 現行の電磁鋼板でのモーター鉄損を80%削減できる新軟磁性材料の実用化製造技術	いては、新規物質であるREFe12-xTM xNy相(RE:希土類元素[Nd,Sm等],TM:遷移金属[Fe,Co等])の組成と物性値の関係を調査し、目標とする50 MGOe@180℃に到達し得るポテンシャルを有することを明らかにするとともに、磁石化に向けた実験検証を行った。FeNi超格子磁石材料の研究開発については、窒化・脱窒素法によるFeNi超格子粉末の合成に取り組み、合成条件を改良することにより、規則度、及び磁気特性を向上させ目標とする50MGOe@180℃に到達し得るポテンシャルを有することにより、規則度、及び磁気特性を向上させ目標とする50MGOe@180℃に到達し得るポテンシャルを有することを明らかにすることができた(規則度は0.5から0.7に、異方性磁界は従来法の3倍)。電子顕微鏡、中性子回折により窒化・脱窒素プロセスに伴う構造変化を解析して、規則度に及ぼす要因分析を実施した。 研究開発項目②次世代高効率モーター用高性能軟磁性材料の開発 高Bsナノ結晶軟磁性材料の開発については、ガスー水急冷アトマイズ装置と超高圧水アトマイズ装置での粉末作製の安定製造条件を検討するとともに最適化を
	マは当初の目標は達成できないことが明らかになったため、中止することを中間評価で判断した。本材料は高磁化という特徴を活用した用途展開が望めるため、実施者で継続検討する。 ナノ複相組織制御磁石の研究開発につ

	の性能・信頼性評価を確立する。		動状態の鉄損測定技術を開発した。また、IPMモーターについては、試作機の評価を通して、各種走行モードでの損失低減に適したモーター構造の設計指針を明確にした。また、可変磁力モー機を制作には、損失低減ででは、大田のは、大田のでは、大田のでは、大田のでは、大田のでは、大田のでは、大田のでは、大田のでは、大田のでは、大田のは、大田のは、大田のは、大田のは、大田のは、大田のは、大田のは、大田の	
	研究開発 (事) が		研究開発項目④特許・技術動向調査、事業化のための特許戦略及び共通基盤技術の開発 特許調査・技術動向調査・特許戦略策定 支援動力 では、「「大田の大田の大田の大田の大田の大田の大田の大田の大田の大田の大田の大田の大田の大	
viii) バイオテクノロジー分野(viii) バイオテクノロジー分野a. バイオシステム分野 我が国の製薬産業では、 近年新たな医薬品の創出が 伸び悩み、輸入超過の傾向(a) バイオシステム分野 資源に乏しく、少子高齢 化が進む我が国が、長期に わたって持続的な経済成	(viii) バイオテクノロジー分 野 (a) バイオシステム分野 (該当プロジェクトなし)	_	(viii) バイオテクノロジー分野 (a) バイオシステム分野 (該当プロジェクトなし)	

が大きくなってきている。 長を実現するためには、知 また、「再生医療」について、 識集約型・高付加価値経済 実用化においては世界的に への転換が必要であり、製 も黎明期にあり各国による 薬産業は知識集約型・高付 熾烈な競争が行われてい 加価値を代表する重要な る。そのためゲノム情報・ 産業である。 しかしなが 制御関連技術及び細胞機能 ら、我が国の製薬産業で 解明・活用技術への取組、 は、近年新たな医薬品の創 これをもって革新的医薬品 | 出が伸び悩み、輸入超過の 創出や個別化医療の実現、 傾向が大きくなってきて 再生医療の産業化の促進に いる。 向けた取組を行うこととす また、細胞を利用して組 織や臓器の機能を回復さ る。 せる「再生医療」について、 我が国は技術開発におい ては世界のトップを走っ ているが、実用化・事業化 においては世界的にも黎 明期にあり各国による熾 烈な競争が行われている。 このような背景の下、第 3期中期目標期間では、ゲ ノム情報・制御関連技術及 び細胞機能解明・活用技術 への取組、これをもって革 新的医薬品創出や個別化 医療の実現、再生医療の産 業化の促進に資すること とする。 ゲノム情報・制御関連技 術においては、創薬の標的 となるゲノム情報や膜タ ンパク質等の生体分子の 構造情報等を高感度・高精 度に解析する技術、これら の機能を解明し制御する ための技術等を開発する。 さらには、これらに加えて IT等の新しい技術の活 用によって、創薬基盤技術 を確立することで、がんや アルツハイマー病等の重 篤な疾患等に適応する革 新的医薬品創出や個別化 医療の実現につなげる。 細胞機能解明·活用技術 においては、我が国が強み を有する「ものづくり力」 を活かし、有用天然化合物 の効率的かつ安定的な生 産技術の開発とライブラ リーの整備を進める。ま た、バイオ医薬品等の製造 基盤技術の開発を行うと ともに、バイオ医薬品開発 の中核となるベンチャー 企業支援を併せて行うこ とで実用化・事業化の促進 を図る。 また、我が国が技術開発 において世界をリードす るiPS細胞をはじめ、E

かし、日本ではのできない。		S細胞や間葉系幹細胞等		
 変質機能は続き合作人力 をお成長及私または、対 の、また、投入口の資化力 の、また、投入口の資化力 のようとは、投入の関係力 がかずからる産生しても、大きな関係が多せられている。 みのようとな事を対している人の企業を対している。 みのようなが表から、おからの知事場が会しまれている。 みのようなが表から、おからの対象の構造を構造している。 かの必要が的が体せられている。 かの必要がの情報が必要しまれている。 かの必要がの情報が必要しまれている。 かの必要がの情報が必要しまれている。 かの必要がの情報が必要しまれている。 かの必要がの情報が必要しまれている。 かの必要がの情報が必要しまれていると当を実践する。 からとからしまから、対象とからと対象と対象と対象と対象と対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対		のヒト幹細胞を安定的かったとは、 自動培養技術等の開発、ヒトi PS・ES細胞を用いた創業を見り一にで、 ・ 自動発力をで、一手を開発することで、 ・ 自動発力を関係を関係を関係を関係を関係を実現した。 ・ には世界的にを実現しなを ・ にはでは、 ・ には、 ・ とす。 ・ には、 ・ には、 ・ には、 ・ には、 ・ には、 ・ には、 ・ とな。 ・ には、 ・ にな、 ・ と、 ・ にな、 ・ と、 ・ と、 ・ と、 ・ と、 ・ と、 ・ と、 ・ と、 ・ と		
	医療機器が見いる。 を療機器が見が、我に関係して、 を変して、 を変して	大でおれたいとないでは、大大の機能を発生のでは、大でおれた、 「医療化力」をでは、 「医療を関係をなるを、 「医療を対した、 「医療を対した、 「医療を対した、 「医療を対した、 「医療を対した、 「医療を対した、 「医療を対した、 「医療を対した、 」をがおいた、 「医療・生産を対した、 「医療・生産を対した、 「医療・生産を対した、 「医療・生産を対した、 「医療・生産を対した、 「医療・生産、 「医療・生産、 「医療・生産、 「医療・生産、 「医療・生産、 「医療・生産、 「医療・生産、 「関係である」を、 「大小の、 「と、 」を、 「と、 「と、 」を、 「と、 」を、 は、 に、 」を、 は、 に、 は、 に、 は、 に、 は、 に、 は、 に、 は、 に、	1.課題解決型福祉用具実用化開発支援事業 [平成5年度~] 平成28年度新規採択に係る公募を実施し、優れた技術や創意工夫ある福祉用具開発を行う中小民間企業のテーマ3件を採択した。また、継続分5件のテーマも実施した。福祉用具開発の促進を図るための調査・分析を実施した。開発成果については、助成案件やその成果を2件の展示会(バリアフリー展、国際福祉機器展)を通じて社会へ紹介した。	

に運用するがん医療マネ			
ジメントシステムや、がん			
のなり易さを診断する技			
術、医薬品と医療機器が融			
合した新たなコンビネー			
ションプロダクト等、患者			
の更なる生活の質(QO			
L)の向上に資する治療・			
診断機器・システムについ			
て海外との競合状況、実用			
化・事業化の見通し等を精			
査し、実施可能なものから			
順次開発に着手する。			
再生医療デバイスの開			
発においては、第2期中期			
計画中に開始した「次世代			
機能代替技術の研究開発」			
について、中間評価結果を			
踏まえ中止・加速等行うと			
ともに、事業実施中に適用			
症例の拡張、知財戦略の強			
化、企業連携の強化、前臨			
床データの取得にも注力			
する。また、我が国の再生			
医療デバイスとして特に			
競争力が高いものについ			
て、第3期中期目標期間			
で、細胞培養、輸送、品質			
管理、治療デバイス、IT			
日空、石焼ノハイへ、11			
理等、診断と治療を一体的			
に運用する再生医療マネー			
ジメントシステム等の検			
討を行い、実用化・事業化			
の見通しを精査しつつ実			
施可能なものから順次開			
発に着手する。			
スマートヘルスケアに			
ついては、国内外における			
ヘルスケア・医療サービス			
の技術の開発・実証及び予			
防・診断・治療サービスで			
の利用を見通したヘルス			
ケア・医療機器の開発を行			
う。即ち、地域に点在・偏			
在する健康管理に関する			
情報・機能、診断・治療に			
関わる情報・機能、様々な			
生活の場面で得ることが できるヘルスケアの視点			
してきるペルスケナの視点 も含めた医療情報とIT			
を組み合わせ、医療機器・			
システムの改良・開発を行			
うとともに、疾病の発症か			
ら診断、治療、リハビリ等			
の予後管理まで含めた領			
域をパッケージとし、新た			
な価値を創出し、利便性を			
提供するソリューション			
サービスの技術の開発・実			
証及びそれらに必要なへ			
ルスケア・医療機器の開発			
7	l		

	お行る体 生知房房 周本		I	I		T
	を疾等密と発界活開 に研に福及析福事進3の上中宅ツ深化携、特別の大学エテ 化用のづ進集 世界によるシッす器。の「近れの大きに、の場立と対したで、実福では、大きに、の場立と、大きに、の場立と、大きに、の場立と、大きに、の場立と、大きに、の場立と、大きに、の場立と、大きに、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、					
	携、実証フィールドの提供 等、福祉用具の産業化を一 層促進する視点での事業 運営に注力する。また、ロ					
	ボット介護機器等、日本の 高度なロボット技術の福 祉用具への展開について も検討する。					
ットが導入されていなかった分野へにでいて、新しいで、新しいでで、新しいでで、新しいでで、新してで、新いででは、一切では、一切では、一切では、一切では、一切では、一切では、一切では、一	(ix) ロボット技術分野 少子高齢化による労労・ 力人口の減少や、作業性、 増大への対応のの質のの上での質のの上でのの質のの上でののでののでののではより、次世代ののではより、大きによるでは、生産性の高までででででは、生産性の高までででででででである。具体的には分野、と話・福祉分野、公期・ が災分野での活用が明が	既存インフラの状態に応じて効果的かつ効率的な維持管理・更新等を図るため、的確にインフラの状態を把握できるモニタリングの技術開発及び維持管理を行うロボット・非破壊検査の技術開発を実施する。	_	対応システム開発プロジェクト [平成26年度~平成30年度] 既存インフラの状態に応じて効果的かつ効率的な維持管理・更新等を図るため、的確にインフラの状態を把握できるモニタリングの技術開発及び維持管理を行うロボット・非破壊検査の技術開発を実施した。さらに、ロボットの性能評価手法の開発を実施した。	●全12種類のインフラ維持管理用ロボットの実用現場での実証実験を実施。国内発の認証取得や、世界初のドローン実証に成功。	
	ト技術分野について、第3期中期目標期間においては以下の取組を実施する。 (a)産業用ロボット 国際的にも注目されている、人間と協調して働く、安価で、設置容易で、	研究開発項目① インフラ状ス 態モニタリング用センサシス開発 インフラ構造物及びその構 がいる がいる がいる がいる できない はいない がいる できない はいない できない はいない できない はいない できない はいない はいない はいない はいない はいない はいない はいない は		研究開発項目①「インフラ状態モニタリング用センサシステム開発」 インフラ構造物及びその構成部材の健全度を診断するための振動、変位等を計測でき、安定な接続性と信頼性及び、自立電源で駆動する高耐久性を有する無線通信機能を搭載したセンサ端末の開発を概ね完了した。来年度以降の実証実験に向け、実験場所の選定が進んでおり、先行してプレ実証実験を8ヶ所(橋梁:3ヶ所、道路付帯物:2ヶ所、道路法面:1ヶ所、熱供給施設:1ヶ所)において実施した。		

業やこれまでロボットが 導入されていなかった分 野へのロボット利用の拡 大による我が国製造業の 生産性向上を目指す。 (b)サービスロボット	モニタリングシステム開発 完全自動により取得データ からひび割れ等を判別できる データ処理手法及び撮影時の 画像ボケや位置ずれを補正で き平面のみならず奥行き(3 D)もわかる画像解析手法を	研究開発項目② イメージング技術を用いたインフラ状態モニタリングシステム開発 構造部材の画像データから完全自動で確実にひび割れや亀裂等を検出し、び、構造の主要を担握できるデータ処理技術及方からでは広いの全体もしくは広の変形を通り、取得した画像をデータ物ので撮影し、取得した画像をデータ物ので撮影し、取得した画像をデータを表し、などではなどの変形があり、それらインフラ構造的でである。とに対している。 新幹線であることに対した。 新幹線のであるが、方法の開発を実施した。 新幹線での対技術の開発を実施した。 新幹線での方法の開発を実施した。 新幹線での方法の開発を実施した。 新幹線での方法の開発を実施した。 新幹線である。		
護分野へのボット技術の利用については、平産業の利用については、経済では、経済では、経済では、経済では、経済では、経済では、経済では、は、では、ないののでは、経済では、は、では、ないのでは、経済では、は、では、ないのでは、経済では、では、では、では、では、では、では、では、では、では、では、では、では、で		研究開発項目③ インフラ維持管理用ロボット技術・非破壊検査装置開発 (1)ロボット技術開発 橋梁点検用、水中点検用、土砂・火山災等調査用、トンネル災害用ロボット技術開発し、「インフラ維持管理用ロボット技術開発に係る実用性能等実証実験の検討」の場とに福島県等の自治体と連携した現場では事業者が自主設定したフィールドで検証評価を行った。 (2)非破壊検査装置開発ロボット技術開発で開発されるロボット技術開発で開発されるロボット技術開発で開発されるロボットへ搭載可能な非破壊検査装置の開発を実施した。	●インフラ維持管理や災害調査のロボット を実用化。国交省試験での最高位評価、 国内発の防爆認証、世界初飛行試験の成功。	
(c) 災害対応ロボット・無人システム 運用側と開発側の連携を前提とした、災害対応ロボットや無人システム、ロボット技術を活用したメンテナンス用機器の開発・導入支援等に取り組む。 (d) 人工知能を含めた次世代ロボット 上記各分野の技術開発の実施に際しては、米国のロボット開発では、米国のロボット開発では、米国のロボット開発では、大田のロボット開発では、大田のロボット開発では、大田のロボット開発では、大田の田がの本語では、大田の田がの本語である。		研究開発項目④ 各種ロボットの性能評価基準書策定に 着手し、福島県のロボットテストフィール ドへ性能測定試験方法を提案するととも に、シンポジウムを通じて広く情報発信を 行った。	 ●各種ロボットの性能評価基準の開発に着手。福島県ロボットテストフィールド開設に向けて仕様を提案するとともに、シンポジウム等を通じ広く情報発信を実施。 ●ロボット性能評価手法を開発予定。福島イノベーションコースト構想実現に貢献。 	
準化の取組を内包したプロジェクトを指向する。また、各種ロボット開発におけるソフトウエアの重要性が益々増大していることから、ソフトウエア開発を重視した取組を進める。 (e)オープンイノベーション/国際共同研究/ソフトウエア開発上記各分野の技術開発				

