環境アセスメント迅速化手法のガイド
－前倒環境調査の方法論を中心に－

地熱発電所 技術事例集

国立研究開発法人 新エネルギー・産業技術総合開発機構
New Energy and Industrial Technology Development Organization
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1章</td>
<td>大気環境</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>大気質</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>騒音</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>振動</td>
<td>14</td>
</tr>
<tr>
<td>第2章</td>
<td>水環境</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>水の濁り</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>温泉</td>
<td>20</td>
</tr>
<tr>
<td>第3章</td>
<td>その他の環境</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>地盤変動</td>
<td>22</td>
</tr>
<tr>
<td>第4章</td>
<td>動物</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>哺乳類</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>鳥類</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>爬虫類・両生類</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>昆虫類</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>魚類</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>底生動物</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>陸産貝類</td>
<td>45</td>
</tr>
<tr>
<td>第5章</td>
<td>植物</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>植物相</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>植生</td>
<td>50</td>
</tr>
<tr>
<td>第6章</td>
<td>生態系</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>上位性</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>典型性</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>特殊性</td>
<td>62</td>
</tr>
<tr>
<td>第7章</td>
<td>景観</td>
<td>65</td>
</tr>
<tr>
<td>第8章</td>
<td>人と自然との触れ合いの活動の場</td>
<td>67</td>
</tr>
<tr>
<td>第9章</td>
<td>廃棄物等</td>
<td>69</td>
</tr>
</tbody>
</table>
第1章 大気環境

1.1 大気質

（1）硫化水素
1) 調査手法
（a）調査時期
実証2事例において選定されている調査時期を表1-1(1)〜(3)に示す。
すべての事例で施設の稼働（排ガス）が選定されている。
地上気象では、すべての事例で1年連続、高層気象及び硫化水素濃度では、すべての事例で春季、夏季、秋季、冬季の4季が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>1年間連続</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

（b）調査方法
実証2事例において選定されている現地調査の方法を表1-2に示す。
すべての事例で地上気象の状況、高層気象の状況、硫化水素の濃度の状況が選定されている。
これらの具体的内容を表1-3に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>地上気象の状況</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>高層気象の状況</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>硫化水素の濃度の状況</td>
<td>2</td>
</tr>
</tbody>
</table>
表1-3 硫化水素の調査方法の内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>内容</th>
</tr>
</thead>
</table>
| 1 | 地上気象の状況 | -調査期間は原則1年間とする。
-地上気象観測指針に準拠し、地上の風向、風速、金、湿度、日射量及び放射収支量を観測する。 |
| 2 | 高層気象の状況 | -調査期間は各季節に各1週間とする。
-高層気象観測指針に準拠し、GPSゾンデを用いて3時間毎に風向、風速及び気温を測定する。 |
| 3 | 流化水素の濃度の状況 | -調査期間は各季節に各1週間とする。
-大気汚染物質測定法指針に準拠し、メチレンブルー吸光光度法により硫化水素濃度を測定する。 |

2) 予測手法
実証2事例において選定されている予測手法を表1-4に示す。

1 事例で「風洞実験による着地濃度の予測」、一般財団法人電力中央研究所がNEDOとの共同研究により開発した硫化水素拡散予測数値モデル」、もう1 事例で「地熱発電所から排出される硫化水素の大気拡散予測のための数値モデル開発」大気環境学会誌,第52巻第1号」が選定されている。

表1-4 実証2事例における硫化水素の予測手法

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>風洞実験による着地濃度の予測</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>一般財団法人電力中央研究所がNEDOとの共同研究により開発した硫化水素拡散予測数値モデル</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>地熱発電所から排出される硫化水素の大気拡散予測のための数値モデル開発、大気環境学会誌,第52巻第1号</td>
<td>1</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表1-5に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されており、そのうち1 事例では「環境基準等の国の基準との整合」も選定されている。

表1-5 実証2事例における硫化水素の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>1</td>
</tr>
</tbody>
</table>
4) 環境保全措置
実証 2 事例において選定されている環境保全措置を表 1-6 に示す。
2 事例で「硫化水素の着地濃度の低減」、1 事例で「冷却塔の設計変更」が記載されている。

表 1-6 実証 2 事例における硫化水素の環境保全措置
(施設の稼働(排ガス))

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫化水素の着地濃度の低減</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>冷却塔の設計変更</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査
実証 2 事例において選定されている事後調査を表 1-7 に示す。
事後調査として記載されているものはないが、環境監視として 1 事例で「硫化水素の状況」が記載されている。
この具体的内容を表 1-8 に示す。

表 1-7 実証 2 事例における硫化水素の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫化水素の状況</td>
<td>1</td>
</tr>
</tbody>
</table>

表 1-8 窒素酸化物の環境監視の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫化水素の状況</td>
<td>発電施設運転開始後、大気汚染物質測定法指針にもとづく方法により測定を行う。</td>
</tr>
</tbody>
</table>
第1章 大気環境

(2) 窒素酸化物

1) 調査手法

(a) 調査時期

実証2事例において選定されている調査時期を表1-9(1)〜(4)に示す。すべての事例で工事用資材等の搬出入が選定されている。

気象では、1事例で春季、夏季、秋季、冬季の4季、1事例で1年間連続が選定されている。また、窒素酸化物の濃度では、すべての事例で春季、夏季、秋季、冬季の4季選定されている。

その他、交通量では、1事例で1季のみ、1事例で春季、夏季、秋季の3季、道路構造では、すべての事例で1季のみ選定されている。

<p>| 表1-9(1) 実証2事例における窒素酸化物の調査時期(気象) |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1年連続</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| 表1-9(2) 実証2事例における窒素酸化物の調査時期(窒素酸化物の濃度) |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

<p>| 表1-9(3) 実証2事例における窒素酸化物の調査時期(交通量) |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>春季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| 表1-9(4) 実証2事例における窒素酸化物の調査時期(道路構造) |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>春季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法

実証2事例において選定されている現地調査の方法を表1-2に示す。
すべての事例で気象の状況、窒素酸化物の濃度の状況、交通量に係る状況、道路構造の状況が選定されている。
これらの具体的内容を表1-11に示す。
第1章 大気環境

表1-10 実証2事例における窒素酸化物の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>気象の状況</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>窒素酸化物の濃度の状況</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>道路構造の状況</td>
<td>2</td>
</tr>
</tbody>
</table>

表1-11 窒素酸化物の調査方法の内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>気象の状況</td>
<td>・地上気象観測指針に準拠し、地上10mの高さに風向風速計を設置して測定する。</td>
</tr>
<tr>
<td>2</td>
<td>窒素酸化物の濃度の状況</td>
<td>・「二酸化窒素に係る環境基準について」に定められた方法に準拠し、ザルツマン試薬を用いる吸光光度法又はオゾンを用いる化学発光法（JIS B 7953）で測定する。</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>・方向・車種別交通量及び車速を測定する。</td>
</tr>
<tr>
<td>4</td>
<td>道路構造の状況</td>
<td>・車線数及び幅員を測定する。</td>
</tr>
</tbody>
</table>

2) 予測手法
実証2事例において選定されている予測手法を表1-12に示す。
すべての事例で「大気拡散式（窒素酸化物総量規制マニュアル（新版））」が選定されている。

表1-12 実証2事例における窒素酸化物の予測手法

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大気拡散式（窒素酸化物総量規制マニュアル（新版））</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表1-13に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

表1-13 実証2事例における窒素酸化物の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>
第1章 大気環境

4) 環境保全措置

実証2事例において選定されている環境保全措置を表1-14に示す。すべての事例で「車両の走行台数の平準化」、「車両の走行台数の低減」、「アイドリングストップ」、「工事関係者への周知・環境監視」が記載されている。

表1-14 実証2事例における窒素酸化物の環境保全措置
（工事用資材等の搬出入）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>車両の走行台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>アイドリングストップ</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 事後調査

実証2事例では、事後調査は記載されていない。
第1章 大気環境

(3) 粉じん等

1) 調査手法

(a) 調査時期

実証2事例において選定されている調査時期を表1-15(1)～(3)に示す。
すべての事例で工事用資材等の搬出入が選定されている。
気象では、1事例で春季、夏季、秋季、冬季の4季、1事例で1年間連続が選定されている。また、粉じん等では、1事例で春季、夏季、秋季、冬季の4季選定されている。
その他、交通量では、1事例で1季のみ、1事例で春季、夏季、秋季の3季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1年連続</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法

