「次世代火力発電等技術開発/ 次世代火力発電基盤技術開発」

- ④ 2) 燃料電池向け石炭ガスクリーンナップ技術要素研究
- ④ 3) ガスタービン燃料電池複合発電技術開発
- ④ 4) 燃料電池石炭ガス適用性研究
 - -(1)IGFC システムの検討
 - -(2)燃料電池モジュールの石炭ガス適用性研究

事業原簿

【公開版】

	国立研究開発法人
担当部	新エネルギー・産業技術総合開発機構
	環境部

概	E	要	• •	1
フ	۲D	ジェクト用語集		7
1	-	事業の位置付け・必要性について	1	1
	1 2	事業の背景・目的・位置付け NEDOの関与の必要性・制度への適合性 2 – 1. NEDOが関与することの意義 2 – 2. 実施の効果(費用対効果)	1 1 1	1 1 1 7 1 7 1 7
2		研究開発マネジメントについて	2	2 0
	1 2 3	 事業の目標 1-1.事業の目標設定の背景 1-2.各基盤技術開発事業の目標 事業の計画内容 2-1.研究開発の内容 2-2.研究開発の費用 2-3.研究開発の実施体制 2-4.研究開発の運営管理 2-5.研究開発成果の実用化に向けたマネジメントの妥当性 情勢変化への対応 		2 0 2 4 2 6 2 6 3 2 6 3 3 2 3 4 3 5 3 6
З		研究開発成果について	3	37
	1	事業全体の成果 1 - 1. ガスタービン燃料電池複合発電技術開発 1 - 2. 燃料電池向け石炭ガスクリーンナップ技術要素研究 1 - 3. 燃料電池モジュールの石炭ガス適用性研究 1 - 4. IGFC システムの検討 研究開発項目毎の成果 2 - 1. ガスタービン燃料電池複合発電技術開発 2 - 2. 燃料電池向け石炭ガスクリーンナップ技術要素研究 2 - 3. 燃料電池モジュールの石炭ガス適用性研究 2 - 4. IGFC システムの検討.	3 3 3 2 7 7 1 0 1 2	3 7 3 8 3 8 3 9 4 0 7 3 7 3 2 5
4	•	成果の実用化に向けての見通し及び取組について	17	74
	1 2	成果の実用化に向けた戦略 成果の実用化の見通し	17 17	74 76

(添付資料)