の実施に際しては、米国の ロボット開発で主流とな りつつある開かれた技術 開発 (オープンイノベーション)の体制を整備すると ともに、国際共同研究や標 準化の取組を内包したプロジェクトを指向する。 また、各種ロボット開発 におけるソフトウエアの 重要性が益々増大していることから、ソフトウエア 開発を重視した取組を進		
2. 戦略的イノベーション創造プログラム(SIP) インフラ維持管理・更新・マネジメント技術 [平成26年度~平成30年度] インフラ維持管理に関わるニーズと技術開発シーズをマッチングさせ、新技術を現場に導入することにより、システム化されたインフラマネジメントによる維持管理PDCAサイクルを実現し、予防保全による維持管理水準の向上・効率化を低コストで実現することを目的とし、以下の研究開発を実施する。	- 2.戦略的イノベーション創造プログラム (SIP) インフラ維持管理・更新・マネジメント技術 [平成26年度~平成30年度] インフラ維持管理に関わるニーズと技術開発シーズをマッチングさせ、新技術を現場に導入することにより、システム化されたインフラマネジメントによる維持管理PDCAサイクルを実現し、予防保全による維持管理水準の向上・効率化を低コストで実現することを目的とし、以下の研究開発を実施した。	
研究開発項目① 点検・診断技術の実用化に向けた研究開発、モニタリングシステムの現場検証(海洋・沿岸構造物、空港施設) 今年度は点検・診断システム開発及び実現場や供試体を用いた実用化の検証を実施する。モニタリングシステムにおいては、海洋・沿岸構造物及び空港施設における各種センサ技術等各々の技術を組み合わせた現場実証を行い、精度検証・改善に取り組む。	研究開発項目① 点検・診断技術の実用化に向けた研究開発、モニタリングシステムの現場検証(海洋・沿岸構造物、空港施設) 今年度は点検・診断システム開発及び実現場や供試体を用いた実用化の検証を実施した。モニタリングシステムにおいては、海洋・沿岸構造物及び空港施設における各種センサ技術等各々の技術を組み合わせた現場実証を行い、精度検証・改善に取り組んだ。	
研究開発項目② 構造物の補修・補強材料技術の研究開発 橋梁等の構造物を対象とし、耐凍害性・耐塩害性・低収 縮性・耐硫酸性に優れ、作業 簡便化や工期短縮化による低 コスト化と長寿命性能を有す る超耐久性コンクリートを用 いたプレキャスト部材を製品 化する。	研究開発項目② 構造物の補修・補強材料技術の研究開発 橋梁等の構造物を対象とし、耐凍害性・耐塩害性・低収縮性・耐硫酸性に優れ、作業簡便化や工期短縮化による低コスト化と長寿命性能を有する超耐久性コンクリートを用いたプレキャスト部材の製品化を推進した。 研究開発項目③ インフラの多種多様な	
多種多様なセンシングデータ を収集・蓄積・解析する技術 の研究開発	センシングデータを収集・蓄積・解析する 技術の研究開発 インフラ維持管理のためのプラットフ	

インフラ維持管理のための	オームとして、多種多様なデータを一元管		
	1		
プラットフォームとして、多	理する大規模データベースに関する技術		
種多様なデータを一元管理す	開発を実施した。必要技術として、データ		
る大規模データベースに関す	圧縮技術、クレンジング技術及びインデッ		
る技術開発を実施する。必要	クス技術といったデータベース並びにデ		
技術として、データ圧縮技術、	ータ処理システムの開発を実施した。ま		
クレンジング技術及びインデ	た、これら大規模データベースを管理者が		

ックス技術といったデータベ	使いやすいユーザインターフェースの開		
ース並びにデータ処理システ	発を行い、実インフラへの展開を推進し		
ムを開発する。また、これら	7.		
	た。		
大規模データベースを管理者			
が使いやすいユーザインター			
フェースの開発を行い、実イ			
7 10 = 71			
ンフラへの展開を行う。			
研究開発項目④ 維持管理ロー	研究開発項目④ 維持管理ロボット・災害		
	対応ロボットの開発		
ボット・災害対応ロボットの	7 47 2 7 7 1 1 1 1 2 1		
開発	インフラ維持管理ロボットにおいては、		
インフラ維持管理ロボット	対象構造物への近接・位置決めが可能とな		
においては、対象構造物への	るロボットの開発を優先し、模擬及び実構		
近接・位置決めが可能となる	造物による現場検証を行い、現場でロボッ		
ロボットの開発を優先し、模	トを利用するための課題を抽出した。災害		
擬及び実構造物による現場検	対応ロボット開発においては、作業ロボッ		
証を行い、現場でロボットを	トの性能評価実験、初号機による初号機の		
利用するための課題を抽出す	設計及び作成を実施し、無人化施工システ		
1 , ,			
る。災害対応ロボット開発に	ムの構築・評価を開始した。		
おいては、作業ロボットの性			
能評価実験、初号機の設計を			
行い、無人化施工システムの			
構築を開始する。			
3. 次世代人工知能・ロボッ -	9 发出化人工知能, 点书以上由技士采明	●ビジネスマッチングを目的としたワーク	
ト中核技術開発 [平成27]	発 [平成27年度~平成31年度]	ショップ(プライベート展示会)を開催	
年度~平成31年度]	次世代人工知能技術分野においては、3	し、ユーザー等との連携を促進。実用化	
人工知能(AI)技術・ロボ			
1	省連携のキックオフとして、平成28年4	戦略重視のステージゲート評価で、体制	
ット技術は「ロボット新戦略」	月に関係府省及びその関係機関の協力の	強化。	
及び「日本再興戦略改訂20	下、「第1回 次世代の人工知能技術に関す		
15」においてもその重要性	る合同シンポジウム」を開催した。 研究	デューサーの知見を活用し、個別テーマ	
が指摘されており、次世代の	開発項目①、②及び③の研究開発は、互い	の知財戦略に関する調査を実施。	
人工知能・ロボットに求めら	に密接に関連しており、総合的かつ集中的	, , , , , , , , , , , , , , , , , , ,	
れる革新的な要素技術(人工	に行うことが必要かつ適切であると考え	●「AI社会実装推進室」を新設。	
知能、センサ、アクチュエー	られることから、AIRCを研究開発拠点		
タ等)を開発し、新たな需要	として、産学官の英知を結集するために1	●「次世代人工知能社会実装ビジョン」を	
の創出につなげるべく、平成	00名超の研究員体制を早期に実現し、研	策定・公表。	
28年度は以下に取り組む。	究開発を推進している。拠点における研究		
次世代人工知能技術分野に	開発成果の最大化に向けて、ステージゲー	●総理主導で創設された「人工知能技術戦	
おいては、産総研・人工知能	ト評価委員会を開催し、PM及び外部評価	略会議」に関するTFを運営。さらに、同	
研究センターを拠点とし、関	委員により、コア技術の革新性、目標に対	会議でとりまとめられた「人工知能の研	
係府省及びその関係機関の協	する達成度、最終目標に対する技術的な道	究開発目標と産業化のロードマップ」を	
力の下に、文部科学省が主導	筋、実用化に向けた戦略の策定状況等を評	踏まえ、次世代人工知能技術の社会実装	
するAI研究開発拠点(AI	価することで、研究開発に移行することと	に関するグローバル研究開発を実施すべ	
P) 等との連携を含め、事業		く基本計画等を変更。	
	した。	工学司四守で変史。	
運営を行うこととしており、	また、人材育成を図るため、若手研究者		
平成28年度に3省(経済産	及び中小・ベンチャー企業を対象とした公		
業省、総務省及び文部科学省)	募により、新たに2テーマを採択し、先導		
が推進するAI研究開発に対	研究に着手した。		
するメッセージを発信すべ	革新的ロボット要素技術分野について		
く、「3省連携AIシンポジウ	は、ワークショップを開催して企業等の協		
ム (仮称)」の開催を行う。ま	業先との連携を図るなど、要素技術の実用		
た、研究開発項目①「大規模」	化に向けた取組を進めた。加えて、ステー		
目的基礎研究・先端技術研究	ジゲート評価委員会を開催し、PM及び外		
開発」、研究開発項目②「次世	部評価委員により、例えば、大学発ベンチ		
代人工知能フレームワーク研	ャーの立上げや要素技術のユーザーとな		
TV/N-TAHIBI / レームフーノ物	「 ツエエリ (女米)以門 ツー・リー こは	1	

究・先進中核モジュール研究	りらる企業	業の参画など、実用化への道筋を		
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
開発」及び研究開発項目③「次	評価する。	ことで、18テーマのうち12テ		
世代人工知能共通基盤技術研	ーマに絞	り込み、研究開発に移行すること		
究開発」については、先導研) () () () () () () () () () (
	とした。			
究目標の達成に向けて研究開	また、解	『決が求められる社会課題に対応		
発を行い、最終目標を達成で	可能な単	新的なロボット要素技術を俯瞰		
きる見込みを示す。	した上で、	重点的な研究開発が必要と考え		
革新的ロボット要素技術分	られる6	課題を設定した上で、公募によ		
野においては、研究開発に注		こ11テーマを採択し、先導研究		
力すべき社会課題対応のロボ	に着手し	E .		
ット要素技術を特定し、課題		人工知能技術の社会実装に向け		
を設定した上で公募を実施す	て、平成 2	28年4月に「AⅠ社会実装推進 ┃		
る。また、平成27年度に採	宝」を新	設した。「次世代人工知能社会実		
択した先導研究テーマ(セン	装ビジョ、	ン」の策定・公表、AI研究開発		
サ、アクチュエーション及び	の「3省道	連携」のキックオフとして合同シ		
ロボットインテグレーション		ム開催、「AIポータル」開設な		
技術)について、その先の研	どの取組を	を行うとともに、総理主導で創設		
究開発へ進めるためのステー		工知能技術戦略会議 に関する		
2 - 1 - 1 - 1 - 1	_ , ,			
ジゲートによりテーマの絞込	タスクフ:	ォースを事務局として運営した。		
みを行い、取組を加速する。				
RFIを踏まえた調査研究・				
先導研究においては、調査研				
究を継続して推進し、先導研				
究へ進めるためのステップゲ				
ート※評価(平成28年度上				
期末予定)において、実現性				
に重点をおいた絞込みを行				
3				
7.				
※本プロジェクトでは、平成 -				
27年度に、着手するフェー				
ズが異なる2回の公募を実施				
する。				
①2年以内の先導研究の後、				
「ステージゲート」を経て約				
3年間の研究開発を行うも				
\mathcal{O}_{\circ}				
ステージゲートでは、実用				
化への見通しをより重視した				
審査基準により、本格的な研				
究開発への移行、加速、縮小、				
中止等を審査する。				
②約1年間の調査研究の後、				
「ステップゲート」を経て約				
1. 5年間の先導研究を実施				
し、その後の本格的な研究開				
発に繋げるもの。ステップゲ				
ートでは、先導研究の実現性				
 を重視した審査基準により、				
	<u> </u>			
先導研究への移行、中止を審し				
先導研究への移行、中止を審				
先導研究への移行、中止を審 査する。) Se Titil Later II Share II (Japan Sa		
先導研究への移行、中止を審	4.ロボッ	・ト活用型市場化適用技術開発プ	●ものづくり・サービス分野でユーザーニ	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 -	· ·			
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技術開発プロジェクト	ロジェク	ト活用型市場化適用技術開発プト [平成27年度~平成31年	ーズに即したロボットを実用化。一部の	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 -	ロジェク 度]	ト [平成27年度~平成31年		
先導研究への移行、中止を審査する。4. ロボット活用型市場化適 ー 用技術開発プロジェクト[平成27年度~平成31年	ロジェク 度]	ト [平成27年度~平成31年	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技術開発プロジェクト [平成27年度~平成31年度]	ロジェク 度] ロボッ	ト [平成27年度~平成31年] ト新戦略で示された重点分野で	ーズに即したロボットを実用化。一部の	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技術開発プロジェクト [平成27年度~平成31年度] ものづくり分野及びサービ	ロジェク 度] ロボッ あるもの	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開 中。	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技術開発プロジェクト [平成27年度~平成31年度]	ロジェク 度] ロボッ あるもの	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技術開発プロジェクト [平成27年度~平成31年度] ものづくり分野及びサービス分野を対象として、ロボッ	ロジェク 度] ロボッ あるもの とし、ロス	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開 中。 ●関連事業・機関との連携やマッチング、	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 一用技術開発プロジェクト [平成27年度~平成31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ	ロジェク 度] ロボッ あるもの。 とし、ロス 目指して	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を	ーズに即したロボットを実用化。一部の実施業者は事業化に向けた活動を展開中。 ●関連事業・機関との連携やマッチング、展示会等でテーマ発掘により、イノベー	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技 術 開 発 プロジェクト [平成 27年度~平成 31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ及び市場化出口を明確にした	ロジェク 度] ロボッ あるし、 と 目指して 採択して	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を 研究開発を実施中。平成28年度	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開 中。 ●関連事業・機関との連携やマッチング、 展示会等でテーマ発掘により、イノベー ションの担い手として重要な中堅・中小	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 ー 用技 術 開 発 プロジェクト [平成 27年度~平成 31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ及び市場化出口を明確にした	ロジェク 度] ロボッ あるし、 と 目指して 採択して	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を 研究開発を実施中。平成28年度	ーズに即したロボットを実用化。一部の 実施業者は事業化に向けた活動を展開 中。 ●関連事業・機関との連携やマッチング、 展示会等でテーマ発掘により、イノベー ションの担い手として重要な中堅・中小	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 一用技術開発プロジェクト [平成27年度~平成31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ及び市場化出口を明確にした上で、特化すべき機能の選択	ロジェク 度] ロボッ あるし、して を 目指 に の で で で で で で で で で で で で り で り に り に り に	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を 研究開発を実施中。平成28年度 10テーマを追加で採択した。	ーズに即したロボットを実用化。一部の実施業者は事業化に向けた活動を展開中。 ●関連事業・機関との連携やマッチング、展示会等でテーマ発掘により、イノベーションの担い手として重要な中堅・中小企業等の発掘に積極的に取り組んだ(平	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適用技術開発プロジェクト[平成27年度~平成31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ及び市場化出口を明確にした上で、特化すべき機能の選択と集中に向けた新規技術開発	ロジェク 度] ボッ あるし、して を を り を し で で で で で で で で で で で で で で で で で で	ト [平成27年度~平成31年 ト新戦略で示された重点分野でづくり分野・サービス分野を対象 ボットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を 研究開発を実施中。平成28年度 10テーマを追加で採択した。 成29年度で公募するプラット	ーズに即したロボットを実用化。一部の実施業者は事業化に向けた活動を展開中。 ●関連事業・機関との連携やマッチング、展示会等でテーマ発掘により、イノベーションの担い手として重要な中堅・中小企業等の発掘に積極的に取り組んだ(平成28年度新規採択額に占める中堅・中	
先導研究への移行、中止を審査する。 4. ロボット活用型市場化適 一用技術開発プロジェクト [平成27年度~平成31年度] ものづくり分野及びサービス分野を対象として、ロボット活用に係るユーザーニーズ及び市場化出口を明確にした上で、特化すべき機能の選択	ロジェク 度] ボッ あるし、して を を り を し で で で で で で で で で で で で で で で で で で	ト [平成27年度~平成31年 ト新戦略で示された重点分野で づくり分野・サービス分野を対象 ドットの導入業種・工程の拡大を 2ヶ年で31テーマ(42社)を 研究開発を実施中。平成28年度 10テーマを追加で採択した。	ーズに即したロボットを実用化。一部の実施業者は事業化に向けた活動を展開中。 ●関連事業・機関との連携やマッチング、展示会等でテーマ発掘により、イノベーションの担い手として重要な中堅・中小企業等の発掘に積極的に取り組んだ(平	