実証2事例において選定されている現地調査の方法を表1-16に示す。
すべての事例で気象の状況、交通量に係る状況が選定されており、そのうち1事例では粉じん等の状況も選定されている。
これらの具体的内容を表1-17に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>気象の状況</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>粉じん等の状況</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>2</td>
</tr>
</tbody>
</table>
第1章 大気環境

表1-17 粉じん等の調査方法の内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>気象の状況</td>
<td>・地上気象観測指針に準拠し、地上10mの高さに風向風速計を設置して測定する。</td>
</tr>
<tr>
<td>2</td>
<td>粉じん等</td>
<td>・環境測定分析法に定められた方法に準拠して測定する。</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>・方向、車種別交通量及び車速を測定する。</td>
</tr>
</tbody>
</table>

2) 予測手法
実証2事例において選定されている予測手法を表1-18に示す。
すべての事例で「工事関係車両の交通量と将来交通量との比較に基づく予測」が選定されている。

表1-18 実証2事例における粉じん等の予測手法

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事関係車両の交通量と将来交通量との比較に基づく予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2例において選定されている評価手法を表1-19に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

表1-19 実証2事例における粉じん等の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2事例において選定されている環境保全措置を表1-20に示す。
すべての事例で「車両の走行台数の平準化」、「車両の走行台数の低減」、「工事関係者への周知」等が記載されている。
表 1-20 実証 2 事例における粉じん等の環境保全措置
(工事用資材等の搬出入)

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>車両の走行台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>アイドリングストップ</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>タイヤ洗浄</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>積載量の適正化・シート被覆</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査
実証 2 事例では、事後調査は記載されていない。
1.2 騒音

1) 調査手法

(a) 調査時期

実証2事例において選定されている調査時期を表1-21(1)～(5)に示す。全ての事例で工事用資材等の搬出入、1事例で建設機械の稼働が選定されている。工事用資材等の搬出入が選定されている2事例を見ると、騒音、交通量では、1事例ずつで春季のみの1季、春季、夏季、秋季の3季選定されている。また、沿道、道路構造では、全ての事例で1季のみ選定されている。

建設機械の稼働が選定されている1事例を見ると、騒音及び地表面のどちらも1季のみ選定されている。

<table>
<thead>
<tr>
<th>表1-21(1) 実証2事例における騒音の調査時期(騒音)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-21(2) 実証2事例における騒音の調査時期(沿道)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-21(3) 実証2事例における騒音の調査時期(交通量)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-21(4) 実証2事例における騒音の調査時期(道路構造)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表1-21(5) 実証2事例における騒音の調査時期(地表面)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
（b）調査方法
実証2事例において選定されている現地調査の方法を表1-22に示す。
工事用資材等の搬出人が選定されている2事例を見ると、すべての事例で騒音の状況、沿道の状況、交通量に係る状況、道路構造の状況が選定されている。
建設機械の稼働が選定されている1事例を見ると、騒音の状況、地表面の状況が選定されている。
これらの具体内容を表1-23に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>工事用資材等の搬出入</th>
<th>建設機械の稼働</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>騒音の状況</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>沿道の状況</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>道路構造の状況</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>地表面の状況</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>順調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>騒音の状況</td>
<td>・騒音レベル測定方法(JIS Z 8731)に準拠して測定する。</td>
</tr>
<tr>
<td>2</td>
<td>沿道の状況</td>
<td>・沿道の学校、病院その他環境保全についての配慮が特に必要な施設の配置の状況、建物の状況、既存の騒音発生源の分布状況等を把握する。</td>
</tr>
<tr>
<td>3</td>
<td>交通量に係る状況</td>
<td>・方向・車種別交通量及び車速を測定する。</td>
</tr>
<tr>
<td>4</td>
<td>道路構造の状況</td>
<td>・車線数及び幅員を測定する。</td>
</tr>
<tr>
<td>5</td>
<td>地表面の状況</td>
<td>・草地、舗装面等の表面の状況を把握する。</td>
</tr>
</tbody>
</table>

2) 予測手法
実証2事例において選定されている予測手法を表1-24に示す。
工事用資材等の搬出入が選定されている2事例を見ると、すべての事例で「道路交通騒音の予測計算モデル（ASJ RTN-Model 2013）」が選定されている。
建設機械の稼働が選定されている1事例を見ると、「建設作業騒音の予測計算モデル（ASJ CN-Model 2007）」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>工事用資材等の搬出入</th>
<th>建設機械の稼働</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>道路交通騒音の予測計算モデル (ASJ RTN-Model 2013)</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>建設作業騒音の予測計算モデル (ASJ CN-Model 2007)</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
第1章 大気環境

3) 評価手法

実証2事例において選定されている評価手法を表1-25に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置

実証2事例において選定されている環境保全措置を表1-26(1)及び(2)に示す。
「工事用資材等の搬出入」に関しては、すべての事例で「車両の走行台数の平準化」、「車両の走行台数の低減」、「アイドリングストップ」、「工事関係者への周知・環境監視」が記載されている。
「建設機械の稼働」に関しては、すべての事例で「環境配慮型機械の使用・性能維持・低騒音型工法の採用」、「建設機械の稼働台数の平準化」、「工事関係者への周知・環境監視」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>車両の走行台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>アイドリングストップ</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>工事関係者への周知</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境配慮型機械の使用・性能維持・低騒音型工法の採用</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査

実証2事例において選定されている事後調査を表1-27に示す。
事後調査として記載されているものはないが、環境監視としてすべての事例で「工事関係車両の運行状況」が記載されている。
この具体的内容を表1-28に示す。
表 1-27 実証 2 事例における騒音の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>環境監視</td>
<td>事後調査</td>
</tr>
<tr>
<td>1</td>
<td>工事関係車両の運行状況</td>
<td>2</td>
</tr>
</tbody>
</table>

表 1-28 騒音の環境監視・事後調査の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 工事関係車両の運行状況 | ・工事工程の適切な管理を実施し、車両の運行状況を確認する。
| | | ・工事関係車両や建設機械の走行・稼働台数を管理簿に記録する。 |
1.3 振動

1) 調査手法

(a) 調査時期

実証2事例において選定されている調査時期を表1-29(1)〜(5)に示す。
すべての事例で工事用資材等の搬出入が選定されている。
振動、交通量では、1事例ずつで春季のみの1季、春季、夏季、秋季の3季選定されている。また、沿道、地盤、道路構造では、すべての事例で1季のみ選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>春季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法

実証2事例において選定されている現地調査の方法を表1-30に示す。
すべての事例で振動の状況、沿道の状況、交通量に係る状況、道路構造の状況が選定されており、そのうち1事例では地盤の状況も選定されている。
これらの具体的内容を表1-31に示す。
表1-30 実証2事例における振動の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>振動の状況</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>沿道の状況</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>地盤の状況</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>交通量に係る状況</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>道路構造の状況</td>
<td>2</td>
</tr>
</tbody>
</table>

表1-31 振動の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的 内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>振動の状況</td>
<td>振動レベル測定方法 JIS Z 8735 に準拠して測定する。</td>
</tr>
<tr>
<td>2</td>
<td>沿道の状況</td>
<td>沿道の学校、病院その他環境保全についての配慮が特に必要な施設の配置状況、建物の状況、既存の振動発生源の分布状況等を把握する。</td>
</tr>
<tr>
<td>3</td>
<td>地盤の状況</td>
<td>振動の伝搬に係る地盤の種類を把握する。</td>
</tr>
<tr>
<td>4</td>
<td>交通量に係る状況</td>
<td>方向・車種別交通量及び車速を測定する。</td>
</tr>
<tr>
<td>5</td>
<td>道路構造の状況</td>
<td>車線数及び幅員を測定する。</td>
</tr>
</tbody>
</table>

2) 予測手法
実証2事例において選定されている予測手法を表1-32に示す。
すべての事例で「振動の伝搬理論に基づく計算式」が選定されている。

表1-32 実証2事例における振動の予測手法

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>振動の伝搬理論に基づく計算式 (ASJ RTN-Model 2013)</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表1-33に示す。
すべて事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

表1-33 実証2事例における振動の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>
第1章 大気環境

4) 環境保全措置

実証2事例において選定されている環境保全措置を表1-34に示す。
すべての事例で「車両の走行台数の平準化」、「車両の走行台数の低減」、「工事関係者への周知・環境監視」が記載されている。

表1-34 実証2事例における振動の環境保全措置
（工事用資材等の搬出入）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>車両の走行台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>アイドリングストップ</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査

実証2事例において選定されている事後調査を表1-35に示す。
事後調査として記載されているものはないが、環境監視として1事例で「工事関係車両の運行状況」が記載されている。
これらの具体的内容を表1-36に示す。