- 1. プロジェクト基本計画
- 2. 特許論文等リスト

		最終更新日	2019 年 8	月 23 日	
プロジェクト名	次世代火力発電等技術開発/次世代火力発電基盤技術開発 ④2)燃料電池向け石炭ガスクリーンナップ技術要素研究 ④3)ガスタービン燃料電池複合発電技術開発 ④4)燃料電池石炭ガス適用性研究 (1) IGFC システムの検討 (2)燃料電池モジュールの石炭ガス適用性研究				
担当推進部/ PM または担当者	 ④2)燃料電池向け石炭ガスクリーンナップ技術要素研究 環境部 PM 春山主査/副担当 高橋主査(2019年8月現在) PM 西岡主査(2016年4月~2018年3月) PM 在間主幹(2015年4月~2016年3月) ④3)ガスタービン燃料電池複合発電技術開発 ④4)燃料電池石炭ガス適用性研究/ (1)IGFCシステムの検討 (2)燃料電池モジュールの石炭ガス適用性研究 環境部 PM 高橋主査(2019年8月現在) 				
0. 事業の概要	 2014年4月に閣議決定された「第4次エネルギー基本計画」を基に2015年7月に決定された「長期エネルギー需給見通し」において、石炭火力、LNG火力の高効率化を進めつつ環境負荷の低減と両立しながら活用することで、2030年の石炭火力の比率を26%程度、LNG火力の比率を27%程度とする方向性が示されている。また、2018年7月に閣議決定された第5次エネルギー基本計画において、石炭火力、ガス火力については、温室効果ガスの排出という問題はあるものの、長期を展望した環境負荷の低減を見据えつつ活用していくエネルギー源とされている。 本事業は、2016年6月に策定された「次世代火力発電に係る技術ロードマップ」に基づき、究極の高効率発電であるガスタービン燃料電池複合発電(GIFC:GasTurbine Fuel Cell Combined Cycle)、および石炭ガス化燃料電池複合発電(IGFC:Integrated Coal Gasification Fuel Cell Combined Cycle)について、2025年頃の技術確立を目的として以下の基盤技術開発を実施するものである。 ガスタービン燃料電池複合発電技術開発[④3)] 燃料電池向け石炭ガスクリーンナップ技術要素研究[④2)] 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究[④4)-(2)] 4、燃料電池石炭ガス適用性研究/IGFCシステムの検討[④4)-(1)] ※報告順は上記の通りとする。 			7月に決定された つつ環境負荷の 火力の比率を27% ニネルギー基本計 まあるものの、長 いる。 プ」に基づき、究 I Cell Combined ation Fuel Cell 開発を実施するも	
1. 事業の位置 付け・必要性 について	2015 年 7 月に決定された長期エネルギー需給見通しにおいては、3E+S(安全性、安定供給、経済効率性、環境適合)を同時達成しつつ、バランスの取れた電源構成を実現していくこととしており、火力発電分野においては、石炭火力発電及びLNG火力発電の高効率化を図り、環境負荷の低減と両立しながら、有効活用を推進することとしている。火力発電の高効率化は、再生可能エネルギーの最大限の導入促進、安全性の確認された原子力発電の活用と合わせ、温室効果ガス削減目標積み上げの基礎となった対策・施策として位置づけられている。これを踏まえ、2016 年 6 月に官民協議会で策定した「次世代火力発電に係る技術ロードマップ」においては、火力発電の高効率化、CO2 削減を実現するため、次世代の火力発電技術の早期確立を目指すこととしている。 長期エネルギー需給見通しの実現に向けて、火力発電の高効率化を進めるためには、ガスタービン燃料電池複合発電(GTFC)や石炭ガス化燃料電池複合発電(IGFC)等、発電効率を飛躍的に向上させる次世代火力を早期に技術確立する必要があり、本事業はそのための基盤技術開発を行うものである。				

2.研究開発マネジメントについて

	各事業につき、中間目標	及び最終	目標を以	下の通り	設定する	0			
	 ガスタービン燃料電池複合発電技術開発 [④3)] [中間目標(2019年度)] 中小型 GTFC(10万 kW)の要素技術を開発する。 ・高圧 SOFC モジュールを開発する。 ・ガスタービンとの連係技術を確立する(燃焼器、燃料/空気差圧制御系、排燃料・排空気・空気抽気)。 [最終目標(2021年度)] 中小型 GTFC(10万 kW)の要素技術を確立する。 ・燃料電池の高性能化による中小型 GTFC システムの最適化を行う。 								
事業の目標	2. 燃料電池向け石炭ガ [最終目標 (2017 年度)] ・模擬ガス試験によ ・模擬ガス試験によ	スクリー り燃料電 り燃料電	ンナップ 池の被毒 池用ガス	技術要素 耐性を評 精製技術	研究[④ 価する。 性能を評	2)] 価し、ガ	ス精製技	術を確立	する。
	 3. 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)] [中間目標(2019年度)] H2 リッチガスを燃料とした場合の燃料電池モジュールの基本性能を確認するとともに、発電性能を最適化するための運用性を確立する。また、石炭ガスを燃料とした場合の燃料電池モジュールの基本性能を確認する。 [最終目標(2021年度)] 石炭ガスを燃料とした場合の燃料電池モジュールの運用性と性能を把握し、課題を抽出する 								
	4. 燃料電池石炭ガス適 [最終目標(2019 年度)] IGFC 実証機の容量	用性研究 を決定し	/IGFC シ 、実証機	マステムのの試設計)検討 [④ を完了す)4)-(1)] る。			
	 カスターヒン (2011) 1. カスターヒン (2011) 電池複合発電技術開発 [④3)] 	2015fy	2016fy	2017fy	2018fy	2019fy	2020fy	2021fy	
	小型 GIFC ハーフモンユ ール実証								
	セルスタック低コスト								
	<u>品質安定化技術開発</u> 高性能セルスタック性								
	能検証								
	高圧 SUFC モシュールの 開発								
	2. 燃料電池向け石炭 ガスクリーンナップ技 術要素研究 [④2)]	2015fy	2016fy	2017fy	2018fy	2019fy	2020fy	2021fy	
事業の計画内容	セル被毒耐性評価								
	燃料電池用ガス精製技 術性能評価								
	燃料電池用ガス精製装置の試設計								
	3. 燃料電池モジュー ルの石炭ガス適用性検 討 [④4)-(2)]	2015fy	2016fy	2017fy	2018fy	2019fy	2020fy	2021fy	
	水素リッチガス適用及 び石炭ガス設備連係に 係る運転・制御の検討								
	燃料電池モジュール試 験設備の設計・製作・据 付								
	燃料電池カートリッジ 試験								