新たにロボットを導種・分野の拡大及び大を図り、新規技術るロボットを到り、新規製品をの協業やロボッと合わずッとの協業を担めて、活力がある。 周知を推進して場場では、以下の研究を経続して実施する。	正程の増 開発には 開発にす 日本の は 日本の に 日本の に 日本の に 大 の に た で た い た で た い た い た い た り に り た り た り た り た り た り た り た り た り		●安倍総理が表明した「ロボット導入コスト2割削減」の目標実現に向けて、プラットフォームロボット開発に新たに着手すべく基本計画を策定。	
研究開発項目① も 分野のロボットによるもの自動化を促進し、 新を実現するため、 りを行う上で必要と 象物の認識や把持に 術及びもの高度な対 対象としたロボット 構築に係る技術を開	技術開発 りづくり 主産のづく ものづく される対 関する技 テう上で 物作業を システム			
研究開発項目② サ野のロボット活用技 サービス分野にお 作業のロボット活し、労働生産性の向 ベーションによる高 化を実現するため、 分野の対物プロセスで必要となる高度作としたロボットシスに係る技術を開発す	所開発 けるが地 目を促進 上やイノ 対加価値 サービス を行う上 業を対象 テム構築 る。			
	(S 主 (S 主 主 を を を を を を を を を を を を を	IP) 自動走行システム/大規模実験 [平成29年度~平成30年度] 成28年2月、戦略的イノベーションプログラム(SIP)自動走行システ大規模実証実験について、NEDOが大規模なることが承認された。平成2 度の実験実施に向け、以下の重要5課実用化に募等の準備活動に着手。ダイナミックマップ HMI (Human Machine Interface)情報セキュリティ歩行者事故低減次世代都市交通	 ●迅速かつ柔軟な人事配置を実施して、ロボット・AI部の中に、大規模実証実験の準備・実施を担う「次世代モビリティグループ」を新設。 ●重要5課題の実用化に向けて実証実験を実施すべく速やかに公募等の準備活動に着手。 ●社会受容性の醸成に関する課題の調査の公募準備等に着手。 	
x) 新製造技術分野 ものづくり基盤技術とし て、短時間、高品質の製造 及び量産に耐えうるコスト 構造の確立のため、難加工 品・技術を創出し、省資源、6年度~平成30年	調査の (x) ション創 P) 革 [平成 2	た、社会受容性の醸成に関する課題の の公募準備等に着手。) 新製造技術分野 战略的イノベーション創造プログラム IP) 革新的設計生産技術 [平成 年度~平成30年度] 計や生産・製造に関する革新的な技術		

	-11-1 A // /H/1// 111) w		
材料等の先進材料の切断な ど、次世代製品の加工シス テムを3種類以上実用化す ることとする。新しい製造 システムとして、大規模な 生産設備が不要で、設備投 資とエネルギー消費を大幅 に削減できる少量多品種生 産に対応した製造システム の実用化した製造システム の実用化す を変更の課題と なっている。 第3期中期目標期間に おいて、以下のようなシステム に削減できる少量多品種生 産に対応した製造システム のままなが開発を推進する。	革新的な技術の開発等を行い、地域の企業や個人が持つアイデアや技術・ノウハウを活かし高付加価値な製品やシステム及びサービスを産み出す新たなものづくりスタイル	の開発等を行い、地域の企業や個人が持つ アイデアや技術・ノウハウを活かし高付加 価値な製品やシステム及びサービスを産 み出す新たなものづくりスタイルを確立 することを目的とし、以下の研究開発を実 施した。	
先進材料の切断など、次世 代製品の短時間、高品質の		研究開発項目① デライトものづくりの 実証 デライトものづくりにおいて、カスタム 設計のプロトタイプ完成、テストユースを 4例実施した。	
システム技術の開発を推進し、3種類以上のシステムを実用化する。 (b)新しい製造システム大規模な生産設備が不要で、設備投資とエネルギー消費を大幅に削減できる少量多品種生産に対応した製造システムの実用化・事業化に向けた技術開発等を行う。	価値探索・設計・価値データ をつなぐデライト設計システムの開発と実証に取り組む。	研究開発項目② デライト設計技術の開発 デライト設計における設計手法のツール化、及びガイドラインを作成した。また、設計強化のため新規公募を実施し3テーマを採択、研究開発を開始した。	
	研究開発項目③ 3次元造形 活用アジャイル設計生産技術 開発 設計・生産連携に基づいた 新しい価値のプロトタイプを 創生することを目指し、主に 3次元造形加工技術の開発に 取り組む。	研究開発項目③ 3次元造形活用アジャ イル設計生産技術開発 主に3次元造形加工技術の開発に取り 組み、9件の一次試作、及び原型検証を完 了した。	
	研究開発項目④ 3次元造形 用先端材料開発 3次元造形に用いる革新的 材料の開発に取り組む。	研究開発項目④ 3次元造形用先端材料開発 インクジェット方式の3次元造形加工のためのベースマシーン完成、それに使用する高濃度・高機能ナノインクの設計指針と形状保持手法を確立、試作に適用した。	
	研究開発項目⑤ 高機能・知能化加工技術 加工困難・複雑なプロトタイプの迅速・高精度加工の実現に取り組む。	研究開発項目⑤ 高機能・知能化加工技術 加工困難・複雑なプロトタイプの迅速・ 高精度加工の実現に取り組んだ。	
	研究開発項目⑥ デライトも のづくり普及モデル開発 デライトものづくりを地域 の中小・中堅企業で普及展開 するための価値探索・評価の 普及モデル開発に取り組む。	研究開発項目⑥ デライトものづくり普及モデル開発 デライトものづくりを地域の中小・中堅企業で普及展開するための価値探索・評価の普及モデル開発に取り組んだ。	
	2. 高輝度・高効率次世代レー ー ザー技術開発 [平成28年 度~平成32年度] 我が国が世界のトップランナーとして、これまでになく高効率かつ高輝度(高出力・高	2. 高輝度・高効率次世代レーザー技術開発 [平成28年度~平成32年度] これまでにない高輝度(高出力・高ビーム品質)かつ高効率なレーザー技術、及びそれを用いたレーザー加工技術を開発することで、消費エネルギーの削減と、我が	

	ビーム品質)で、多様な素材 を効率よく加工できるレーザ 一技術を開発することにより、燃料消費・温室効果ガス排 出の削減を図るとともに、我 が国のものづくり産業の競争 力強化を図る。	国ものづくり産業の競争力強化を図ることを目的とし、以下の研究開発を実施した。	
	研究開発項目① 高品位レーザー加工技術の開発 形状荒れや熱変性の影響を抑えた実用的な短波長・超短パルスレーザー加工システムを開発する。	研究開発項目① 高品位レーザー加工技術の開発 短波長・短パルスレーザー加工システムの開発に向け、波長変換素子、レーザー出力部、光学素子等の設計を行い、試作と評価を開始した。	
	研究開発項目② ハイパワーレーザーによる体積加工技術の開発 構造部材の成型や高強度化を効率良く処理することを目指したパルスエネルギーの高いレーザー加工システムを開発する。	研究開発項目② 高出力レーザーによる加工技術の開発 高出力パルスレーザー装置の基本設計を固め、構成機器の試作を開始した。また、加工検証試験と分析評価も開始した。	
	研究開発項目③ 次々世代レ ーザー基盤技術の研究開発 将来のレーザー加工技術に 資する新しいレーザー構造の 探索や未踏波長領域開拓に向 けた基盤技術を研究開発する	研究開発項目③ 次々世代加工に向けた 新規光源・要素技術開発 半導体レーザーダイオードを中心に、6 つの新規光源開発に着手した。	
	研究開発項目④ 次世代レーザー加工共通基盤技術の研究開発 レーザー加工の学理に立脚して、素材に適した最適なレーザー加工条件を効率的に導出するための基盤技術を研究開発する。	研究開発項目④ 次世代レーザー及び加工の共通基盤技術開発 素材の特性に合った高品位かつ効率的なレーザー加工の実現に向け、重要パラメータを抽出するためのテストプラットフォームの構築を開始した。また、計測評価基盤技術の開発にも着手した。	
xi) I T融合分野 ビッグデータを、コンピ コーティング能力を活用することにより、異種産業が 融合した、いわゆの創出をともに、I T融合分野 自たが増したが増したが増してあり、に対する。 (xi) I T融合分野 現在の「医食住インフ 現在の「医食住インフ 現在の「医食住インフ 対法をいた。 (xi) I T融合分野 現在の「医食住インフ 対法をの基礎をいた。 (xi) I T融合分野 現在の「医食住インフ 対法を同様をの基礎をの基礎をいた。 (xi) I T融合分野 現在の「医食住インフ 対法を情勢的。 (xi) I T融合分野 現在の「医食住インフ 対法を情勢の基礎をいた。 (xi) I T融合分野 現在の「医食住インフ 対法を情勢の基礎をいた。 (xi) I T融合分野	(xi) I T融合分野(該当プロジェクトなし)	(xi) I T融合分野(該当プロジェクトなし)	

業等を実施し、実用化・事
業化と普及促進を目指す。 併せて、I T融合の実現に 必要となる、ビッグデータ のリアルタイム処理や、モバイルの基盤技術を確立
併せて、I T融合の実現に 必要となる、ビッグデータ のリアルタイム処理や、モバイルの基盤技術を確立
必要となる、ビッグデータ のリアルタイム処理や、モ バイルの基盤技術を確立
のリアルタイム処理や、モ バイルの基盤技術を確立
バイルの基盤技術を確立
$ 9 \circ $
xiii) 境界・融合分野 (xiii) 境界・融合分野 (xiii) 境界・融合分野
生涯健康や安全・安心等 急速な知識の蓄積や新 (該当プロジェクトなし) (該当プロジェクトなし)
を中心とした社会ニーズや 知見の獲得によって、異分
社会的貢献の実現を視野に 野技術の融合や新たな技
入れ、高付加価値MEMS 術領域が現れることを踏
(微小電気機械システム) まえ、従来の取組を更に強
等を活用しつつ、各分野の 化し、生涯健康や安全・安
境界分野及び分野を跨ぐ技 心等を中心とした社会ニ
術の融合領域における技術 ーズや社会的貢献の実現
開発を推進することとす を視野に入れつつ、高付加
る。 価値の微小電気機械シス
テム (MEMS) 技術を用
いた超小型センサー及び
それらの制御システムを
開発する等、各分野の境界
分野及び分野を跨ぐ技術
具体的には、第3期中期
目標期間中に新しい機能
を提供するMEMSデバ
イスを開発するとともに、
MEMSデバイスを活用
した新たなサービスの実
用化・事業化を図ることと
し、この取組によって7種
類以上のサービス提供を
実現する。 実現する。 いることから、本項目の自己評価をAとし
$ \mathcal{L}_{\circ} $

様式2-1-4-1 国立研究開発法人 年度評価 項目別評価調書(研究開発成果の最大化その他業務の質の向上に関する事項)様式

I (ク)技術分野ごとの計画 (国際分野)