表1-35 実証2事例における振動の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事関係車両の運行状況</td>
<td>1</td>
</tr>
</tbody>
</table>

表1-36 振動の環境監視の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視</th>
<th>事後調査</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事関係車両の運行状況</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第2章　水環境

2.1 水の濁り

1) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表2-1(1)～(2)に示す。
すべての事例で造成等の施工による一時的な影響が選定されている。
浮遊物質量、流量では、1事例で春季、夏季、秋季、冬季の4季、1事例で春季、夏季、秋季、冬季、降雨時の5季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>春季、夏季、秋季、冬季、増水時</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表2-2に示す。
すべての事例で浮遊物質量の状況、流量の状況が選定されている。
これらの具体的内容を表2-3に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>浮遊物質量の状況(JIS K 0101)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>流量の状況(JIS K 0094)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>浮遊物質量の状況</td>
<td>・「水質汚濁に係る環境基準について」に定められた方法に準拠し、GFPろ過105℃重量法で測定する。</td>
</tr>
<tr>
<td>2</td>
<td>流量の状況</td>
<td>・流速計による測定(JIS K 0094 8.4)を行う。</td>
</tr>
</tbody>
</table>
第2章 水環境

2) 予測手法
実証2事例において選定されている予測項目を表2-4に示す。
すべての事例で定量的な予測が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定量的な予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表2-5に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2事例において選定されている環境保全措置を表2-6に示す。
すべての事例で「沈砂池の設置等」、「排水の処理・再利用」、「工事関係者への周知・環境監視」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>沈砂池の設置等</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>排水の処理・再利用</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>整地・転圧</td>
<td>1</td>
</tr>
</tbody>
</table>
5）事後調査
実証2事例において選定されている事後調査を表2-7に示す。
事後調査として記載されているものはないが、環境監視としてすべての事例で「工事排水の水質」が記載されている。
この具体的内容を表2-8に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事排水の水質</td>
<td>2</td>
</tr>
</tbody>
</table>

表2-8 水の濁りの環境監視の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事排水の水質</td>
<td>工事中の排水の浮遊物質量を測定し記録する。</td>
</tr>
</tbody>
</table>
2.2 風呂

1) 調査手法

(a) 調査時期

実証2事例において選定されている調査時期を表2-9に示す。すべての事例で施設の稼働が選定されている。温泉の状況では、すべての事例で春季、夏季、秋季、冬季の4季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) 調査方法

実証2事例において選定されている現地調査の方法を表2-10に示す。すべての事例で、温泉の状況が選定されている。この具体的内容を表2-11に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>温泉の状況</td>
<td>2</td>
</tr>
</tbody>
</table>

2) 予測手法

実証2事例において選定されている予測手法を表2-12に示す。すべての事例で「調査結果から総合的に解析・予測」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>調査結果から総合的に解析・予測</td>
<td>2</td>
</tr>
</tbody>
</table>
3) 評価手法
実証2 事例において選定されている評価手法を表2-13に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2 事例において選定されている環境保全措置を表2-14に示す。
すべての事例で「周辺環境・地域への配慮」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>周辺環境・地域への配慮</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 事後調査
実証2 事例において選定されている事後調査を表2-15に示す。
事後調査として記載されているものはないが、環境監視として「温泉の温度、湧出量、泉質等」が記載されている。
この具体的内容を表2-16に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>温泉の温度、湧出量、泉質等</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>温泉の温度、湧出量、泉質等</td>
<td>日本工業規格、鉱泉分析法指針等に定める方法により、温泉の温度、湧出量、主成分等を測定・分析する。</td>
</tr>
</tbody>
</table>
第3章 その他の環境

3.1 地盤変動

1) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表3-1(1)〜(2)に示す。
すべての事例で施設の稼働が選定されている。
水準測量の調査を実施している2事例では、夏季又は秋季の1季、地表踏査の調査を実施している1
事例では、秋季の1季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>夏季</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表3-2に示す。
すべての事例で水準測量が選定されており、そのうち1事例では地表踏査も選定されている。
これらの具体的内容を表3-3に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>水準測量</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>地表踏査</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的 内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>水準測量</td>
<td>調査地点に水準点を設置し、2級水準測量で各調査地点の標高を調査し、各調査地点の年間の標高差を求めめる。</td>
</tr>
<tr>
<td>2</td>
<td>地表踏査</td>
<td>地すべり地形の現状把握のため、対象事業実施区域及びその周辺の地すべり地形箇所の露岩状況を観察する。</td>
</tr>
</tbody>
</table>
2) 予測手法
実証 2 事例において選定されている予測手法を表 3-4 に示す。
すべての事例で「概念モデル化等の科学的な手法による総合的に解析・予測」が選定されている。

表 3-4 実証 2 事例における地盤変動の予測手法

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>概念モデル化等の科学的な手法による総合的に解析・予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証 2 事例において選定されている評価手法を表 3-5 に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表 3-5 実証 2 事例における地盤変動の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証 2 事例において選定されている環境保全措置を表 3-6 に示す。
1 事例ずつで「地熱貯留層の圧力の保持」「周辺環境・地域への配慮」「地盤の保持」が記載されている。

表 3-6 実証 2 事例における地盤変動の環境保全措置
（地形改変及び施設の存在）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>地熱貯留層の圧力の保持</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>周辺環境・地域への配慮</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>地盤の保持</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査
実証 2 事例では、事後調査は記載されていない。
第4章 動物

4.1 哺乳類

1) 調査地域
実証2事例において選定されている調査地域を表4-1に示す。
1事例で「対象事業実施区域から3,000 mまでの区域」、1事例で「2,000 mまでの区域」が選定されている。

表4-1 実証2事例における哺乳類の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から3,000 mまでの区域</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>対象事業実施区域から2,000 mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表4-2(1)～(4)に示す。
捕獲法以外では、すべての事例で春季、夏季、秋季、冬季の4季、捕獲法(シャーマン・カゴ罠)では、すべての事例で春季、夏季、秋季の3季選定されている。また、ヤマネの巣箱調査を実施した1事例では春季、初夏季、夏季の3季、ハープトラップを実施した1事例では夏季・秋季の2季選定されている。

表4-2(1) 実証2事例における哺乳類の調査時期(捕獲法以外)

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

表4-2(2) 実証2事例における哺乳類の調査時期(捕獲法(シャーマン・カゴ罠))

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>2</td>
</tr>
</tbody>
</table>

表4-2(3) 実証2事例における哺乳類の調査時期(巣箱による確認)

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、初夏季、夏季</td>
<td>1</td>
</tr>
</tbody>
</table>

表4-2(4) 実証2事例における哺乳類の調査時期(捕獲法(ハープトラップ))

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>
（b）調査方法
実証 2 事例において選定されている現地調査の方法を表 4-3 に示す。
すべての事例で、直接観察法・フィールドサイン法、捕獲法（シャーマントラップ）、自動撮影法が選定されている。
これらの具体的内容を表 4-4 に示す。
その他、ヤマネ（重要な種）が生息している可能性のある立地では、1 事例で巣箱による確認が選定されており、カワネズミ（重要な種）が生息している可能性のある立地では、1 事例で捕獲法（カゴ罠）が選定されている。

![表 4-3 実証 2 事例における哺乳類の調査方法](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>直接観察法・フィールドサイン法</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>捕獲法（シャーマントラップ）</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>巣箱による確認</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>捕獲法（ハープトラップ）</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>捕獲法（カゴ罠）</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>自動撮影法</td>
<td>2</td>
</tr>
</tbody>
</table>

![表 4-4 哺乳類の調査方法の具体的内容](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 直接観察法・フィールドサイン法 | •調査地域を踏査し、哺乳類の足跡、糞等のフィールドサイン（動物の生活痕）が確認された場合には、種名、個体数、確認位置、確認状況、確認環境等を記録する。
•また、個体が目撃された場合にも、同様に記録する。
| 2 | 捕獲法（シャーマントラップ） | •調査地域にあらかじめ設定した地点にシャーマントラップを設置する。
•捕獲したネズミ類等は、同定後に写真撮影及び計測を行い、速やかに放縄する。
•実証事例では、トラップは、2 晩設置されている。
| 6 | 自動撮影法 | •けものの道やその周辺の区域に、センサースイッチによる自動撮影装置を設置し、個体を撮影する。
•実証事例では、自動撮影装置は、2 晩設置されている。

3）予測手法
実証 2 事例において選定されている予測項目を表 4-5 に示す。
すべての事例で「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。
第4章 動物