1									
	燃料電池モジュールの 水素リッチガス試験								
	実証機模擬ガス試験								
	石炭ガス化炉連係試験								
	石炭ガス(C0 リッチガ						_		
	ス) 週用に係る技術検討 燃料電池モジュールの								
	解体調査								
	4. TGFC システムの使 討 [④4)-(1)]	2015fy	2016fy	2017fy	2018fy	2019fy	2020fy	2021fy	
	高温燃料電池及び IGFC の技術動向調査								
	商用機のシステム検討								
	実証に向けたシステム 評価								
	実証機試設計								
	実証試験内容の検討								
	会計・勘定	2015fy	2016fy	2017fy	2018fy	2019fy	2020fy	2021fy	総額
	一般会計	—	-	—	—	—	_	_	—
重業費業	特別会計 (電源・需給の別)	399	844	2, 674	831	857	229	137	5, 971
→ 未 頁 1±19 (会計・勘定別に NED0 が 自 1 +	1. ガスタービン燃料電池 複合発電技術開発 [④3)]	—	554	1, 297	574	97	69	22	2, 613
実績額(評価実) 施年度について は予算額)を記	2. 燃料電池向け石炭ガス クリーンナップ技術要素 研究 [④2)]	399	150	150	_	-	_	-	699
載) (単位:百万円)	3. 燃料電池モジュールの 石炭ガス適用性研究 [④ 4)-(2)]	_	131	1, 203	196	760	160	115	2, 565
	4.IGFC システムの検討 [④4)-(1)]	—	9	24	61	_	—	_	94
	開発成果促進財源	_		_	_	_	_		—
	総 NEDO 負担額(委託)	399	844	2, 674	831	857	229	137	5, 971
	経産省担当原課	資源エオ	ネルギーバ	宁 資源	・燃料部	石炭課			
開発体制	プロジェクト リーダー	 ガスタービン燃料電池複合発電技術開発 [④3)] 三菱日立パワーシステムズ株式会社 北川雄一郎 2.燃料電池向け石炭ガスクリーンナップ技術要素研究 [④2)] 3.燃料電池石炭ガス適用性研究 [④4)] 電源開発株式会社 早川宏)]	
	プロジェクト マネージャー	NED0 環 [;]	境部 主 主	査 高橋 査 春山	洋一 博司				