3. 中長期目標、中長期計画、年度計	十画、主な評価軸、	業務実績等、年度評価に係	系る自己評価及び主務	大臣による評価		
中長期目標	中長期計画	年度計画	主な評価軸(評価	法人の業務実	:績等・自己評価	主務大臣による評価
			の視点)、指標等	主な業務実績等	自己評価	
					<自己評価> A	評定
	祭展開支援	(xii)国際展開支援	_	(xii)国際展開支援	<自己評価の根拠>	
	成長に伴うエネル 	1. 国際エネルギー消費効率		実証事業は、前年度までの累積が19ヶ		
	要の増大及びそれ	化等技術・システム実証事業		国、83件であったところ、平成28年度		
	温室効果ガスの排し こより、世界におけ	[平成5年度~平成32年		│は新たに6ヶ国、10件を追加し、実施国・ │件数ともに拡大。また、調査フェーズでは、	を高めるべく、委託事業から、原則、補助 事業化。	
	レギー効率の向上	我が国が強みを有する省エ		実証要件適合性調査を1件、実証前調査を	于未1L。 	
	生可能エネルギー	ネルギー・再生可能エネルギ		4件、普及促進のための調査を2件実施し	◇「英国・マンチェスターにおけるスマート	
	はエネルギー需給	ー、スマートコミュニティ等		た。なお、実証前調査のうち2件は平成2	コミュニティ実証事業」 [平成25年度	
	化及び地球温暖化	の技術を対象に、相手国のニ		7年度に導入した助成制度に基づいて実		
	して重要な課題で	ーズ・要求スペックに即した		施されているものであり、平成29年度も	●現地住民550戸の協力及び機器設置が	
	た、これを支える	技術・システムを実証し、当		引き続き制度の定着に向けて取り組む予	効率よく行われるよう、NEDOがマンチ	
	統安定化や需給管	該技術の普及を推進する。平		定。	エスター市及び現地住宅公社と調整し、作業品の人物、作業工程を済まれた。	
	・ 全体での最適 国際社会は新たな	成28年度からは助成制度を 導入することで企業の主体性		また、平成28年度からは個別テーマに	業員の人数、作業工程を適正化。	
	国际任云は利たな 頃に直面している。	を高めるとともに、より一層、		おいて外部の有識者による事後評価を本 格的に実施し、経済性からの評価視点を強	●現地アグリゲータが定めた取引単位の2	
	水や廃棄物などの	技術普及可能性の高い案件に		化する等で普及の蓋然性を高めた。	00kWを超える抑制に成功。日本の電力	
	頃の顕在化や、高齢	誘導すべく、専門家による経		実証事業のうち、イギリス・マンチェス		
	背景とした医療・福	済性評価の導入も実施する。		ターでのスマートコミュニティ実証では、	る電力アグリゲーションビジネスにおい	
	係る技術ニーズが	事業の推進に当たっては、相		マンチェスターの公共住宅にヒートポン	て、一般家庭のヒートポンプを活用した大	
	こ高まっている。こ	手国の地域性、地理的要因、		プ (HP)を550台導入し、情報通信技	規模な実証事業は世界初。	
		購買力等の国情を踏まえた適		術(ICT)によりその電力消費および蓄	● チジル と 上古 Ψ ロッド・よ ノ マ か サ) よ ヮ	
	マルギー・環境技術 関係展開	切な事業運営を行うととも		熱を集約・直接制御することで、電力市場	●委託先は、本事業及びマウイで実施したス	
	業技術の国際展開 これら課題の解決	に、過去の事例分析又はビジネスモデルの構築、国際標準		で取引可能な200kWを超える調整力 の創出に成功。日本の電力市場でも将来的	マートコミュニティ実証(国際エネルギー 実証)の経験を踏まえ、英国・シリー諸島	
		の獲得等を視野に含め、得ら		に有効活用を目指している電力アグリゲ	で実施される約15億円規模のスマート	
		れた成果の当該国及び第三国		ーションビジネスにおいて、一般家庭のH	グリッドプロジェクトへの参画に繋げた。	
	資することが重要	への普及・展開の促進を図る。		Pを活用した大規模な実証事業は世界初		
である。		また、新規案件の形成のため、		となる。委託先は、本事業およびマウイで		
		政策的ニーズや予算の状況を		実施したスマートコミュニティ実証(国際		
		踏まえつつ、公募を実施する。		エネルギー実証)の経験を踏まえ、英国・	VDC (高電圧直流) 給電システム等実証	
		さらに、低炭素社会の実現に向けた国際連携の深化を図る		シリー諸島で実施される約15億円規模	事業」 [平成26年度~平成28年度] ●世界的にも事例の少ない大容量(500	
		国際会議として、第3回		一切スマートクリットプロジェクトへの参	kW級)のHVDC給電システム技術の導	
	政策、規制環境等を	"Innovation for Cool Earth		また、米国テキサス大学オースティン校		
		Forum (ICEF)"を実施す		のデータセンターにおいて、エネルギー効		
	海外実証事業を強	る。過去2回の会合では、産		率向上の革新的手法の一つである高電圧	池を組み合わせることで、15%以上の省	
	_ / - 0	官学のイノベーションによる		直流給電システム技術に、太陽光発電を連	エネを実現。	
		温暖化問題の解決方法につい		系するという技術実証を行い、15%以上		
	の経験から得られ	て議論を行い、協力に向けた		の省エネ効果を達成。今回導入したシステ		
	を踏まえ、より効果 図的に事業を推進す	プラットフォームを提供する基盤が固まったため、今年度		ムは世界的にも最大級となる500kW 級の大容量給電が可能なものであり、世界	世界的に注目度が高いテキサス大学オースティン校において成果を挙げ、商用ベー	
る。	当りに事業を推進り	からはIEA等様々な国際組		有数のスーパーコンピュータを有する同	スでの普及に向けた交渉開始。	
	内には、対象技術は	織との連携を図り、СОР2		大学での本実証事業での成果は、商用べ一		
	も最先端なものに	1の成果を踏まえた更なるイ		スでの普及に向けた第一歩となった。	●データセンター全体での省エネ効果を評	
こだわら	うず、相手国の要求	ノベーションの促進に貢献す		この他、地球温暖化問題の解決に向けた	価する日本発の総合エネルギー効率指標	
	クや有効需要に合	る。		エネルギー・環境技術分野のイノベーショ	(Datacenter Performance Per Energy	
	技術を優先すると			ンを促進する方策を議論する「Innovation		
	企業の海外展開戦			for Cool Earth Forum(ICEF)」の第		
	合した技術である 重視する。また、関			3回年次総会を開催。第3回年次総会全体のテーマとして、「CO₂のネットゼロエ	国際標準化とすべく、米国関係機関への働きかけや日本および米国での学会発表を	
	¤祝りる。また、鬨 ─ ・機関と協力し、海 ─			の	さかりや日本ねよび木国での子芸先表を 実施。	
	にかかわる関連施			解決に向けたあらゆる貢献の重要性を発		

策(事業化可能性調査、人材育成、共同研究、二国間・多国間の政策対話等)との連携を図りつつ、事業内容に応じ相手国における。技策の所名。接近のでは、となりのでは、実証だける。技術における。技術・シをではいる。となる売上獲得のでは、まけるよる売上獲得のでは、では、まけるが国のでは、では、ないでは、では、ないでは、では、では、ないでは、では、では、では、では、では、では、では、では、では、では、では、では、で		信した。会期中は、約80ヶ国から1,000人を越える参加者が集い議論。さらに 年次総会の議論を踏まえ、ICEFロード マップ (「CO2Utilizaito n」「ZEB/ZEH」)を作成し、COP 22のサイドイベントで年次総会の成果 とともに発表した。	●第3回年次総会(平成28年10月5、6 日)を開催。約80ヶ国から約1,000
ついては、我が国が推進すべち者に、我が国が推進すべき者に、我が事にを持ていた。とというとという。 大き で で で で で で で で で で で で で で で で で で	の指せ機開象、ミ機材イ本機上Mと状募がた日が・野エニシ・テ業等施し、を実施すた関発分省ュ械料オ事関実のし況を関発分省ュ械料オ事関実のし況を	平成28年度は、大新規案施した。また、インダストリー4.0や1とまで、新規案施した。また、インダストリー4.0や1と事子業を連邦でで、大き事で、カットリー4.0や1と事子を連邦研究・大き事で、大き事で、大き事で、大き事で、大き事で、大き事で、大き事で、大き事で、	
	究開発・実証プロジェクト [平成23年度~平成29年 度]	プロジェクト 環境分野のうち、平成25年度から事業 を開始した「廃油の環境調和型再利用システム (インドネシア)」については、平成	

	市場を有する世界各国に展開	28年10月に実証プラントが竣工式し、		
	すべく、相手国における具体	東カリマンタン州バリクパパン市におい		
	的なニーズを把握し、現地の	て実証を開始した。さらに、再生された油		
	実情に合った研究開発・実証	の品質及び量等のデータを収集し 、実証		
たソリューションを組み	事業を推進する。具体的な対	事業を完了した。また、平成27年度から		
上げ、システムとして展開	象技術としては、機械システ	事業を開始した「金属廃液・汚泥から有用		
していく端緒を拓くべく、	ム、電子・材料、バイオ・医療、	金属を回収し、汚泥を削減する研究開発・		
我が国のエネルギーセキ	省エネルギー、新エネルギー、	実証事業 (マレーシア)」についてはでは、		
ュリティ上重要な国での	スマートコミュニティ、環境	実証設備が竣工し、現地の廃液を用いた実		
実証事業を引き続き展開		証研究を行い、設備の目標性能 を確認の		
していく。また、これまで		上、実証事業を完了した。		
の電力技術的側面を中心		医療分野のうち、平成24年度から事業		
とした取組に加え、産業競		を開始した「現地国事情に適した高品位透		
争力強化の視点から、我が		析治療を達成する透析水清浄化システム		
国経済を牽引する産業を		の研究開発・実証」では、南京医科大学附		
実証に加えていくととも		属第二医院にセントラル方式浄化装置及		
に、他省庁や関係機関とも		び30台の人工透析監視装置の実証を行		
連携し、取組の幅と深さを		い、その成果は計6社の新華社等大手を含		
		む中国内メディアで報道された。また、平		
加えつつ、より上流から事		成26年度から事業を開始した「人工関		
する。加えて、実証参加企業と国際煙準化推進企業		節・手術支援システム構築に係わる研究開発・実証(タイ)では、タイトの三次三		
業と国際標準化推進企業の整合化な図り、標準化の		発・実証(タイ)」では、タイ人の三次元		
の整合化を図り、標準化の		骨形状を計測して得られた結果から、タイ		
視点を組み込んだ展開を		人の骨形態に適する人工関節を設計し、膝		
進める。これにより、実証		関節の動作解析を行うとともに、手術器械		
したスマートコミュニテ		の操作性を検証した。		
	4. 地球温暖化対策技術普及	4. 地球温暖化対策技術普及等推進事業	●同事業では廃棄する旧型エアコン内に冷	
	等推進事業 [平成23年度	[平成23年度~平成29年度]	媒として残留する特定フロンガスの回収	
につなげるべく、事業を展	1 // 2 1 // 2 2	平成28年度は、新たに2件が実証フェ	と、適切な処理を実施し、ベトナム国内初	
開する。	二国間合意によって、我が	ーズへと移行した。	のフロンガスの無害化処理事例となった。	
	国が世界に誇る低炭素技術や	さらに、「ラオス省エネデータセンター		
	製品、インフラ、生産設備等	(平成26年度~)」が、JCMプロジェ	●NEDOの取組は、先進的な事例として、	
	の普及や移転による温室効果	クトへの申請権を得た。また、すでに実証		
	ガス排出削減・吸収への貢献	フェーズにあった「ベトナム版V-BEM	がウェブサイト(英語)で公表。	
	を定量的に評価するととも	S開発によるホテル省エネ促進実証事業		
	に、我が国の削減目標の達成	(平成25年度~)」は、JCMプロジェ		
	に活用する「二国間クレジッ	クトとして、正規に認証された。		
	ト制度」(JCM)の推進に向	また、「ベトナム国営病院における省エ		
	けた政府の取組を踏まえ、我	ネ/環境改善によるグリーンホスピタル		
	が国の低炭素技術・製品等の	促進事業(平成25~29年度)」につい		
	導入による具体的な排出削減	て、廃棄する旧型エアコン内に冷媒として		
	効果等を確認・実証する技術	残留する特定フロンガスの回収と、適切な		
	実証等を実施する。	処理を実施し、ベトナム国内初めてフロン		
	平成28年度は、平成25	ガスの無害化処理を成功。本事業の成果を		
	年度に採択したモンゴル及び	踏まえ、今後同国でのフロン回収・破壊処		
	ベトナムでの実証事業、26	理の制度化・普及促進が期待される。		
	年度に採択したラオスでの実	さらに、年度途中に実施した公募では、		
	証事業を引き続き実施すると	実証前調査を1件、実現可能性調査事業を		
	ともに、平成25年度に採択	2件採択し、それぞれ事業を開始した。		
		4 円1木1八し、て4いて40尹未を囲炉した。		
	したインドネシアでの実証事			
	業についてもプロジェクトM			
	OUを締結し、事業の本格稼			
	働に入る。			
	また、平成26年度に採択			
	したモルディブとベトナムで			
	の実証事業、27年度に採択			
	したインドネシアとベトナム			
	での実証事業については、実			
	証前調査等を実施し、事業化			
	評価を通った案件について			

,			
手する。			
さらに、平成28年度にお			
いては、政策動向や予算の状			
況を踏まえつつ、新規の実現			
可能性調査等を公募により採			
択し、実施する予定。			
5. クリーンコール海外普及	5. クリーンコール海外普及展開等事業		
展開等事業 [平成27年度]	(1) 石炭高効率利用技術共同実証事業		
~平成31年度]	ウクライナの制度、税制や、スチームタ		
石炭の環境負荷を低くしつ	ービンの効率向上のための蒸気の漏えい		
つ、同時に安定供給性と経済	を低減するシール構造の適用のための調		
性を担保して我が国で利用す	査等を行った。併せて、実証サイトとして		
るために、我が国の優れたク	キエフ近郊のトリピルスカ発電所を選定		
リーンコール技術(CCT)	し、ウクライナでの国内審査資料の作成お		
の実証事業及び調査事業を海	よび事業実施のためのカウンターパート		
外で実施することで、石炭の	との交渉等を行い、MOUについては大筋		
高効率利用を海外で促進す	合意した。		
る。	(2)石炭高効率利用システム案件等形成		
つ。 (1)石炭高効率利用技術共	間を事業		
(1) 石灰同効平利用収削共	-		
四天証事未 ウクライナにおいてスチー	・		
ムタービンの効率向上のため	循環流動層(CFB)型発電設備の設置プ		
の実証事業を実施するための	ロジェクト案件形成調査」をはじめ新規に		
実証前調査を行い、MOU及	8件(高効率発電5件、その他(ガス化、		
びIDを締結する。その後、	選炭、環境対策) 3件)を採択し、7ヶ国		
スチームタービンの設計及び	で案件形成に係る可能性調査を行い、導入		
製作を進める。	時のCO₂排出削減量効果等を評価した。		
(2) 石炭高効率利用システ			
ム案件等形成調査事業			
日本のCCTを利用したシ			
ステムを対象とし、海外への			
普及の促進により我が国の経			
済成長と世界のCO₂削減の			
同時達成を図ることを目的と			
して、プロジェクトの創成や			
実施可能性に関する調査等を		以上の内容を踏まえ、顕著な成果が出てい	
実施する。		ることから、本項目の自己評価をAとした。	
大胆 プシ゚。		ることがり、平気日の日日計画でAC U/に。 	

1. 当事務及び事業に関する基本情報								
П	業務運営の効率化							
当該項目の重要度、難易	_	関連する政策評価・行政事業	0426国立研究開発法人新エネルギー・産業技術総合開発機構一般管理					
度		レビュー	費					
			0432国立研究開発法人新エネルギー・産業技術総合開発機構一般管理					
			費(エネルギー需給勘定)					

2. 主要な経年デー	・タ									
評価対象となる 指標	達成目標	基準値等 (前中長期目標期間 最終年度値等)	25年度	26年度	27年度	28年度	29年度	30年度	3 1 年度	(参考情報) 当該年度までの累積値等、必要な 情報
各種表彰制度での 受賞数	-	-	25 件	21 件	44 件	53 件				
新規の研修コース 設置数	中期目標期間 中に5コース 以上	_	2 コース	3 コース	1 コース	3 コース				
一般管理費・業務 経費の合計(一部 を除く)の効率化 の実績値	平成 24 年度 を基準として 毎年度平均で 前年度比 1.08%の効率 化	_	毎年度平均で 27.6%の効率化	毎年度平均で 13.8%の効率化	毎年度平均で 17.5%の効率化	毎年度平均で 19.4%の効率化				
ラスパイレス指数	_	_	104. 1	103. 7	105.8	106. 4				
競争性のある契約の割合	_	_	件数ベース 91.0% 金額ベース 99.8%	件数ベース 96.4% 金額ベース 99.9%	件数ベース 95.6% 金額ベース 99.9%	件数ベース 97.4% 金額ベース 99.9%				
職員に対するコン プライアンスに関 する研修の回数	年4回以上	_	コンプライアン ス研修 1 回(延 ベ 17 回) 新規入構職員向 けコンプライア ンス基礎研修 13 回	コンプライアン ス研修 1 回(延 ベ 2 回) 新規入構職員向 けコンプライア ンス基礎研修 13 回	コンプライアン ス研修 1 回 新規入構職員向 けコンプライア ンス基礎研修 11 回	コンプライアン ス研修 1 回 新規入構職員向 けコンプライア ンス基礎研修 13 回				