表 4-5 実証2事例における哺乳類の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>工事中・供用後</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>工事中</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>工事中</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>供用後</td>
<td>1</td>
</tr>
</tbody>
</table>

4) 評価手法
実証2事例において選定されている評価手法を表4-6に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表 4-6 実証2事例における哺乳類の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の 回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 環境保全措置
実証2事例において選定されている環境保全措置を表 4-7(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」、「工事機材等の早期撤去」、「低騒音型機器の採用・性能維持」が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「施設配置の変更」が記載されている。

表 4-7(1) 実証2事例における哺乳類の環境保全措置

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>
表 4-7(2) 実証 2 事例における哺乳類の環境保全措置
（地形変更及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>施設配置の変更</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>夜間照明の対策</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>ヤマネの移植</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>小動物の移動経路の確保</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査
実証 2 事例では、事後調査は記載されていない。
第4章 動物

4.2 鳥類

（1）一般鳥類

1）調査地域

実証2事例において選定されている調査地域を表4-8に示す。
すべての事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

表4-8 実証2事例における一般鳥類の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

2）調査手法

（a）調査時期

実証2事例において選定されている調査時期を表4-9に示す。
すべての事例で春季、夏季、秋季、冬季の4季選定されている。

表4-9 実証2事例における一般鳥類の調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>春季、夏季、秋季、冬季</td>
<td>2</td>
</tr>
</tbody>
</table>

（b）調査方法

実証2事例において選定されている現地調査の方法を表4-10に示す。
すべての事例で、ラインセンサス法、ポイントセンサス法、任意観察法、任意観察法(夜間)が選定されている。
これらの具体的内容を表4-11に示す。

表4-10 実証2事例における一般鳥類の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ラインセンサス法</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ポイントセンサス法</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>任意観察法</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>任意観察法(夜間)</td>
<td>2</td>
</tr>
</tbody>
</table>
表 4-11 一般鳥類の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | ラインセンサス法 | - 調査地域にあらかじめ設定した経路を早朝〜午前中にゆっくり踏査し、目撃や鳴き声によって確認された鳥類の種名、個体数、確認位置、行動、確認環境、飛行高度等を記録する。
| 2 | ポイントセンサス法 | - 調査地域にあらかじめ設定した地点で早朝〜午前中に観察を行い、目撃や鳴き声によって確認された鳥類の種名、個体数、確認位置、行動、確認環境、飛行高度等を記録する。
| 3 | 任意観察法 | - 調査地域を任意に歩きながら、目撃や鳴き声によって確認された鳥類の種名を記録する。
| 4 | 任意観察法(夜間) | - 調査地域を任意に歩きながら、目撃や鳴き声によって確認された鳥類の種名を記録する。

3) 予測手法
実証 2 事例において選定されている予測項目を表 4-12 に示す。
すべての事例で「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。

表 4-12 実証 2 事例における一般鳥類の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後</td>
<td>改変による生息環境の減少・喪失</td>
</tr>
<tr>
<td>2</td>
<td>工事中</td>
<td>移動経路の遮断・阻害</td>
</tr>
<tr>
<td>3</td>
<td>工事中</td>
<td>社会的な生息環境の悪化</td>
</tr>
<tr>
<td>4</td>
<td>移動経路の遮断・阻害</td>
<td>鳴音による餌資源の逃避・減少</td>
</tr>
<tr>
<td>5</td>
<td>供用後</td>
<td>夜間照明による誘引</td>
</tr>
</tbody>
</table>

4) 評価手法
実証 2 事例において選定されている評価手法を表 4-13 に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表 4-13 実証 2 事例における一般鳥類の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>
第4章 動物

5) 環境保全措置

実証2事例において選定されている環境保全措置を表4-14(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」、「工事機材等の早期撤去」、「低騒音型機器の採用・性能維持」が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「施設配置の変更」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>

表4-14(2) 実証2事例における一般鳥類の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>施設配置の変更</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>夜間照明の対策</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>鳥類等の衝突の低減</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査

実証2事例では、事後調査は記載されていない。
（2）希少猛禽類

1）調査地域
実証2事例において選定されている調査地域を表4-15に示す。
すべての事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

2）調査手法

（a）調査時期
実証2事例において選定されている調査期間を表4-16に示す。
すべての事例で営巣期選定されており、調査時期は、すべての事例で毎月1回選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査期間</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>営巣期</td>
<td>2</td>
</tr>
</tbody>
</table>

（b）調査方法
実証2事例において選定されている現地調査の方法を表4-17に示す。
すべての事例で、定点観察法、踏査による目視確認（営巣状況）が選定されている。
これらの具体的内容を表4-18に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定点観察法</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>踏査による目視確認（営巣状況）</td>
<td>2</td>
</tr>
</tbody>
</table>

表4-18 希少猛禽類の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的內容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定点観察法</td>
<td>・調査地域にあらかじめ設定した地点で観察を行い、目撃や鳴き声によって確認された猛禽類の種名、個体数、確認位置、行動、確認環境、飛行高度等を記録する。</td>
</tr>
<tr>
<td>2</td>
<td>踏査による目視確認（営巣状況）</td>
<td>・定点観察法により得られた飛翔軌跡等から猛禽類の重要な種の営巣の可能性が高い地域を中心に林内を踏査し、巢の確認に努める。・営巣が確認された場合には、樹種名、胸高直径等を記録する。</td>
</tr>
</tbody>
</table>
第4章 動物
3) 予測手法
実証2事例において選定されている予測項目を表4-19に示す。
すべての事例で「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。

表4-19 実証2事例における希少猛禽類の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後</td>
<td>改変による生息環境の減少・喪失</td>
</tr>
<tr>
<td>2</td>
<td>工事中・供用後</td>
<td>移動経路の遮断・阻害</td>
</tr>
<tr>
<td>3</td>
<td>工事中</td>
<td>騒音による生息環境の悪化</td>
</tr>
<tr>
<td>4</td>
<td>工事中</td>
<td>騒音による餌資源の逸散・減少</td>
</tr>
<tr>
<td>5</td>
<td>供用後</td>
<td>夜間照明による誘引</td>
</tr>
</tbody>
</table>

4) 評価手法
実証2事例において選定されている評価手法を表4-20に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表4-20 実証2事例における希少猛禽類の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 環境保全措置
実証2事例において選定されている環境保全措置を表4-21(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」、「工事機材等の早期撤去」、「低騒音型機器の採用・性能維持」が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「施設配置の変更」が記載されている。
第4章 動物

表 4-21(1) 実証 2 事例における希少猛禽類の環境保全措置
（造成等の施工による一時的な影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>給水</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>猛禽類の営巣地への配慮</td>
<td>1</td>
</tr>
</tbody>
</table>

表 4-21(2) 実証 2 事例における希少猛禽類の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>施設配置の変更</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>夜間照明の対策</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>鳥類等の衝突の低減</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査
実証 2 事例において選定されている事後調査を表 4-22 に示す。
事後調査として記載されているものはないが、環境監視として「希少猛禽類の生息・繁殖状況の監視」
が記載されている。
この具体的内容を表 4-23 に示す。

表 4-22 実証 2 事例における希少猛禽類の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>希少猛禽類の生息・繁殖状況の監視</td>
<td>2</td>
</tr>
</tbody>
</table>

表 4-23 希少猛禽類の環境監視・事後調査の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 希少猛禽類の生息・繁殖状況の監視 | 影響が生じる可能性がある営巣地、採餌場を対象に、定点観察法を実施する。
| | | 工事中から運転開始後、2 年間、実施する。 |
第4章 動物

4.3 爬虫類・両生類

1) 調査地域
実証2 事例において選定されている調査地域を表4-24に示す。
1 事例で「対象事業実施区域から3,000m までの区域」、1 事例で「2,000m までの区域」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から3,000m までの区域</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>対象事業実施区域から2,000m までの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2 事例において選定されている調査時期を表4-25に示す。
すべての事例で春季、夏季、秋季の3季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2 事例において選定されている現地調査の方法を表4-26に示す。
すべての事例で、直接観察法が選定されている。
この具体的内容を表4-27に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>直接観察法</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>直接観察法</td>
<td>・調査地域を踏査し、タモ網等を用いて爬虫類・両生類の捕獲、卵の確認を行う、種名、個体数、確認位置、確認状況、確認環境等を記録する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・爬虫類・両生類の確認は個体の捕獲を原則とするが、捕獲できない場合には目撃確認として記録する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・また、ヘビ類は脱皮殻、カエル類は鳴き声による確認も併用する。</td>
</tr>
</tbody>
</table>
3) 予測手法
実証 2 事例において選定されている予測項目を表 1-28 に示す。
すべての事例で「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変による生息環境の減少・喪失</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>移動経路の遮断・阻害</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>騒音による生息環境の悪化</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>騒音による餌資源の脱落・減少</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>濁水の流入による生息環境の悪化</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 評価手法
実証 2 事例において選定されている評価手法を表 4-29 に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 環境保全措置
実証 2 事例において選定されている環境保全措置を表 4-30(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」、「工事機材等の早期撤去」、「低騒音型機器の採用・性能維持」が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「施設配置の変更」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>濁水防止対策</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>工事関係者の周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>
第4章 動物

表 4-30(2) 実証 2 事例における爬虫類・両生類の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>施設配置の変更</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>小動物の移動経路の確保</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査
実証 2 事例では、事後調査は記載されていない。
4.4 昆虫類

1) 調査地域
実証 2 事例において選定されている調査地域を表 4-31 に示す。
すべての事例で「対象事業実施区域から 2,000m までの区域」が選定されている。

表 4-31 実証 2 事例における昆虫類の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から 2,000m までの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証 2 事例において選定されている調査時期を表 4-32 に示す。
すべての事例で春季、夏季、秋季の 3 季選定されている。

表 4-32 実証 2 事例における昆虫類の調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証 2 事例において選定されている現地調査の方法を表 4-33 に示す。
すべての事例で、一般採集法、ベイトトラップ法、ライトトラップ法(ボックス法)が選定されている。
これらの具体的内容を表 4-34 に示す。

表 4-33 実証 2 事例における昆虫類の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一般採集法</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ベイトトラップ法</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>ライトトラップ法(ボックス法)</td>
<td>2</td>
</tr>
</tbody>
</table>
3）予測手法
実証2事例において選定されている予測項目を表4-35に示す。
すべての事例で「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後変更による生息環境の減少・喪失</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>工事中столь水の流入による生息環境の悪化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>供用後夜間照明による誘引</td>
<td>2</td>
</tr>
</tbody>
</table>

4）評価手法
実証2事例において選定されている評価手法を表4-36に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>
5) 環境保全措置
実証2事例において選定されている環境保全措置を表4-37(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、 「車両の走行台数・建設機械の稼働台数の平準化」、「工事機材等の早期撤去」が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「夜間照明の対策」が記載されている。

表4-37(1) 実証2事例における昆虫類の環境保全措置
（造成等の施工による一時的な影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>渇水防止対策</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>

表4-37(2) 実証2事例における昆虫類の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>夜間照明の対策</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>小動物の移動経路の確保</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査
実証2事例では、事後調査は記載されていない。
第4章 動物

4.5 魚類

1) 調査地域
実証2事例において選定されている調査地域を表4-38に示す。調査を実施している1事例を見ると、「対象事業実施区域にから2,000mまでの区域」が選定されている。

表4-38 実証2事例における魚類の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表4-39に示す。調査を実施している1事例を見ると、春季、秋季の2季選定されている。

表4-39 実証2事例における魚類の調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>春季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表4-40に示す。調査を実施している1事例を見ると、捕獲法及び目視観察法が選定されている。これらの具体的内容を表4-41に示す。

表4-40 実証2事例における魚類の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>捕獲法</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>目視観察法</td>
<td>1</td>
</tr>
</tbody>
</table>

表4-41 魚類の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 捕獲法 | ・河川域や止水域等の代表地点にあらかじめ設定した地点で、投網、タモ網、定置網等を用いて魚類を捕獲する。
| | | ・捕獲した魚類は、同定後に写真撮影及び計測を行い、速やかに放流する。 |
| 2 | 目視観察法 | ・河川域や止水域等の代表地点にあらかじめ設定した地点で、潜水により魚類を目視で確認し、種名、個体数等を記録する。 |
3) 予測手法
実証2事例において選定されている予測項目を表4-42に示す。
調査を実施している1事例を見ると、「一般生態情報の例示、工事内容の例示等」により定性的に予測されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後変更による生息環境の減少・喪失</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>工事中濁水の流入による生息環境の悪化</td>
<td>1</td>
</tr>
</tbody>
</table>

4) 評価手法
実証2事例において選定されている評価手法を表4-43に示す。
調査を実施している1事例を見ると、「環境影響の回避、低減に係る評価」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 環境保全措置
実証2事例において選定されている環境保全措置を表4-44(1)及び(2)に示す。
調査を実施している1事例を見ると、「造成等の施工による一時的な影響」に関しては、「改変面積の縮小」、「濁水防止対策」等が記載されている。
「地形改変及び施設の存在、施設の稼働」に関しては、「取水量の平準化」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>濁水防止対策</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>取水量の平準化</td>
<td>1</td>
</tr>
</tbody>
</table>
第4章 動物

6) 事後調査

実証2事例では、事後調査は記載されていない。
4.6 底生動物

1) 調査地域
実証2事例において選定されている調査地域を表4-45に示す。調査を実施している1事例を見ると、「対象事業実施区域から2,000mまでの区域」が選定されている。

表4-45 実証2事例における底生動物の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査手法
（a）調査時期
実証2事例において選定されている調査時期を表4-46に示す。調査を実施している1事例を見ると、春季、秋季の2季選定されている。

表4-46 実証2事例における底生動物の調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>春季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

（b）調査方法
実証2事例において選定されている現地調査の方法を表4-47に示す。調査を実施している1事例を見ると、定性採集法が選定されている。この具体的内容を表4-48に示す。

表4-47 実証2事例における底生動物の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定性採集法</td>
<td>1</td>
</tr>
</tbody>
</table>

表4-48 底生動物の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定性採集法</td>
<td>・河川域や止水域等の代表地点にあらかじめ設定した地点で、Dフレームネットにより底生動物を採集する。</td>
</tr>
</tbody>
</table>

3) 予測手法
調査を実施している1事例を見ると、重要な種が確認されておらず、予測されていない。

4) 評価手法
調査を実施している1事例を見ると、重要な種が確認されておらず、評価されていない。
第4章 動物

5) 環境保全措置
調査を実施している1事例を見ると、重要な種が確認されておらず、環境保全措置は記載されていない。

6) 事後調査
調査を実施している1事例を見ると、重要な種が確認されておらず、事後調査は記載されていない。
4.7 陸産貝類

1) 調査地域
実証2事例において選定されている調査地域を表4-49に示す。
調査を実施している1事例を見ると、1事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表4-50に示す。
調査を実施している1事例を見ると、夏季、秋季の2季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表4-51に示す。
調査を実施している1事例を見ると、一般採集法が選定されている。
この具体的内容を表4-52に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一般採集法</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一般採集法</td>
<td>・調査地域を踏査し、手錬等を用いて陸産貝類の個体及び死殻を採集する。 ・大型で目立ち樹上性の陸産貝類については、目撃確認として記録する。 ・重要な種が確認された場合には、種名、個体数、確認位置、確認状況、確認環境等を記録する。</td>
</tr>
</tbody>
</table>
第4章 動物

3) 予測手法

実証2事例において選定されている予測項目を表4-53に示す。調査を実施している1事例を見ると、「一般生態情報の示示、工事内容の示示等」により定性的に予測されている。

表4-53 実証2事例における陸産類の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>改変による生息環境の減少・喪失</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>移動経路の遮断・阻害</td>
<td></td>
</tr>
</tbody>
</table>

4) 評価手法

実証2事例において選定されている評価手法を表4-54に示す。調査を実施している1事例を見ると、「環境影響の回避、低減に係る評価」が選定されている。

表4-54 実証2事例における陸産類の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 環境保全措置

実証2事例において選定されている環境保全措置を表4-55に示す。「造成等の施工による一時的な影響」に関しては、「改変面積の縮小」、「改変区域外への立ち入り制限」、「工事関係者への周知・環境監視」、「緑化」が記載されている。

表4-55 実証2事例における陸産類の環境保全措置

(造成等の施工による一時的な影響)

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>1</td>
</tr>
</tbody>
</table>

6) 事後調査

実証2事例では、事後調査は記載されていない。
第5章 植物

5.1 植物相

1) 調査地域
実証2事例において選定されている調査地域を表5-1に示す。
すべての事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表5-2に示す。
1事例で春季、初夏季、夏季の3季、1事例で早春季、春季、夏季、秋季の4季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、初夏季、夏季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>早春季、春季、夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表5-3に示す。
すべての事例で、踏査による目視確認が選定されている。
この具体的内容を表5-4に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>踏査による目視確認</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的 内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>踏査による目視確認</td>
<td>・調査地域を踏査し、確認された植物を目視により確認し、種名を記録する。・重要な種が確認された場合には、種名、個体数、確認位置、開花・結実等の生育状況、生育環境等を記録する。</td>
</tr>
</tbody>
</table>
第5章 植物