Ⅱ (1)機動的、効率的な組織・人員体制

中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	漬・自己評価	主務大臣による評価
				業務実績	自己評価	
				<主要な業務実績>	<評定> A	評定
織り 横り 横り 横り で人すする で人する での でが でが でが でが でが でが でが でが でが でが	織・人員体制 産業は を を を を を で を で を の は の は の は の の は の の の の の の の の の の の の の	野の技術開発を巡る変化 や、国際的なエネルギー・迅速 境問題の動向の推移に迅よる がまれる でででは では かった は では では かった は がった は かった は は は は は は は は は は は は は は は は は は は		(1)機動的、効率的な組織・人員体制 近年における産業技術分野の技術開発を 巡る変化や、国際的なエネルギー・環境問題 の動向の推移に迅速かつ適切に対応し得る ような、柔軟かつ機動的な組織体制を構築 し、意思決定及び業務執行の一層の迅速化 と効率化を図る。その際、人員及び財源の支出 効利用により組織の肥大化の防止及び事業の 見直しを積極的に実施するとともに、下記を 設定し、その達成に努めた。	<自己評価の根拠>	
	(ア) 効率的な業務遂行体制を確保するため、各責任をおりる権限と責るを選集等により明正の進歩をといる。 ともでは、プロジェクル連歩とは、より業務の進歩の進歩の進歩の進歩の進歩の進歩のでは、といる。 では、といる。 に設定し、組織内部においる。 は、対象ができる。 と、対象ができる。 は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	(ア) 効率的な業務遂行体		産業技術開発関連業務及び新エネルギー・省エネルギー関連業務等については、全ての事業について、各部門が責任を持って策定した基本計画又は実施方針により業務の進捗及び成果に関する目標の達成度の把握に努めた。そのうち、平成28年度は、ナショナルプロジェクトについて、機構外部の専門家・有識者を活用した中間評価12件及び事後評価11件の分科会での評価を踏また、機構外部の専門家・有識者を活用した。 また、機構外部の専門家・有識者を活用した。 また、機構外部の専門家・有識者を活用した。		
ジャー等、高度の専門性が 必要とされる役職について は、産学官からの優れた人 材の登用を行うこととす る。また、外部人材の登用 等に当たっては、利害関係 者排除の措置を徹底するな	動向の変化、業務の進捗員、業務のなど、機た、を表別の変化、機能を表別の変化、機能を表別の変化を表別のでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、またのでは、ないいのでは、ないのではないのでは、ないのではないのではないのではないのではないのではないのではないのではないのでは	向の変化、業務の状況に応じ、外部人材も含め適切の 人員配置を行い、人員配置を行い、産業界、 強を図る。また、産業界、学 術界等の専門家・有識者等 の外部資源の有効活用を う。特に、PM等、高度の専		後評価11件を実施した。 外部有識者を積極的に登用し、アドバイザーとして4名、プログラムディレクターとして1名、プログラムマネージャーとして8名、技術戦略の検討等を担うフェローとして18名が活躍している。		

また、NEDO職員の民	(ウ)機構職員の民間企業	(ウ)機構職員の民間企業	_	国の政策に関する知見・経験を深めるべ		
間企業への派遣も含め、人	への派遣も含め、人材の流			く他機関へ14名の職員を派遣している。		
材の流動化を促進するとと	動化を促進するとともに、	動化を促進するとともに、		機構内職員の技術経営力の強化を図るた		
もに、NEDOのマネジメ	機構のマネジメント人材の	機構のマネジメント人材の		め「出口戦略セミナー」(9講座)及びプロ		
ント人材の育成に努め、N	育成に努め、機構のマネジ			ジェクトマネジメント力強化のための「プ		
EDOのマネジメント能力	メント能力の底上げを図			ロジェクトマネージャー育成講座 (18講		
の底上げを図ることとす	プレー能力の風工りを図 る。	3 1 1 1 1 1 1 1 1 1		座)を実施した。		
る。	√ 0°	√ 0°		圧)で大旭した。		
さらに、常に時代の要請	(エ)各部門の業務が相互	(エ) 社会情勢、技術動向に		亚より9年4月に辛田沈字のより一屋の	●「IoT推進部」、「ロボット・AI部」、	
			_			
に対応した組織に再編を行	に連携して効率的な運営が	迅速に対応できる組織体制		迅速化を図るために、文書及び運営会議に	「AI社会実装推進室」を設置するとと	
い、本部、国内支部、海外	行われるような体制になる			よる重複判断排除を推進するとともに、文書は批其準の見ました。または、大	もに、IoT関連のプロジェクトや自動	
事務所についても、戦略的・	よう、更なる随時見直しを	但しを必要に応して凶る。		書決裁基準の見直しを実施した。また、各部	走行システムの大規模実証実験を推進	
機動的に見直しを行うこと	図る。			権限及び判断機能の強化のため、平成28	するなど、IoT、AIを含む第4次産	
とする。				年4月にエネルギー・環境本部、産業技術本	業革命等、政府方針に位置づけられた技	
				部体制の見直しを実施するとともに、これ	術分野の研究開発プロジェクト推進を	
				ら本部に伴う連絡体制の見直し及び既存の	強化。	
				役員間の連絡会議を集約化し、理事・部長連		
				絡会として新たに整備した。さらに、「人工		
				知能技術」分野に関し、即効的かつ機動的に		
				業務の推進を図る必要性からAI社会実装		
				推進室を設置した。また、2020年のロボ		
				ット国際競技大会に向け機構全体の推進体		
				制の強化を図るべく検討を進めた。		
	(才) 本部、地方支部、海外	(才) 本部、地方支部、海外	_	海外事務所については、他の独立行政法		
	事務所間における双方の円			人との事務所近接化及び会議室の相互利用		
	滑な流通、有機的連携を一			環境を整備・継続し、NEDO分室は他の独		
		層図るとともに、業務の状		立行政法人とそれぞれの会議室を共有する		
		況を踏まえ必要に応じ組織		運用を継続している。		
		の見直しを図る。なお、引き				
		続きNEDO分室について				
	は、既往の政府決定等を踏				以上の内容を踏まえ、顕著な成果が出て	
		れぞれの会議室を共有する			いることから、本項目の自己評価をAとし	
	しを行う。	運用を継続する。			た。	

Ⅱ (2) 自己改革と外部評価の徹底

3. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価										
中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大臣による評価				
				業務実績	自己評価					
				<主要な業務実績>	<評定> B	評定				
(2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	の徹底 の電子では の事業にの ので で で で で で で が で が で が き の が で が き で が き で が き で が き で が き で が き で が り 。 業 界 、 で の り る 。 ぎ に の で り る 。 に の の の り る の の の の し の の の の の と の の の の の の の の の	の徹底 平間ででは、 でででは、 でででででででででででででででででででででででででででで		(2)自己改革と外部評価の徹底 平成28年度はプロジェクト評価については12件の中間評価、11件の事後価に会議では12件の中間評価、4件の事後評価については5件の中間評価、4件の事後評価を、事業評価についずまでは2件の事後評価を実施した。特にプロジェーののに対しては2件の事後にでならいではではないではない。それにより、下ではを取りから本格ででは、ではないではではではではではではでは、では、では、では、では、では、では、では、では、で						

Ⅱ (3)職員の意欲向上と能力開発

3.	. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価								
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	漬・自己評価	主務大臣による評価		
					業務実績	自己評価			
					<主要な業務実績>	<評定> B	評定		
	成状況を多面的とつを観的とつなる。 は適切には無いでする賞与映画的では ができたいでは、 がでは、 がでは、 がでは、 がでは、 がでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでする。 はでしな。 はでし。 はでしな。 はでしな。 はでしな。 はでしな。 はでしな。 はでしな。 はでしな。 はでしな。 はでしな。	に適切にでする。とれている。たってで行うでは、ことでする。このでででする。このでででででででででででででででででででででででででででででででででででで	カ開発 ・ ととを ・ とを ・		(3)職員の意欲向上と能力開発 新規入構者に対する評価制度の理解促進 を図るべく、研修を8回実施するとともに、 目標設定の際には「目標設定手引き」等を周 知することにより、人事評価制度の定着と 円滑な運用を図った。また、評価者の視点の 統一と部下の管理・育成能力強化のため、管 理職向け研修を4回実施した。	<育己評価の根拠>			
		現行の研修について、効果等を踏まえ必要に応じ見直しを行い、業務を行う上で必要な研修の充実を図るため、第3期中に新規の研修コースを5コース以上設置する。	・現行の各階層別研修、技術開発マネジメの個別研修、由力の 開発マネジオをでして、 明光に資力をでして、 の向上に関するとの をでいる。 を行う上で必要するととを 経続的に実施するとを に が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、		・固有職員に対し、各階層別研修を実施。さらに、技術経営力強化のための「出口戦略でまた。加えて、野講座)を実施した。加えて、新人・若手職員向けの研修として、ヤッーダーズゼミナールを開始した。 ・職員に対し、文書管理、契約・検査、知財管理、システム操作等、各種業務を行う上で必要な研修を実施した。 ・国際関連業務の円滑化を図るため、語学研修においては、引き続き、英語プレゼンティンが能力、Eメールライティンが能力、コミュニケーション能力強化研修、新卒入構職員に対するビジネス基礎英シスル関でを実施するとともに、新たにシスルワード英会話実践研修を取り入れた。	8年度までに9コース設置し、前倒しで 目標を達成(目標:中長期計画期間中に 5コース以上設置)。			
		技術経営力に関する産業 界、学術者ののカットリーク を構築し、大学ののカットリーク を構築し、大学のの を構築し、大学の を持続に 関する機構 の は に を は り り り り り り り り り り り り り り り り り り	・産業界、学術界等の外部の 専門家・有識者等とのネットワークを活用するなどして、技術経営力に関する機構内職員の研修を 8回以上実施する。		・民間企業等で豊富なプロジェクト・マネジメントの経験を有する者やその体系的知識を保有する者を講師とし、プロジェクト・マネジメントの手法について学ぶ「プロジェクトマネージャー育成講座」(18講座)及び技術経営力強化のための「出口戦略セミナー」(9講座)を実施した。 ・国の政策に関する知見・経験を深めるべ	●技術経営力に関する機構内研修について、平成28年度まで毎年度2コース実施し、目標を達成(目標:毎年度1コース以上実施)。また、本研修について、平成28年度は計28回実施し、目標を上回って達成(目標:平成28年度中に8回以上実施)。			
		専門家を目指す職員を外部の技術開発現場等に毎年度	ント能力の更なる向上の ため、1名の職員を外部の		るの政権に関するが近に関するが近した。 く他機関へ14名の職員を派遣した。 ・経営・マネジメント等の知見や語学の更	て、平成28年度までに6名が学位取得 し、目標を前倒し達成(目標:5名以上			

1名以上派遣し、その経験 その、大工に関立とも営学等における大工に対して、 等ので、 等ので、 がで、 がで、 がで、 がで、 がで、 がで、 がで、 がで、 がで、 が	技術開発現場等に派遣し、 その経験を積ませる。 ・プロジェクト・マネジメン トに必要な専門知識を習 得させるため、2名の職員 を大学のMOTコース等 に派遣し、博士号、修士号 等の取得を目指す。	なる習得、深化を図るため、海外大学院の 修士課程に2名を派遣中。また、国内大学 院の修士課程にも1名の職員を派遣し、 修士号を取得させた。	の取得)。	
の外の技術開発で が外の技術開発で が大きの情報で が大きの情報で が大きないで がよるとも、 がプロジェスト的 では、 では、 では、 では、 では、 では、 では、 では、	・内外の技術開発マネタメをマネクを開発をの情報とととなる。 を実施するとと技術プロースを表して、 をリーションをは、関ロションをは、 をリースがプロースを表して、 を関した、 を関した、 ので、というのは、 を関した、 ので、といる、 ので、といる。 を関した、 ので、といる。 を関した、 ので、といる。 を関した。 ので、といる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 を見いる。 をした。 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、	・イノベーション、技術開発マネジメント 及びプロジェクト・マネジメント関係の 実践的研究発表として、セミナー、学会、 シンポジウム、内外の学会誌、専門誌等に 機構自身として28本の発表を行った。		
技術開発マネジメントへの外部人材の登用に際しては、機構における業務が「技術の目利き」の能力向上の機会としてその後のキャリア・パスの形成に資するよう、人材の育成に努める。	, 0	・技術開発マネジメントを担当する外部登 用人材に対し、新規着任時にプロジェクト・マネジメントに関する研修を受講させることで、技術の目利きの能力向上に動機付けを行った。 ・プロジェクト・マネジメント人材を育成するため、外部有識者を講師として、シナリオプランニングやマーケティング、知財戦略、組織論などの18講座から構成される「プロジェクトマネージャー育成講座」を開講し延べ約700人が受講した。		
技術開発マネジメント、 契約、会計処理の専門家等、 機構職員に求められるキャ リア・パスを念頭に置き、適 切に人材の養成を行うとと もに、こうした個人の能力、 適性及び実績を踏まえた適 切な人員配置を行う。	・技術開発マネジメント、契約・会計処理の専門家等、機構職員に求められ頭に求めら頭に水がのでは、適切に人材の養しでである。ともに、適性及びにの能力、適性及びは、適性を踏まえた適切な人員を踏まえた。	・マネジメント業務を担う者に対しては、 技術開発マネジメント力を養成する「出 口戦略セミナー」、管理事務業務を担う者 に対しては、契約・会計処理力の養成に向 けた各種事務処理研修、また関連する各 省主催の研修等、業務に求められる能力 を向上させる研修を受講させることで、 職員の人材育成を図るとともに、適材適 所に配置している。	以上の内容を踏まえ、着実な業務運営がな されていることから、本項目の自己評価を Bとした。	