3) 予測手法
実証2事例において選定されている予測項目を表5-5に示す。
すべての事例で「改変による生育環境の減少・喪失」、「冷却塔から排出される蒸気による樹木への着氷」、「冷却塔から排出される硫化水素」が選定されている。

表5-5 実証2事例における植物の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事中・供用後 改変による生育環境の減少・喪失</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>使用後 冷却塔から排出される蒸気による樹木への着氷</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>冷却塔から排出される硫化水素</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 評価手法
実証2事例において選定されている評価手法を表5-6に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表5-6 実証2事例における植物の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

5) 環境保全措置
実証2事例において選定されている環境保全措置を表5-7に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「移植等の代償措置」、「工事関係者への周知・環境監視」、「硫化水素の着地濃度の低減」が記載されている。

表5-7 実証2事例における植物の環境保全措置

(造成等の施工による一時的な影響、地形改変及び施設の存在)

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>移植等の代償措置</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>硫化水素の着地濃度の低減</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>緑化</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>施設配置の変更</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>冷却塔の設計変更</td>
<td>1</td>
</tr>
</tbody>
</table>
6) 事後調査
実証2事例において選定されている事後調査表5-8に示す。
事後調査として記載されているのはないが、環境監視としてすべての事例で「移植後の生育個体の監視」が記載されており、そのうち、1事例では「冷却塔から排出される硫化水素による植生への影響(運転開始後)」、「冷却塔から排出される蒸気による樹木への影響(運転開始後)」を記載されている。
これらの具体的内容を表5-9に示す。

表5-8 実証2事例における植物の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>環境監視 事後調査</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>移植後の生育個体の監視</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>冷却塔から排出される硫化水素による植生への影響(運転開始後)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>冷却塔から排出される蒸気による樹木への影響(運転開始後)</td>
<td>1</td>
</tr>
</tbody>
</table>

表5-9 植物の環境監視・事後調査の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>移植後の生育状況の監視</td>
<td>移植後の生育個体の生育状況を確認し、その状況を記録する。</td>
</tr>
<tr>
<td>2</td>
<td>冷却塔から排出される硫化水素による植生への影響(運転開始後)</td>
<td>発電所設置箇所周辺の植生の状況を確認する。</td>
</tr>
<tr>
<td>3</td>
<td>冷却塔から排出される蒸気による樹木への影響(運転開始後)</td>
<td>発電所設置箇所周辺の樹木の状況を確認する。</td>
</tr>
</tbody>
</table>
第5章 植物

5.2 植生

1) 調査地域
実証2事例において選定されている調査地域を表5-10に示す。
すべての事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

表5-10 実証2事例における植生の調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

2) 調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表5-11に示す。
すべての事例で夏季、秋季の2季選定されている。

表5-11 実証2事例における植生の調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>夏季、秋季</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証2事例において選定されている現地調査の方法を表5-12に示す。
すべての事例で、目視確認（植生分布）、コドラート法が選定されている。
これらの具体的内容を表5-13に示す。

表5-12 実証2事例における植生の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>踏査による目視確認（植生分布）</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>コドラート法</td>
<td>2</td>
</tr>
</tbody>
</table>

表5-13 植生の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>踏査による目視確認（植生分布）</td>
<td>•調査地域を踏査し、空中写真から作成した判読素図を現況の植生分布と照合し、現存植生図を作成する。</td>
</tr>
<tr>
<td>2</td>
<td>コドラート法</td>
<td>•植物群落の代表的と考えられる地点に調査枠（コドラート）を設置し、調査枠内に生育する植物を高木層、亜高木層、低木層、草本層の各階層に区分し、階層ごとにすべての生育種及び被度・群落度を記録する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>•被度・群落度の記録にはプラン・プランケの植物社会学的方法を用いる。</td>
</tr>
</tbody>
</table>

3) 予測手法
実証2事例において重要な群落は確認されておらず、予測されていない。
4) 評価手法
実証 2 事例において重要な群落は確認されておらず、評価されていない。

5) 環境保全措置
実証 2 事例において重要な群落は確認されておらず、環境保全措置は記載されていない。

6) 事後調査
実証 2 事例において重要な群落は確認されておらず、事後調査は記載されていない。
第6章 生態系

6.1 上位性

1）注目種
実証2事例において選定されている注目種を表6-1に示す。
また、注目種として選定された種の餌種を表6-2（1）及び（2）に示す。
1事例でクマタカ、1事例でノスリが選定されている。
クマタカを選定している1事例を見ると、ノウサギ、ヘビ類が餌種として選定されている。
ノスリを選定している1事例を見ると、ネズミ類が餌種として選定されている。

表6-1 実証2事例における注目種

<table>
<thead>
<tr>
<th>No.</th>
<th>注目種</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>クマタカ</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ノスリ</td>
<td>1</td>
</tr>
</tbody>
</table>

表6-2（1）注目種（クマタカ）の餌種

<table>
<thead>
<tr>
<th>No.</th>
<th>餌種</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ノウサギ</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ヘビ類</td>
<td>1</td>
</tr>
</tbody>
</table>

表6-2（2）注目種（ノスリ）の餌種

<table>
<thead>
<tr>
<th>No.</th>
<th>餌種</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ネズミ類</td>
<td>1</td>
</tr>
</tbody>
</table>

2）調査地域
実証2事例において選定されている調査地域を表6-3～表6-6に示す。
すべての事例で「対象事業実施区域から2000mまでの区域」が選定されている。

表6-3 クマタカの生息・繁殖状況調査における調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

表6-4 クマタカの飼種・飼資源量調査における調査地域

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>
第6章 生態系

3) 調査手法

(a) 調査時期

実証2事例において選定されている調査期間を表6-7及び表6-8に示す。

クマタカを選定している1事例を見ると、2営巣期選定されており、調査時期は、すべての事例で毎月1回選定されている。

ノスリを選定している1事例を見ると、2営巣期選定されており、調査時期は、すべての事例で毎月1回選定されている。

(b) 調査方法

実証2事例において選定されている現地調査の方法を表6-9～表6-12に示す。

クマタカを選定している1事例を見ると、定点観察法、踏査による目視確認(営巣状況)が選定されている。
クマタカの餌種・資源量に関しては、ノウサギでは、糞粒法、INTCEP法、ヘビ類では、直接観察法が選定されている。

ノスリを選定している1事例を見ると、定点観察法、目視確認(営巣状況)が選定されている。ノスリの餌種・資源量に関しては、ネズミ類では、捕獲法(シャーマントラップ)が選定されている。
これらの具体的内容を表6-13及び表6-14に示す。
表 6-9 クマタカの生息・繁殖状況の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定点観察法</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>路査による目視確認(営巣状況)</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-10（1）クマタカの飼種・資源量(ノウサギ)の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>養粒法</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>INTGEP 法</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-10（3）クマタカの飼種・資源量(ヘビ類)の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>直接観察法</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-11 ノスリの生息・繁殖状況の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>定点観察法</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>路査による目視確認(営巣状況)</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-12 ノスリの飼種・資源量(ネズミ類)の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>複獲法(シャーマントラップ)</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-13 クマタカの飼種・資源量の調査方法の具休的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 養粒法 (ノウサギ) | ・調査地域にあらかじめ設定した地点に、方形枠(コドラート)を設置する。
 ・調査枠を設置する際に、ノウサギの養粒を除去する。
 ・以降、季節ごとに調査枠を見回り、ノウサギの養粒を除去し、養粒数を記録する。 |
| 2 | INTGEP 法 (ノウサギ) | ・積雪上に残された足跡の総延長(m/ha)を1頭1夜あたりの平均移動距離(m)で除し、生息密度を推定する。 |
| 3 | 直接観察法 (ヘビ類) | ・調査地域を踏査しタモ網等を用いてヘビ類の捕獲を行い、種名、個体数、確認位置、確認状況、生息環境等を記録する。
 ・ヘビ類の確認は個体の捕獲を原則とするが、捕獲できない場合には目撃確認として記録する。
 ・また脱皮殻による確認も併用する。 |

表 6-14 ノスリの飼種・資源量の調査方法の具休的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
</table>
| 1 | 複獲法(シャーマントラップ) | ・調査地域にあらかじめ設営した地点にシャーマントラップを設営する。
 ・捕獲したネズミ類等は、同定後に写真撮影及び計測を行い、速やかに放営する。
 ・実証事例では、トラップは、2夜設営されている。 |
4）予測手法
実証2事例において選定されている予測項目を表6-15及び表6-16に示す。
「営巣適地」、「探餌適地」、「餌資源量」については2種とも選定されている。

表6-15 クマタカの予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>生息状況及び行動圏</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>営巣適地</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>探餌適地</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>餌資源量</td>
<td>1</td>
</tr>
</tbody>
</table>

表6-16 ノスリの予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>生息適地</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>営巣適地</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>探餌適地</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>採餌適地</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>餌資源量</td>
<td>1</td>
</tr>
</tbody>
</table>

5）評価手法
実証2事例において選定されている評価手法を表6-17に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表6-17 実証2事例における上位性の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回選、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

6）環境保全措置
実証2事例において選定されている環境保全措置を表6-18(1)及び(2)に示す。
「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」「改変区域外への立ち入り制限」「緑化」「工事関係者への周知・環境監視」が記載されている。
「地形改変及び施設の使用、施設の稼働」に関しては、すべての事例で「低騒音型機器の採用・性能維持」「工事機材等の早期撤去」が記載されている。
表 6-18(1) 実証 2 事例における上位性の環境保全措置
（造成等の施工による一時的な影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>改変区域外への立ち入り制限</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>猛禽類の営巣地への配慮</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-18(2) 実証 2 事例における上位性の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>繁殖環境の整備</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>夜間照明の対策</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>鳥類等の衝突の低減</td>
<td>1</td>
</tr>
</tbody>
</table>

7) 事後調査
実証 2 事例において選定されている事後調査を表 6-19 に示す。
事後調査として記載されているものはないが、環境監視として「希少猛禽類の生息・繁殖状況の監視」が記載されている。
この具体的内容を表 6-20 に示す。

表 6-19 実証 2 事例における上位性の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>希少猛禽類ノスリの生息・繁殖状況の監視</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-20 上位性の環境監視・事後調査の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>希少猛禽類ノスリの生息・繁殖状況の監視</td>
<td>影響が生じる可能性がある営巣地、採餌場を対象に、定点観察法を実施する。工事中から運転開始後、2年間、実施する。</td>
</tr>
</tbody>
</table>
第6章 生態系

6.2 典型性

1）注目種
実証2事例において選定されている注目種を表6-21に示す。
2事例でヒガラ、1事例でオオジシギが選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>注目種</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ヒガラ</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>オオジシギ</td>
<td>1</td>
</tr>
</tbody>
</table>

2）調査地域
注目種において選定されている調査地域を表6-22～6-25に示す。
すべての事例で「対象事業実施区域から2,000mまでの区域」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>対象事業実施区域から2,000mまでの区域</td>
<td>1</td>
</tr>
</tbody>
</table>

3）調査手法
(a) 調査時期
実証2事例において選定されている調査時期を表6-26及び表6-27に示す。
ヒガラを選定している2事例を見ると、春季、夏季、秋季の3季選定されている。
オオジシギを選定している1事例を見ると、春季、夏季、秋季の3季選定されている。
表 6-26 ヒガラの調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>2</td>
</tr>
</tbody>
</table>

表 6-27 オオジシギの調査時期

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>春季、夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

（b）調査方法
実証 2 事例において選定されている現地調査の方法を表 6-28～表 6-31 に示す。
ヒガラを選定している 2 事例を見ると、スポットセンサス法が選定されており、餌種・資源量は一般採集法（スウィーピング・ビーティング法）、シードトラップ法、落下糞量調査が選定されている。
オオジシギを選定している 1 事例を見ると、任意観察法（分布状況）が選定されており、餌種・資源量はコドラート法（土壌動物）が選定されている。
これらの具体内容を表 6-32 及び表 6-33 に示す。

表 6-28 ヒガラの生息状況の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>スポットセンサス法</td>
<td>2</td>
</tr>
</tbody>
</table>

表 6-29 ヒガラの餌種・資源量の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一般採集法（スウィーピング・ビーティング法）</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>シードトラップ法</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>落下糞量調査</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-30 オオジシギの生息状況の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>任意観察法（分布状況）</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-31 オオジシギの餌種・資源量の調査方法

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コドラート法（土壌動物）</td>
<td>1</td>
</tr>
</tbody>
</table>
表 6-32 ヒガラの調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一般採集法（スウィーピング・ビーティング法）</td>
<td>調査地点において、地点あたり各 40 回の努力量を目安に行い、昆虫類を探取する。</td>
</tr>
<tr>
<td>2</td>
<td>シードトラップ法</td>
<td>調査地点にシードトラップを設置し、3 ヶ月放置した後、落ちた木本の種子を探取する。</td>
</tr>
<tr>
<td>3</td>
<td>落下養量調査</td>
<td>調査地点に数か月養量トラップをセットし、樹上から落下する昆虫類の養を捕捉する。</td>
</tr>
</tbody>
</table>

表 6-33 オオジシギの調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コドラート法(土壤動物)</td>
<td>植物群落の代表的と考えられる地点に調査枠(コドラート)を任方に設置し、枠内の表層の落葉落枝及び表土を採集し、その中に含まれる目視可能な動物を採集する。</td>
</tr>
</tbody>
</table>

4) 予測手法
注目種において選定されている予測項目を表 6-34 及び表 6-35 に示す。
すべての事例で「生息状況」、「餌資源量」が選定されている。

表 6-34 ヒガラの予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>生息状況</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>餌資源量</td>
<td>2</td>
</tr>
</tbody>
</table>

表 6-35 オオジシギの予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>生息状況</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>餌資源量</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 評価手法
実証 2 事例において選定されている評価手法を表 6-36 に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

表 6-36 実証 16 事例における典型性の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>
6）環境保全措置

実証2事例において選定されている環境保全措置を表6-37(1)及び(2)に示す。

「造成等の施工による一時的な影響」に関しては、すべての事例で「改変面積の縮小」、「車両の走行台数・建設機械の稼働台数の平準化」、「改変区域外への立ち入り制限」、「緑化」、「工事関係者への周知・環境監視」が記載されている。

「地形改変及び施設の存在、施設の稼働」に関しては、すべての事例で「低騒音型機器の採用・性能維持」、「工事機材等の早期撤去」が記載されている。

表6-37(1) 実証2事例における典型性の環境保全措置
（造成等の施工による一時的な影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数・建設機械の稼働台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>改変区域外への立ち入り制限</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>猛禽類の営巣地への配慮</td>
<td>1</td>
</tr>
</tbody>
</table>

表6-37(2) 実証2事例における典型性の環境保全措置
（地形改変及び施設の存在、施設の稼働）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>低騒音型機器の採用・性能維持</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>工事機材等の早期撤去</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>繁殖環境の整備</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>夜間照明の対策</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>鳥類等の衝突の低減</td>
<td>1</td>
</tr>
</tbody>
</table>

7）事後調査

実証2事例において選定されている事後調査を表6-38に示す。

事後調査として記載されているものはないが、環境監視として「オオジシギの生息・繁殖状況の監視」が記載されている。

この具体的内容を表6-39に示す。
表 6-38 実証 2 事例における典型性の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>環境監視</td>
</tr>
<tr>
<td>1</td>
<td>オオジシギの生息・繁殖状況</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6-39 典型性の環境監視・事後調査の具体内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>オオジシギの生息・繁殖状況</td>
<td>繁殖に重要と考えられる地域周辺を対象に、任意観察等を実施する。工事中から運転開始後、2年間、実施する。</td>
</tr>
</tbody>
</table>
6.3 特殊性

1) 注目種

実証 2 事例において選定されている注目種を表 6-40 に示す。
調査を実施している 1 事例を見ると、硫気孔荒原植物群落が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>注目種</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫気孔荒原植物群落</td>
<td>1</td>
</tr>
</tbody>
</table>

2) 調査地域

実証 2 事例において選定されている調査地域を表 6-41 に示す。
調査を実施している 1 事例を見ると、「谷を挟んだ幅 5m 長さ 100m のベルト」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>谷を挟んだ幅 5m 長さ 100m のベルト</td>
<td>1</td>
</tr>
</tbody>
</table>

3) 調査手法

(a) 調査時期

実証 2 事例において選定されている調査時期を表 6-42 に示す。
調査を実施している 1 事例を見ると、夏季、秋季の 2 季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法