Ⅱ (4)業務・システムの最適化

3. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価								
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大臣は	こよる評価
					業務実績	自己評価		
					<主要な業務実績>	<評定> A	評定	
	性の向上に努めることとする。ととする。また、幅広できるNPEの内情では、対対の内情であることとする。	確保情報については、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、ので	本保情の上行化効幅対円でッ。まの十プトー取のが、大きなでは、ののでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、		を構たいている。 は、大変のできし、いったのできるという。 と討し、ないのできるという。 は、大変をできるという。 を構たいできるという。 は、大変をできるという。 という。 をできるという。 をできるという。 は、こってののできるという。 は、こってのできるという。 は、こってのできるとのできるという。 は、こってのできるとのできるという。 は、こってのできるとのできるという。 は、こってのできるという。 は、こってのできるという。 は、こってのできるという。 は、こってのできるという。 は、こってのできるという。 は、こってのできるという。 は、こっている。	利便性向上を目指し、アウトソーシングを含めた出張・外勤管理支援サービスを導入。 ・提案書の電子審査を他団体に先駆けて実現し、セキュリティと利便性を向上。		
	等の業務・システム最適化	策を行い、業務の安全性、信	への不正アクセスに対する 十分な強度を確保するとと もに震災等の災害時への対 策を行い、業務の安全性、信 頼性を確保する。 「独立行政法人等の業 務・システム最適化実現方 策」に基づき策定した「NE		では、 適化計画」を踏まえ平成27年11月から 提供を開始した新情報基盤サービスでは、 新たに振る舞い検知や常駐者による監視等 により出口対策を強化。また、データのバックアップを新たにオンラインで取得し遠隔 地に蓄積するなど、災害時への対策にも配 慮。さらに、新たに標的型攻撃への対応や、 MDM(モバイルデバイスマネジメント)の 導入等情報セキュリティ対策を一層強化す	●ノート型シンクライアントPCを会議等で積極的に活用し、複合機使用量を前年比25%削減。		

29日各府省情報統括化責任者(CIO)連絡会議決定)に基づきNEDOが作成した業務・システム最適化計画」を踏まえ、効率的な情報システムの構築に努めるとともに、PD のようでは、では、PD のは、では、では、では、では、では、では、では、では、では、では、では、では、では	び職員の利便性向上に主眼	るとともに、ノート型シンクライアントP Cの採用・柔軟かつセキュアな印刷環境の 構築など、役職員の利便性を向上。 海外拠点とのネットワーク環境を改善するためのWAN(広域通信ネットワーク)高速化装置を導入し、サービスを開始した。また、機構内アンケートを実施し、レンタルサービス申請のし易さ、操作解説書のわかり易さ等、必要に応じて改善を行いつつ情報基盤サービスの満足度向上に努めた。 さらに、運営会議等の機構内会議におけるペーパーレス活動の推進にも寄与し、複合機使用量(枚数)を前年(平成26年11月~27年10月)より25%(206万月	以上の内容を踏まえ、顕著な成果が出 ていることから、本項目の自己評価をA	
		合機使用量(枚数)を前年(平成26年11 月~27年10月)より25%(206万 枚)削減した。		

Ⅱ (5)外部能力の活用

3. 4	3. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価										
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	漬・自己評価	主務大臣による評価				
					業務実績	自己評価					
					<主要な業務実績>	<評定> B	評定				
番が枝 オ 耳 ジタ で 一 そ 件 仔	(5) 外部能力、専門の活用等の実力の専門の事別を表現である。 NEDの部舎、NEDの部舎の書のの書のの書のの書のの書がの書き、の書き、の書き、の書き、の書き、の書き、の書き、の書き、の書き、の書き、	れる業務については、外部 委託を活用するものとす る。特に、機構の技術開発成 果等を外部発信する活動の 一環として設置している科 学技術館の常設展示ブース については、今後も引き続	観点を活動を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を		(5) 外部能力の活用 業務内容やフローについて不断の見直しを行い、平成28年度は新たに以下の業務において外部の専門機関を活用。 ・関連公益法人等調査業務をアウトソーシングすることで、業務効率化を実現。 ・出張・外勤管理支援業務のアウトソーシングに向けて準備を開始。	〈自己評価の根拠〉 ●財務諸表の附属明細書の一部を作成するための関連公益法人等調査業務において外部の専門機関の活用を開始し、業務を効率化。 以上の内容を踏まえ、着実な業務運営がなされていることから、本項目の自己評価をBとした。					

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 II (6)省エネルギー及び省資源の推進と環境への配慮

3. 各事業年度の業務に係る	る目標、計画、業務実績、年	E度評価に係る自己評価及び	が主務大臣による評価	西		
中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実施	績・自己評価	主務大臣による評価
				業務実績	自己評価	
				<主要な業務実績>	<評定> A	評定
	作成、公表するとともにそ の内容の充実を図ることに より、日常の業務推進に当 たりエネルギー及び資源の	資源の推進と環境への配慮 機構の「温室効果ガス排出抑制等のための実施を 画」に基づき、日常の業務・ 超力のでは、 はおける環境配慮・省資源・ を持ってでの取組をあると を持ってでの取組を もに、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、		(6)省エネルギー及び省資源の推進と環境への配慮 平成28年度においては、政府が示す「当面の地球温暖化対策に関する方針」により、執務室空調の最大限の使用抑制等、環境保全及び温室効果ガス排出抑制に資する取組を引き続き実施。 平成28年度排出量実績(暫定値)は28万141kg-CO2(前年度比12.2%削減)となり、基準年度(平成18年度)比68.7%削減を達成(平成29年6月公表予定)。 コピー用紙の使用量は2万794kg(A3用紙1,224kg、A4用紙1万9570kg)となり、前年度比41.3%削減を達成。 平成27年度の環境配慮に向けた取組及び排出量実績について、環境報告として"アニュアルレポート2016"に総括し公表(平成28年6月)。	度)比6%削減を大幅に上回る68.7%削減を達成。前年度比では12.2%削減を達成。 ●ペーパーレス化の推進によりコピー用紙の使用量を前年度比で41.3%削減を達成。	

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 II (7)業務の効率化 役職員の給与等の水準の適正化

中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実施	漬・自己評価	主務大臣による評価
				業務実績	自己評価	
				<主要な業務実績>	<評定> B	評定
(6)業務の効率化	(7)業務の効率化	(7)業務の効率化		(7)業務の効率化 中長期目標期間中、一般管理費(退職手当	<自己評価の根拠> ●毎年度平均で19.4%の効率化を実	
中期目標期間中、一般管理費(退職手当を除く)及	中期目標期間中、一般管理費(退職手当を除く)及び	一般管理費(退職手当を 除く)及び業務経費(クレジ		中	現し、目標を達成。	
び業務経費(特殊要因を除	業務経費(京都メカニズム	ット取得関連業務、基盤技		業務、基盤技術研究促進事業、競争的資金及	7.01	
	クレジット取得関連業務、	術研究促進事業及び競争的		び補正予算を除く)の合計について、新規に		
に追加されるものや拡充される分を除き 平成24年	基盤技術研究促進事業及び競争的資金等の特殊要因を	資金等の特殊要因を除く。) の合計について、新規に追		追加されるものや拡充される分を除き、平成24年度を基準として、毎年度平均で前		
	除く)の合計について、新規	加されるものや拡充される		年度比1.08%の効率化を行う目標を設		
均で前年度比1.08%の	に追加されるものや拡充さ	分を除き、平成24年度を		定。		
効率化を行うものとする。	れる分を除き、平成24年					
新規に追加されるものや拡 充される分は翌年度から	度を基準として、毎年度平均で前年度比1.08%の					
元される分は笠牛及から 1.08%の効率化を図る	効率化を行うものとする。	化を行りものとする。利規 に追加されるものや拡充さ				
こととする。		れる分は翌年度から1.0				
	充される分は翌年度から	8%の効率化を図ることと				
	1. 08%の効率化を図る	する。				
また、総人件費について	こととする。 総人件費については、政	総人件費については、政		総人件費については人事院勧告に基づき		
	府の方針に従い、必要な措			給与改定を行うことにより、総人件費は6,		
要な措置を講じるものとす		置を講じる。		514百万円となった。		
5.	// H // H - / - / - / - / - / - / - / - / - / -	10 to 10 Mm)		TAGORIE (WELVE)		
ては、ラスパイレス指数、	給与水準については、ラスパイレス指数、役員報酬、	給与水準については、ラスパイレス指数、役員報酬、		平成28年度の給与水準については、ラスパイレス指数、役員報酬、給与規程、俸給		
	給与規程、俸給表及び総人	給与規程、俸給表及び総人		表及び総人件費を公表するとともに、以下		
表及び総人件費を引き続き	件費を引き続き公表すると	件費を引き続き公表すると		の観点から給与水準の検証を行った。		
	ともに、国民に対して納得	ともに、国民に対して納得				
対して納得が得られるよう 説明することとする。また、	が得られるよう説明する。また、以下のような観点か	が得られるよう説明する。また、以下のような観点か				
紀与水準の検証を行い、こ	らの給与水準の検証を行	らの給与水準の検証を行				
れを維持する合理的な理由	い、これを維持する合理的	い、これを維持する合理的				
	な理由がない場合には必要					
を講じることにより、給与		な措置を講じることにより、公告大海の第三人に取				
水準の適正化に取り組み、 その検証結果や取組状況を	り、給与水準の適正化に取り組み、その検証結果や取					
公表することとする。	組状況を公表する。	組状況を公表する。				
	・法人職員の在職地域や学			在職地域及び学歴構成を考慮したラスパ		
	歴構成等の要因を考慮し てもなお国家公務員の給	歴構成等の要因を考慮し		イレス指数は106.4となっており、国家		
	与水準を上回っていない	てもなお国家公務員の給 与水準を上回っていない		公務員の給与水準を上回っているが、当機 構は技術的知見を駆使した専門性の高い技		
	か。	か。		術開発マネジメント業務を実施しているこ		
	・高度な専門性を要する業	・高度な専門性を要する業		とから、大学院卒が高い割合(全体の約4		
	務を実施しているためそ	務を実施しているためそ		割)を占めており、国家公務員に比べて高い		
	の業務内容に応じた給与 水準としている等、給与	の業務内容に応じた給与 水準としているなど給与		給与水準となっている。 平成28年度支出予算の総額に占める国		
	水準が高い原因につい	水準が高い原因につい		からの財政支出額は約98.4%と高い割		
	て、是正の余地がないか。	て、是正の余地がないか。		合を占めているが、当機構が実施している		
	・国からの財政支出の大き	・国からの財政支出の大き		日本の産業競争力強化、エネルギー・地球環		
	さ、累積欠損の存在、類似の業務を行っている民間	さ、累積欠損の存在、類似の業務を行っている民間		境問題の解決のための産業技術開発関連事		
	の業務を行っている民間 事業者の給与水準等に照	の業務を行っている民間 事業者の給与水準等に照		業、新エネルギー・省エネルギー関連事業等は、いずれも民間単独で行うことが困難で		
	ラ まるの	ラ まるの		あり、国からの財政支出によって実施され		
	適切かどうか十分な説明	適切かどうか十分な説明		ることを前提としていることによるもので		

ついての説明が十分に国民	ができるか。 ・その他、法人の給与水準に ついての説明が十分に国民 の理解の得られるものとなっているか。	ある。したがって国からの財政支出の割合 の高さは給与水準と直接結びつくものでは ないと考えられる。また、当機構の支出総額 1,562億円に占める給与、報酬等支給総 額58億円の割合は約3.7%であり、割合 としては僅少であることから給与水準は適 切であると考えられる。		
また、既往の政府の方針 等を踏まえ、組織体制の合理化を図るため、実施プロジェクトの重点化を図るなど、引き続き必要な措置を講じるものとする。 また、既往の政府の方針等を踏まえ、組織体制の合理化を図るため、実施プロジェクトの重点化を図るなど、引き続き必要な措置を講じるものとする。	等を踏まえ、組織体制の合 理化を図るため、実施プロ ジェクトの重点化を図るな	また、既往の政府の方針等を踏まえ、事業 全体の抜本的改善やテーマの一部の中止等 を行い、実施プロジェクトの重点化を図る など、必要な措置を講じた。	以上の内容を踏まえ、着実な業務運営がなされていることから、本項目の自己評価をBとした。	

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 II(8)随意契約の見直しに関する事項 入札・契約の適正化、官民競争入札等の活用 公益法人等に対する支出の適正化

中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大臣	巨による評価
				業務実績	自己評価		
				<主要な業務実績>	<評定> B	評定	
ついて、少額のものや秘匿 すべきものを除き、引き続 き公表し、透明性の向上を 図ることとする。 また、「調達等合理化計 画」に基づく取組を着実に 実施するとともに、その取	関すするかに匿き図に等組もす等入明と約額。等を経済を定達組もす等入明と約額。等の人によ基が、と、この人によるを選別を変別を変別を変別を変別を変別を変別を変別を表する。の人には、一方の人には、、一方の人には、一方のりの人には、一方のりの人には、一方のりの人には、一方のりのりのりのりのりのりのいりのりののりののりののりののりののりのののののののの	をきと表達等性 の引向合きを の引向合きを をき上理引と公調競別な性にと がで表し、 できした をもきの等組は、て約の、 の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の形と の調取す、 の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを の引向合きを のが、 の引向合きを のが、 のが、 のが、 のが、 のが、 のが、 のが、 のが、		(8) 随意契約の見直と関する事項 随意契約の見直と関び月外のの見直と関び月外のの見直と関び月外のの見直と関び月外のの見直と関び月外のの見直と関び月外のの見直と関び月外のの見直とではののでは、一個ではいる。 では、一個ではは、一個では、一個では、一個では、一個では、一個では、一個では、一	録の推奨、研究開発事業等公募において 一者提案だった場合、公募期間の延長に 取り組んでいる。また、競争性のない随 意契約については、契約監視委員会及び		
	さらに、全ての契約に係る入札、契約の適正な実施がなされているかどうかについて、監事等による監査を受ける。	よる契約の点検・見直しの		入札・契約の透明性及び適正性を確保するためメール配信サービス登録の推奨、技術開発等公募において一者提案だった場合、公募期間の延長等に取り組むとともに、「独立行政法人の契約状況の点検・見直していて」に基づき、毎年度、外部有識者及び監事による契約監視委員会を開催し、対等の点検・見直しを受けた。さらに、全ての契約に係る入札・契約手続きに関し、契約プロセスの適切性及び透明性の観点から定期的に監事による点検を行った。	以上の内容を踏まえ、着実な業務運営が なされていることから、本項目の自己評 価をBとした。		