実証 2 事例において選定されている現地調査的方法を表 6-43 に示す。
調査を実施している 1 事例を見ると、植生分布調査、土壌分析調査が選定されている。
これらの具体的内容を表 6-44 に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査地域</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>植生分布調査</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>土壌分析調査</td>
<td>1</td>
</tr>
</tbody>
</table>
第6章 生態系

表 6-44 硫気孔荒原植物群落の調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>植生分布調査</td>
<td>•ベルト調査区内で植生区分を行うとともに、地表土壌の堆積等の状況から浸食区間と堆積区間とに区分した。</td>
</tr>
<tr>
<td>2</td>
<td>土壌分析調査</td>
<td>•ベルト調査区内で植生区分ごとに、地表からおよそ 10cm の深さの所から土壌を採取し、室内で土壤の水素イオン濃度、硫酸イオン濃度、可溶性アルミニウム濃度、土性、含水率、炭素量を測定する。</td>
</tr>
</tbody>
</table>

4）予測手法
実証 2 事例において選定されている予測項目を表 6-45 に示す。
調査を実施している 1 事例を見ると、「硫気孔荒原植物群落の分布図作成」が選定されている。

表 6-45 硫気孔荒原植物群落の予測項目

<table>
<thead>
<tr>
<th>No.</th>
<th>予測項目</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>硫気孔荒原植物群落の分布図作成</td>
<td>2</td>
</tr>
</tbody>
</table>

5）評価手法
実証 2 事例において選定されている評価手法を表 6-46 に示す。
調査を実施している 1 事例を見ると、「環境影響の回避、低減に係る評価」が選定されている。

表 6-46 実証 16 事例における特殊性の評価手法

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>1</td>
</tr>
</tbody>
</table>

6）環境保全措置
実証 2 事例において選定されている環境保全措置を表 6-47 に示す。
調査を実施している 1 事例を見ると、「改変面積の縮小」、「改変区域外への立ち入り制限」、「工事関係者への周知・環境監視」が記載されている。
表 6.47 実証 2 事例における特殊性の環境保全措置
（造成等の施工による一時的な影響）

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>改変面積の縮小</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>改変区域外への立ち入り制限</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>工事関係者への周知・環境監視</td>
<td>1</td>
</tr>
</tbody>
</table>

7) 事後調査
実証 2 事例では、事後調査は記載されていない。
第7章 景観

1) 調査手法
（a）調査時期
実証2事例において選定されている調査時期を表7-1(1)～(3)に示す。すべての事例で地形改変及び施設の存在が選定されている。

主要な眺望点では、調査を実施した2事例中1事例で2季、1事例で1季、景観資源では、調査を実施した1事例中1事例で2季、主要な眺望景観では、調査を実施した2事例中2事例で2季選定されている。

<table>
<thead>
<tr>
<th>番号</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>夏季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>夏季、秋季</td>
<td>1</td>
</tr>
</tbody>
</table>

（b）調査方法
実証2事例において選定されている現地調査の方法を表7-2に示す。
すべての事例で主要な眺望点の状況、主要な眺望景観の状況が選定されており、そのうち1事例では景観資源の状況も選定されている。

これらの具体的内容を表7-3に示す。

<table>
<thead>
<tr>
<th>番号</th>
<th>調査方法</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>主要な眺望点の状況</td>
<td>・現地踏査等により主要な眺望点の状況を把握する。</td>
</tr>
<tr>
<td>2</td>
<td>景観資源の状況</td>
<td>・現地踏査等により景観資源の状況を把握する。</td>
</tr>
<tr>
<td>3</td>
<td>主要な眺望景観の状況</td>
<td>・眺望点からの写真撮影により眺望景観の状況を把握する。</td>
</tr>
</tbody>
</table>
第7章 景観

2) 予測手法
実証2事例において選定されている予測手法を表7-4に示す。
すべての事例で「フォトモンタージュ法による視覚的な表現手法による予測」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>フォトモンタージュ法による視覚的な表現手法による予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表7-5に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」、「自治体の環境配慮指針等との整合」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>自治体の環境配慮指針等との整合</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2事例において選定されている環境保全措置を表7-6に示す。
すべての事例で「明度・彩度を抑えた塗装」、「施設構造の変更」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>明度・彩度を抑えた塗装</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>施設構造の変更</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>改変面積の縮小</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>緑化</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査
実証2事例では、事後調査は記載されていない。
第 8 章 人と自然との触れ合いの活動の場

1) 調査手法

(a) 調査時期
実証 2 事例において選定されている調査時期を表 8-1(1)及び(2)に示す。
すべての事例で工事用資材等の搬出入が選定されている。
分布、利用の状況及び利用環境、交通量では、1 事例ずつで夏季、秋季の 2 季、春季、夏季、冬季の 3 季選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査回数</th>
<th>調査時期</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>夏季、秋季</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>春季、夏季、冬季</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) 調査方法
実証 2 事例において選定されている現地調査の方法を表 8-2 に示す。
すべての事例で主要な人と自然との触れ合いの活動の分布、利用の状況及び利用環境の状況が選定されている。
この具体的内容を表 8-3 に示す。

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>主要な人と自然との触れ合いの活動の分布、利用の状況及び利用環境の状況</td>
<td>2</td>
</tr>
</tbody>
</table>

表 8-3 人触れの調査方法の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>調査方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>主要な人と自然との触れ合いの活動の分布、利用の状況及び利用環境の状況</td>
</tr>
</tbody>
</table>

・現地踏査、利用者のカウント、アンケート等により主要な人と自然との触れ合いの活動の分布、利用の状況及び利用環境の状況を把握する。
第7章 景観

2) 予測手法
実証2事例において選定されている予測手法を表8-4に示す。
すべての事例で「アクセスルートの交通量の変化及び利用特性への影響予測」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>アクセスルートの交通量の変化及び利用特性への影響予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表8-5に示す。
すべての事例で「環境影響の回避、低減に係る評価」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2事例において選定されている環境保全措置を表8-6に示す。
すべての事例で「車両の走行台数の平準化」、「車両の走行台数の低減」等が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>車両の走行台数の平準化</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>車両の走行台数の低減</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>車両の走行時期・時間の変更</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>工事関係者への周知・環境監視</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>エコドライブ・運転時の利用者への配慮</td>
<td>1</td>
</tr>
</tbody>
</table>

5) 事後調査
実証2事例では、事後調査は記載されていない。
第9章 廃棄物等

1) 調査手法
実証2事例では、本項目的調査は実施されていない。

2) 予測手法
実証2事例において選定されている予測手法を表9-1に示す。
すべての事例で、「産業廃棄物及び残土の発生量の予測」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>予測手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>産業廃棄物及び残土の発生量の予測</td>
<td>2</td>
</tr>
</tbody>
</table>

3) 評価手法
実証2事例において選定されている評価手法を表9-2に示す。
すべての事例で「環境影響の回避、低減に係る評価」、「環境基準等の国の基準との整合」が選定されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>評価手法</th>
<th>選定している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>環境影響の回避、低減に係る評価</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>環境基準等の国の基準との整合</td>
<td>2</td>
</tr>
</tbody>
</table>

4) 環境保全措置
実証2事例において選定されている環境保全措置を表9-3に示す。
すべての事例で「産業廃棄物の発生抑制・有効利用」、「産業廃棄物の適正処理」、「土量収支の均衡」、「残土の適正処理」が記載されている。

<table>
<thead>
<tr>
<th>No.</th>
<th>環境保全措置</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>産業廃棄物の発生抑制・有効利用</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>産業廃棄物の適正処理</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>土量収支の均衡</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>残土の適正処理</td>
<td>2</td>
</tr>
</tbody>
</table>
第9章 廃棄物等

5) 事後調査

実証2事例において選定されている事後調査を表9-4に示す。

事後調査として記載されているものはないが、2事例で「工事の実施に伴う廃棄物等の発生量及び処理状況」が記載されている。

この具体的内容を表9-5に示す。

表9-4 実証2事例における廃棄物等の事後調査

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>記載している事業数</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>環境監視 事後調査</td>
</tr>
<tr>
<td>1</td>
<td>工事の実施に伴う廃棄物等の発生量及び処理状況</td>
<td>2 -</td>
</tr>
</tbody>
</table>

表9-5 廃棄物等の環境監視の具体的内容

<table>
<thead>
<tr>
<th>No.</th>
<th>環境監視・事後調査項目</th>
<th>具体的内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>工事の実施に伴う廃棄物等の発生量及び処理状況</td>
<td>・工事中に発生する廃棄物等の発生量を把握するとともに、処理状況を監視し記録簿に記録する。</td>
</tr>
</tbody>
</table>