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 II (9) コンプライアンスの推進

中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大日	による評価
				業務実績	自己評価		
				<主要な業務実績>	<評定> A	評定	
推 など「部会表生で大変の内究公法価政価等の省等す 倫ス更理つきラ、内といすンなよ立す 東のの内究公法価政価等の省等す 倫ス更理つきラ、内といすンなよ立す 東のの内究公法価政価等の省等す 倫ス更理つきラ、内といすンなよ立す がまい価会務等行知のた立組徹のN・リ部制に全特制体P点と で図総おす3立制総法政るて委参 やイ、く配た係な化を置こう、整クにて図総おす3立制総法政るで委参 やイ、く配た係な化を置こう、整クにて図総おす3立制総法政るで委参 やイ、く配た係な化を置こう、整クにて図総おす3立制総法政るで委参 やイ、く配た係な化を置こう、整クにて図総おす3立制総法政るで委参 やイ、く配た係な化を置こう、整クにで図総おす3立制総法政るで委参 やイ、く配た係な化を置こう、整クにないを、に関手独統び政行すし価を 守うはべ配果関け強化措るプはのイ的いを、に関手を発展でが等図にとイ必備ル強にある。 一文のの内究公法価政価等の省等す 倫ス更理つきラ、内といすンなよ立す 東のの内究公法価政価等の省等す に対する。 「部会表生の音楽を表表である。 「部会表とてるス組りのる	す立制がたおい価会務等行知の 等に底効がのついて化能とている行と平報けて・か実の政しと法コつを率果関けス関、のもはプる行と平報けて・か実の政しと法コつを率果関けス関、のもはプの人に2(部及行立関と評項。守ラはべ配べプら報事応と講公の人に2(部及行立関と評項。守ラはべ配べプら報事応見に金統おす3方と務人法評各員考 人ン後管つ任オン、と内続措るの人に2(部及行立関と評項。守ラはべ配べプら報事応引じ表の人に2(部及行立関と評項。守ラはべ配べプら報事応別に全済の人に2(部及行立関と評項。守ラはべ配べプら報事応別にでの人に2(部及行立関と評項。守ラはべ配べプら報事応別にこのが、と内続ける月でと務人法評各員考 人ン後管つ任オン、と内続措る体務は、リーでは、大田のな部、機テラ報連続図ににつ独統」してつ評員業果立通も 立組徹の構とをア理強機といっい独統」してつ評員業果立通も 立組徹の構とをア理強機といっい	上) 実施し、その質的向上を		(9) プライスの推進 内内・リスの推進 会及機能進去の内容、 一方の開催等・リスを機能を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を関係を	が配信しているメールマガジン「営業 秘密のツボ」を機構内全役職員に対し		

	じた取扱いの徹底を行うと ともに、機構職員に対する 研修を年1回以上実施し、 情報セキュリティに対する 意識の向上を図る。				
さらに、不正事案については、事業者側に不正に関するリスク管理等についての啓蒙の徹底を図るなど、不正事案の発生を抑制するための不断の取組を、一層強化するものとする。	さらに、事業者側に不正に関するリスク管理等についての啓蒙の徹底を図る等、不正事案の発生を抑制するための不断の取組を一層強化する。	不正事案の発生を抑制する ため、事業者説明会等(全国	さらに、事業者における不正事案の発生を抑制するため、事業者説明会等におい周令を関する措置や発生事例等スクラを図ることなどにより、事業者のリスク行を図ることなどにより、事業者のリスク行った。職者に対する検査に係る説明会を全国で延べ16回開催し、検査研修に明を行った。機構内では契約・検査を担当主解しては607人の事業実施者に対して説明を行った。機構内では契約・検査を担当主解していた。機構内では契約・検査事務に関する事項、不正等情報の共有やその対応などの周知徹底に取り組んだ。	●事業実施者に対する検査に係る説明会について、平成28年度は全国で年4回、延べ16回開催するとともして事業実施者に対して事業実施者に対して事業の表徴底し、公的研究費の適正な対行確保を着実に実施。また、採択決定前には経営診断システム等を活用した事業実施者の経営状況を把握し、研究費のリスク管理強化を実施。	
	また、情報せき、情報せき、情報では、情報では、情報では、情報では、できまた、では、 できない できない できない できない できない できない できない できない	対策については、機構職員 に対する研修(年3回以上 実施)等を通じ、情報セキュ リティレベルに応じた取 いの徹底と情報セキュリティに対する意識向上を図る とともに、情報セキュリテ	また、セキュリティレベルに応じた情報管理を徹底するとともに、情報セキュリティに対する意識向上への取組として外部講師及びCIO補佐による研修等を5回ニング及び自己点検に加え、標的型メール攻撃訓練を実施した。さらに、情報セキュリティを対した。さらに、情報セキュリテ規格である ISO/IEC27001 の認証を取得した。本認証は、国立研究開発法人及び経済産業省所管の独立行政法人としては初めての取得である。	●国立研究開発法人及び経済産業省所管の独立行政法人として、初めてISM Sの国際規格であるISO/IEC27001の認 証を取得(平成28年12月)。	
また、監査については、 独立行政法人制度に基づく 外部監査の実施に加え、内 部業務監査や会計監査を、 毎年度必ず実施することと する。	ず実施する。なお、監査組織 は、単なる問題点の指摘に とどまることなく、可能な	政法人制度に基づく外部監査の実施に加え、内部業務監査や会計監査を実施する。その際には、単なることが 点の指摘にとどまることかでは、可能な限り具体的かでは、可能なという。	内部監査規程に基づき、内部監査計画及び内部監査実施計画を作成し、監査を実施した。 監査については、業務の適正かつ効率的な運営及び業務改善の観点から重点項目を定め実施するとともに、過去に実施した監査のフォローアップ等についても業務監査・会計監査を適切に実施した。	●毎年度、内部監査計画及び内部監査実施計画を作成し、監査を実施している。監査については、業務の適正かつ効率的な運営及び業務改善の観点から重点項目を定め実施するとともに、過去に実施した内部監査の指摘等への対応状況についてフォローアップを行うなど適切に実施している。	
上記に加え、個人情報等の適切な保護・管理を行うため、個人情報へのアクセス権限の強化、研修の充実、マニュアルの充実等を図る。	上記に加え、個人情報等の適切な保護・管理を行うため、個人情報へのアクセス権限の強化、研修の充実、マニュアルの充実等を図る。 具体的には、機構職員に対する個人情報保護研修を年13回以上(うち、外部有識者を研修講師とする研修	対する個人情報保護研修を有 作報保護研修部の 年13回以上(うち、外の 3回以上(うち、かる 4のの 4のの 4のの 4のの 4のの 4のの 4のの 4のの 4のの 4の	機構職員を講師とする個人情報保護研修(13回)及び外部有識者を講師とする研修(1回)を実施して役職員の個人情報保護の意識向上を図るとともに、個人情報管理状況点検(1回)を実施して管理状況を着実なものとした。		

び機構と関連法人との間の取引等の状況について情報を開示する。 東た、再委託先企業もでは、 を開示する。 東た、相反排除のための 組を実施する。 事工な相反はないでは、 のが、一次でであるでは、 を中業に対していた。 を対しているといった厳しいのでは、 でいった厳しいのが、 でいった厳しいのが、 でに、事項を処分した。	を	_	関連法人については 職の状況及び機構と関語 等の状況について情報 また、再委託先企業 のための取組を実施した 事業実施者における。 確保するため、事業者に 機構内説明会で不正・ 機構について研修をて不 た事案の発生はなかった。	連法人との間の取引 を開示した。 も含め利益相反排除 た。 経費の適正な執行会、 経費する各種説明する であるを であるないである。 であるないである。 であるないである。 であるないである。 であるないである。 であるないである。 であるないである。 であるといる。 である。 である。 である。 である。 である。 である。 である。 であ	以上の内容を踏まえ、顕著な成果が出ていることから、本項目の自己評価をAとした。	
		平成27年度評価 ○サイバーセキュリー 外部監査を実施し	で行政法人通則法第二十月 正における指摘事項 ティについては、毎年 ているが、監査会社を に効果を高めるような いか。	平成2 (平成28年度におります。) 平成26年度評価年度からより良いではり、平成28で、監査会社を変に、対象システムともに、平成28 基本法の趣旨を踏準拠性や妥当性を ○平成29年度は、の国際規格である	9年度計画等への反映状況 おける取組・平成29年度計画への反映) においても同様の指摘を受け、平成27 提案を受けるべく委託契約形式で実施し 年度においても適切な手順を踏まえた上 更したところ。更に効果を高めるため を追加するなど、監査対象を拡充すると 年度に改正されたサイバーセキュリティ まえ、NEDOセキュリティポリシーの	

1. 当事務及び事業に関	1. 当事務及び事業に関する基本情報									
Ш	財務内容の改善									
当該項目の重要度、難易	_	関連する政策評価・行政事業	0426国立研究開発法人新エネルギー・産業技術総合開発機構一般管理							
度		レビュー	費							
			0432国立研究開発法人新エネルギー・産業技術総合開発機構一般管理							
			費(エネルギー需給勘定)							

2. 主要な経年データ											
評価対象となる	達成目標	基準値等	25年度	26年度	27年度	28年度	29年度	30年度	3 1 年度	(参考情報)	
指標		(前中長期目標期間								当該年度までの累積値等、必要な	
		最終年度値等)								情報	
基盤技術研究促進 事業の売上納付額	_	_	23 百万円	28 百万円	30 百万円	14 百万円					
期末における交付 金債務残高	_	_	345 億円	588 億円	472 億円	316 億円					
利益剰余金額	_	_	43.4 億円	82.7億円	106.8 億円	120.6億円					
リスク管理債権の 回収額	_	_	15.6 億円	15.6億円	15.1 億円	12.6 億円					
鉱工業承継業務に おける貸付債権残 高	_	-	70 百万円	67 百万円	0円	-					

Ⅲ(1)繰越欠損金の増加の抑制

3. 各事業年度の業務に係る	目標、計画、業務実績、年	度評価に係る自己評価及び	が主務大臣による評価	ш		
中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大臣による評価
				業務実績	自己評価	
				<主要な業務実績>	<評定> B	評定
金の減少に努める。具体的 には、技術開発状況にする。 には、技術開のみの成果ので で で で で で で で で の の の で の の の の の の	を図付ことをいるという。 収益・進金 発状に、いきに、いきに、いきに、いきに、いきに、いきに、いきに、いきに、いきに、いき	要に応じ委託契約に従った		(1)繰越欠損金の増加の抑制 基盤技術研究促進事業については、研 究成果の事業化の状況や売上等の状況 について95件の報告書を徴収し、研究 委託先等への現地調査を21回実施し、 売上等の納付の慫慂を行った。その結 果、12件の収益実績を確認し、総額約 1,400万円の収益納付があった。	〈自己評価の根拠〉 ●委託契約に基づく売上納付を求めるため、報告書徴収及び現地調査を実施し、計画どおり約1,400万円の収益納付を達成。 以上の内容を踏まえ、着実な業務運営がなされていることから、本項目の自己評価をBとした。	

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 Ⅲ(2)自己収入の増加へ向けた取組、資産の売却等

3.	各事業年度の業務に係る	目標、計画、業務実績、年	度評価に係る自己評価及び	が主務大臣による評価	ш		
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大臣による評価
					業務実績	自己評価	
					<主要な業務実績>	<評定> B	評定
	(2) 自己収入の増加へ 自己収入の増加へ 自己収入の増加へ る事に を取る大きを を表して を表して ののは ののは ののは ののは ののは ののは ののは のの	けた取組 独立行政法人化すること	けた取組 補助金適正化法における 研究設備の使用の弾力化、 成果把握の促進による収益 納付制度の活用、利益相反 等に留意しつつ寄付金を入 用する可能性等、自己収入 の増加に向けた検討を行		(2) 自己収入の増加へ向けた取組 算定基準を見直した価格算定に基づき取 得財産の有償譲渡を行うなど自己収入の獲 得に努めた。	〈自己評価の根拠〉 ●算定基準を見直した価格算定に基づき取得財産の有償譲渡を行うなど自己収入の獲得に努めた。	
	(3) 資産の売却等 NEDOが保有する資産 については、既往の政府決 定等を踏まえた措置を、引 き続き講じるものとする。	また、人気には、大力には、大力には、大力には、大力には、大力には、大力には、大力には、大力	合は、法人所得課税に加え、 その収益額に因らず法人住 民税の負担が増大するた め、税法上の取扱の見直し を含め税に係る制約を克服		(3) 資産の売却等 措置の求められた機構の保有資産につい て、売却の上で譲渡収入の国庫納付を行っ た。	以上の内容を踏まえ、着実な業務運営が なされていることから、本項目の自己評価 をBとした。	

Ⅲ(3)運営費交付金の効率的活用の促進

3.	. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価								
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実	績・自己評価	主務大国	Eによる評価	
					業務実績	自己評価			
					<主要な業務実績>	<評定> B	評定		
	(4) 運営費交付金の適切な執行に向けた取組 各年度期末に対ける運営費交付金債務に関し、そからででででは、一番を受けたのでは、一番を受けたのでである。	的活用の促進 機構において第三者での 金のの もの もの もの は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	は交付決定済でない運営をい運営を指するのではするのではずるのではずるのではないできた。他のでは、では、では、では、では、では、では、では、では、では、では、では、では、で		(3) 軍対 (3) 運営 (3) 運営 (3) 運営 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	◇自己評価の根拠> ●運営費交付金債務について、前年度の472億円から316億円に減少。前期(第2期中期計画の4年目:535億円)よりも減少に転じており、効率的な削減に向けて推移。 以上の内容を踏まえ、着実な業務運営がなされていることから、本項目の自己評価をBとした。			

Ⅲ(4)剰余金の適正化

3.	3. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価								
	中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実績・自己評価		主務大臣による評価		
					業務実績	自己評価			
					<主要な業務実績>	<評定> B	評定		
			剰余金の適正化 ●当期総利益等の発生要因、業務運営の適正性を図る。また、利益剰余金の計上を業務運営上適切性のあるものとする。		(4) 剰余金の適正化 平成28年度末の利益剰余金は、3勘定 (一般勘定、電源利用勘定、エネルギー需給 勘定)で計120.6億円を計上。 機構の主たる業務である研究開発関連業 務は、運営費交付金等を財源として親目標期間額を 実施しており、第三期中長期目標期間額長 終年度に達するまでの間は、より利益を 収益化することはない。 一方、附帯的業務等により、研究開発資産 売却収入、貸倒引当金戻入益等による が発生している。これらの利益は、総務省の 示す認定基準に合致しない。 積立金の申請はしていない。	究開発資産売却収入等であり、3勘定 (一般勘定、電源利用勘定、エネルギー 需給勘定)で計120.6億円を計上。 以上の内容を踏まえ、着実な業務運営が			

様式2-1-4-2 国立研究開発法人 年度評価 項目別評定調書(業務運営の効率化に関する事項、財務内容の改善に関する事項及びその他業務運営に関する重要事項)様式 皿(5)債務保証経過業務、貸付経過業務、リスク管理債権適正化

3. 各事業年度の業務に係る目標、計画、業務実績、年度評価に係る自己評価及び主務大臣による評価							
中長期目標	中長期計画	年度計画	主な評価指標	法人の業務実績・自己評価		主務大臣による評価	
				業務実績	自己評価		
				<主要な業務実績>	<評定> B	評定	
下、クリーン開発メカニズム (CDM)・共同実施 (J I)・グリーン投資エクトに (GIS) プロジェクレジ スカニズム 最大の取得業務に、最好力するものとする。	業 はがめらレ効う産府し 標標レ行を 平庫と政委リDリS得をつク効模国援務の、国、%ジ果こ業」た第期達ジい進第成債な府託一M一)及行ての果でのを取書成排メ得つと省とも1間成ッ、め32務ると契ン・ンにびうは低をの持図ト定達総都取し的環)あび、等得にた期度行か密履メ実スクへ務に図した能とり、定達総都取し的環)あび、等得にた期度行か密履メ実スクへ務に図した能とり、方の基分ッをと省とも1間成ッ、め32務ると初発に出力をつし省機 2都基約府 標予の、連に二(一ジ確実高つた及発関お資量二、確て(以構 期議づのへ 期算最引携必ズJムッ実施しつ、及発り関お資量ニ、確て(以構 期議づのへ 期算最引携必ズJムッ実施しつ、及発と関が対すといる。、	改正による当該業務終了 後、当該業務に係る債権の 回収が終了するまでの間、 当該債権の管理及び回収並 びにこれらに附帯する業務		(5)債務保証経過業務、貸付経過業務、リスク管理債権適正化クレジット取得関連業務については、平成27年度、外部監査において、公共施設の断熱事業のうち、外部監査において、公共施設の断熱事業のうち、中のの事業の表別で、機構があるとの報告があったとの、と8年度はでで、機構があるとのでは、でに額で、でに対して、でに対して、でに対して、では、でに対して、でに対して、では、でに対して、では、でに対して、では、でに対して、では、でに対して、では、では、では、では、では、では、では、では、では、では、では、では、では、			
	クレジット取得に係る契 約の相手先となる事業者等		_				
するとともに、国際交渉上 の観点や政策的な観点から	う。)の選定は原則公募とし、客観的な審査基準に基づき公正な審査を行うとと						
相手について選択的な条件	もに、国際交渉上の観点や 政策的な観点からプロジェ クトの種類や契約相手につ						
討することとする。また、 原則として随時の応募受付	いて選択的な条件を付して取得することも検討する。また、契約相手先等が国際						
定を行うとともに、審査に							

を構築し クレジットの取	プロジェクトに係る環境に					
	与える影響及び地域住民に					
│ │ │ ることとする。なお、国際	対する配慮について確認を					
ルール等を踏まえ、クレジ	行う					
	クレジットの取得において					
■ トに係る環境に与える影響	は、個々のクレジット取得					
	におけるリスクを厳正に評					
を徹底することとする。	価し、取得事業全体として					
	のリスク低減を図る。					
効率的かつ効果的な業務				_		
			_			
管埋・連宮のため、クレジ	クレジット取得に係る契					
ット取得に係る事業を取り	約の締結に際しては、費用					
	対効果を考慮し、必要に応					
	じて取得契約額の一部前払					
とともに、個々のプロジェ	を行うこととし、この場合、					
	原則前払額の保全措置を講					
	じる。また、契約相手先から					
携等を行うこととする。	の進捗状況等に関する報告					
	及び必要に応じた現地調査					
	等を行うとともに、GIS					
	における早期のグリーニン					
	グ完了を図るため、必要に					
	応じて契約相手先と協議					
	し、適切な指導を行って、契					
	約が遵守されるよう管理す					
	る。					
	効率的かつ効果的な業務					
	管理・運営のため、クレジッ					
	ト取得等業務を取り巻く環					
	1 ト 収					
					I and the second	l l
	境の変化等を踏まえ、柔軟					
また 別如の東明字・左	境の変化等を踏まえ、柔軟 かつ適切に対応する。					
	境の変化等を踏まえ、柔軟 かつ適切に対応する。 (ウ) 評価及びフィードバ	_	_	-		
識者による、クレジットの	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信	_	-	-		
識者による、クレジットの	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信		_			
識者による、クレジットの 市場動向等を踏まえた検証	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書の目標達成という国際公約		-	_		
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書の目標達成という国際公約や、国民の関心の高い地球			_		
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書の目標達成という国際公約や、国民の関心の高い地球		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な 見直しを行うこととする。	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書の目標達成という国際い地球と、国民の関心の高い地球温暖化防止に直結している		_	_		
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な 見直しを行うこととする。 なお、契約相手先の名称、	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業務は、京都議定書の目標達成という高い地の高い地の高い地の高に直結している、外部有識者による取		_	-		
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な 見直しを行うこととする。 なお、契約相手先の名称、 取得契約に係るクレジット	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業強は、京都議定書の目標達成という国際いいの高している。 と暖化防止に直満者にいるによめ、外部有識者によび評価 得事業全体の検証及び		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要な 見直しを行うこととする。 なお、契約相手先の名称、 取得契約に係るクレジット	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信 当該業強は、京都議定書の目標達成という国際いいの高している。 と暖化防止に直満者にいるによめ、外部有識者によび評価 得事業全体の検証及び					
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととも に、その結果を基に必要。 見直しを行うこととする。 なお、契約相手先の名称、 取得契約に係るクレジット 量並びに毎年度の取得量及	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信、京都議定会を開達成というの高いでの場合を開展の関連を開展の関連を開発したのにはいるでは、外部の検証をの検証をの検証をの検証をの検証をの検証をの検証をのになるでは、		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるととと に、その結果を基に必る。 見直しを行うこととする。 なお、契約相手先の名称、 取得契約に係るクレジョ量 が取得コストの実績につい	境の変化等を踏まえ、柔軟かつ適切に対応する。 (ウ)評価及びフィードバック・情報発信、京都議定というの当標達成というの高いでの場合。 当標達成というの高してよいの場合。 というのはは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるとと要 に、その結果を基に必る。 見直しを行うこととの名 見直しを行うこととの名 、契約相手先の名称、 取得契約に係るクレジ号 が取得コストの実績に被 で、我が国が不利益を被ら	境の変化等を踏まえ。 で変化等を踏まえ。 で変化に対応でする。 で対応でする。 ですり、情報をは、いっのでは、できるでは、いっのでは、できるでは、いっのでは、できるでは、できるでは、できるでは、ないのでは、できるでは、ないのでは、ないいのでは、ないでは、ないのでは、ないでは、ないのでは、ないでは、ないでは、ないのでは、ないのでは、ないでは、ないのでは、ないでは、ないでは、ないでは、ないでは、ないのでは、ないでは、ないでは、ないで		_			
識者による、クレジットの 市場動向等を踏まえた検証 及び評価を受けるとと要 に、その結果を基に必る。 見直しを行うこととの名 見直しを行うこととの名 、契約相手先の名称、 取得契約に係るクレジ号 が取得コストの実績に被 で、我が国が不利益を被ら	境の変化等を踏まえ。 で変化等を踏まえ。 で変化に対応でする。 で対応でする。 ですり、情報をは、いっのでは、できるでは、いっのでは、できるでは、いっのでは、できるでは、できるでは、できるでは、ないのでは、できるでは、ないのでは、ないいのでは、ないでは、ないのでは、ないでは、ないのでは、ないでは、ないでは、ないのでは、ないのでは、ないでは、ないのでは、ないでは、ないでは、ないでは、ないでは、ないのでは、ないでは、ないでは、ないで		_			
識者による、クレジットの 市場動による、クレジットの 市場動にを避けるとといる に、それられるでは、 見直しを行うこととのる 見直しを行うことの 見直しを初相手先の はお、契約に係るの 取得型がに 日本おり取得の で、 もの で、 もの はい で、 もの はい はい はい はい はい はい はい はい はい はい はい はい はい	境の変化等を踏まえ。 で変化等を踏まる。 で変化に対して ので変化に対して ので変化でする。 で変切に個及びの のででする。 で変切には、ないのでは、ででででです。 でででする。 でででする。 でででする。 でででする。 ででできる。 でででする。 でででする。 ででできる。 ででできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 でできる。 ででする。 でででする。 でででする。 でででする。 ででする。 ででする。 ででする。 でででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 ででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででする。 でででででででする。 でででする。 ででででででででする。 でででする。 でででする。 でででででででででででででででででででででででででででででででででででで					
識者による、クレジットの 市場場動による、クレジットの 市場場が正を踏けるとという。 で、そのでは、そのでは、 見でででは、 見が、 で、このでは、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	境の変化等を踏まえ。 で変化等を踏まる。 で変化に対して ので変化でする。 で変切に個及び ので変切が一のででする。 で変切が一のででする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変している。 で変切がいる。 でい。 でいる。 でい。					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境の変化等を踏まる。 、柔軟ので変化等を踏まる。 、柔軟ので変切にでする。 、本がでする。 、本がでする。 、本がでする。 、本がでする。 、本がでする。 、本がでする。 、本がでする。 、本がでする。 、をないのには、 、をないのできる。 、でいるできる。 、でいるできる。 、ののでは、 、のののでは、 、ののでは、 、のの					
識者による、クレジットの 市場場動による、クレジットの 市場場が正を踏けるとという。 で、そのでは、そのでは、 見でででは、 見が、 で、このでは、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、 で、	境の変化等を踏まえ。 で変化等を踏まる。 で変化に対して ので変化でする。 で変切に個及び ので変切が一のででする。 で変切が一のででする。 で変切が一のででする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 で変切がでする。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるでする。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるできる。 でいるでする。 でいるできるできる。 でいるできるできる。 でいるできるできる。 でいるできるできるできる。 でいるできるでも、 でいるでものでものでものでものでものでものでものでものでものでものでものでものでもので					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かの変化等を踏する。					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かつでは、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かつでは、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かつでは、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かつでは、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かつでは、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かで、					
識者による、クレジスとという。 市場場ができるによるによるに対して、 を踏けるにという。 を踏けるにという。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるによるにはない。 をできるが、 をできるが、 をのに、 でいた。	境かで、大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境かで、					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取のつウク当目、暖め事毎事クす、名ジ、績やしト契得をが成び信、い心直識検しさの信契がにのでうり当目、暖め事毎事クす、名ジ、績やしト契得をが成び信、い心直識検しさの信契がにのでは、半年業レる関に有の施・発に契がでしたが、とのは、大のは、大のは、大のは、大のは、大のは、大のは、大のは、大のは、大のは、大					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取ってのつウク当目、暖め事毎事クす、名が、積やしト契得をといる。一、大学のの一ののでは、一、大学のの一度のでは、一、大学の大学では、一、大学の大学では、大学の大学では、大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学では、大学では、大学では、大学では、大学では、大学では、大学では、					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取っにのつウク当目、暖め事毎事クす、名ジ、績やしト契得で限いのでクッショーののの一点のの一点のの一点のの一点のの一点では、一次では、一次では、一次では、一次では、一次では、一次では、一次では、一次					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取ってのつウク当目、暖め事毎事クす、名が、積やしト契得をといる。一、大学のの一ののでは、一、大学のの一度のでは、一、大学の大学では、一、大学の大学では、大学の大学では、大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学の大学では、大学では、大学では、大学では、大学では、大学では、大学では、大学では、					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取っに注意が(ツのつりク当目、暖め事毎事クす、名が、積やしト契得て限ます)・該標国化、業年業レる関、を対しなが、に約事不定我をいび信、い心直識検しさの発に契がにのでうりがである。と関いるが、と関に有の施映ト発に契にのでは、クすらの結者証、せ取信契約にので注)、クすらながでは、対しるが、とが、と対して、対しるが、とが、とが、とが、とが、とが、とが、とが、とが、とが、とが、とが、とが、とが					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取っに注がのつウク当目、暖め事毎事クす、名ジ、績やしト契得て限:不変適)・該標国化、業年業レる則、トびつにクつ相業利すが監応び信、い心直識検しさの発て契が度、(ツはが施被である。」で、大い心では、、一、大ののでは、、、一、大ののには、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取っに注が表を対及発はと関に有の施映ト報し得がよる。」 「大きな関に有の施明を対及発はと関に有の施明を対し得が生まる」、「大きな関に有の施明を対し、大きな、」、大きな関に有の施明を対し、大きな、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、					
識者による、クレジスとというでは、 ではまるに対するになった。 ではまるに対するにないでは、 では、これでは、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	境か(ツのや温た得をを関はのレト実速だスび取っに注がのつウク当目、暖め事毎事クす、名ジ、績やしト契得て限:不変適)・該標国化、業年業レる則、トびつにクつ相業利すが監応び信、い心直識検しさの発て契が度、(ツはが施被である。」で、大い心では、、一、大ののでは、、、一、大ののには、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、					

(3) 債務保証経過業務、	(3)債務保証経過業務、貸	(3)債務保証経過業務、貸	_	新エネルギー債務保証業務については、	●新エネルギー債務保証業務について債	
貸付経過業務	付経過業務	付経過業務		債務保証中の4社について事業の実施状況	務保証残高の大幅な減少(2. 4億円)	
新エネルギーの導入に係				の確認及び財務状況の把握に努め、うち1	を達成することができた要因は、可能	
る債務保証業務について				社については代位弁済リスク低減のため、	な限り保証リスクを低減させるため、	
は、制度の安定運用を図り	は、制度の安定運用を図り	度に新規引受を停止してい		平成28年8月末に条件変更を行った(平	保証先との対話を密にしつつ、事業実	
つつ、新エネルギーの導入				成28年度末保証残額4社13億円)。	施状況及び財務内容をチェックし、金	
目標達成に向け、適切な実		管理し、代位弁済の発生可		また、求償権債権についても適切なリス	融機関との連携を通じて回収に努めた	
施に努めることとする。	施に努める。	能性を低減させるととも		ク管理に努め、一部求償先から平成28年	ことや、収益改善状況を適切に把握し、	
鉱工業承継業務に係る貸		に、財務状況が改善された		度に約100万円を初の弁済金として回収	可能な限り前倒し返済を促すととも	
付金の回収については、債	付金等の回収については、	保証先については繰上弁済		した。	に、一部繰上償還等前倒し弁済が図ら	
権の管理を適切に行い、回	債権の管理を適切に行い、	を求める。なお、既に発生し			れるよう保証先との調整に努めた。	
収額の最大化を計画的に進	回収額の最大化に向けて計	た求償権については、回収				
め、約定回収等を終了した		の最大化に努め、必要な措			●鉱工業承継業務については、「鉱工業承	
時点をもって廃止するもの	末までの業務終了に努め	置を講じていく。			継勘定」廃止に伴う出資者への残余財	
とする。	る。				産分配の際、繰越欠損金を残したまま	
					当該勘定を廃止する可能性もあった	
					中、最終的には出資金(国:15億円、	
					民間181社:2,200万円)につい	
					て毀損せずに返還するとともに、加え	
					て9、200万円の剰余金を国庫に返	
					納。	
					●貸倒懸念債権、破産更生債権等につい	
					ては、債権残高の解消に向けて適切な	
					リスク管理並びに着実な債権回収に努	
					めており、平成28年度末において債	
					権残高は総額12.6億円(対前年度 2.5億円の減)。	
					2. 31息户(7/成)。	
					以上の内容を踏まえ、着実な業務運営	
					がなされていることから、本項目の自己	
					評価をBとした。	
					ят ри с Б С О / С 0	
		I	<u> </u>			