		委託先	 ガスタービン燃料電池複合発電技術開発〔④3)〕 三菱日立パワーシステムズ株式会社 日本特殊陶業株式会社 (再委託先)三菱重工業株式会社 株式会社トヨタエナジーソリューションズ 燃料電池向け石炭ガスクリーンナップ技術要素研究〔④2)〕 電源開発株式会社 (再委託先)株式会社巴商会 国立研究開発法人産業技術総合研究所 一般財団法人電力中央研究所 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適 用性研究〔④4)-(2)〕 電源開発株式会社 (再委託先)三菱日立パワーシステムズ株式会社 燃料電池石炭ガス適用性研究/IGFCシステムの検討〔④4)-(1)〕 電源開発株式会社 中国電力株式会社 					
	情勢変化への 対応	 2018年7月に閣議決定された「第5次エネルギー基本計画」において、IGCC・IGFC等の次世高効率石炭火力発電技術の開発・実用化を推進すること、また高効率LNG火力発電の技術間を促進すること、とされている。 GTFCについて、段階的に大型化への流れが進展している。 250kW級加圧型SOFCモジュールはすでに上市されており、三菱地所、安藤ハザマより発を受けている。また、MW級モジュールについて市場ニーズは高い。 2019年7月5日付プレスリリースによると、日本特殊陶業と三菱日立パワーシステムズが料電池セルスタックの製造・販売を行う合弁会社の設立・共同運営に関する契約を締結におり、セルスタック量産化に向けた取り組みが加速している。 IGFC の前提となる IGCC について、実用化に向けた取り組みが進んでいる。 空気吹IGCCは、勿来、広野にて 540MW級商用機の建設が進んでおり、勿来は 2020年広野は 2021年の運転開始を予定している。 酸素吹 IGCC は、実証試験は 2018年度に完了し、大崎クールジェンの親会社である電話発・中国電力にて商用化の検討が進められている。2019年4月24日付プレスリリースにると、電源開発が山口宇部パワー西沖の山発電所の新設計画にて、酸素吹石炭ガス化合発電(IGCC)による商用機開発への計画変更を検討する旨を表明。 						
	中間評価結果 への対応	-						
		事前評価	_					
	評価に関する 事項	中間評価	2019 年度					
		事後評価	2019年度、2022年度					
3.研究開発成果 について		 ガスタービン燃料電 ①小型 GTFC ハーフモ 小型 GTFC 用に大容: 度を管理値内に抑制で 2セルスタック低コス 連続炉模擬検証炉に きた。また、成膜条件 ③高性能セルスタック 高性能セルスタック 	 池複合発電技術開発 [④3)] ジュール実証 量化した SOFC モジュールと各システム機器を開発した。また、燃焼器温 きるマイクロガスタービンを開発した。 ト品質安定化 て運転条件を最適化することで、品質を保ちつつ製造時間 1/3 を達成で と成膜状態の関係を把握し、品質安定化の目処を得た。 検証 を用いてハーフモジュール試験を行うための計画を検討した。 					

	1 88 30								
④高庄 SUFG モシュー) 放熱対策を施したカ 得られることを確認し 握した。	放熱対策を施したカートリッジにて 2MPa 程度の高圧試験を実施し、予想通りの発電出力が 得られることを確認した。また、耐久試験を実施し電圧低下特性が低圧と同等であることを把 握した。								
2. 燃料電池向け石炭ガスクリーンナップ技術要素研究 [④2)]									
 ①セル被毒啊性評価 模擬ガスとセルスタックによる発電試験を行い、電池の性能に影響を及ぼす被毒成分は H2Se と H2S であることを特定した。 									
②燃料電池用ガス精製 ①で特定した被毒成 吸着剤を選定した。	②燃料電池用ガス精製技術性能評価 ①で特定した被毒成分について吸着試験を行い、定量下限値以下まで除去可能となる最適な 吸着剤を選定した。								
 ③燃料電池用ガス精製 ②の結果を基に、実 	③燃料電池用ガス精製装置の試設計 ②の結果を基に、実証機の脱硫塔および水素化物吸着塔の試設計を実施した。								
3. 燃料電池石炭ガス適	用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)]								
①燃料電池モジュール 天然ガス用に設計さ を実施し、挙動を把握 製作した。また、カー	 ①燃料電池モジュール試験に向けた検討 天然ガス用に設計された燃料電池モジュールに水素リッチガスを適用するための予備検討 を実施し、挙動を把握した。その結果を基に、試験用 250 k W 級燃料電池モジュールを設計, 製作した。また、カートリッジ試験を行い水素リッチガスの発電基本特性を把握した。 								
②燃料電池モジュール 水素リッチガスを用	②燃料電池モジュール基本特性確認試験 水素リッチガスを用いた場合の燃料電池モジュールのの基本性能及び運用性を確認した。								
③水素リッチガス最大 水素リッチガスは天 パラメータの変更によ を添加した場合に発電	③水素リッチガス最大負荷試験 水素リッチガスは天然ガスよりも出力が低下するが、再循環流量増や燃料利用率など、運転 パラメータの変更により発電出力が改善することを確認した。また、水素リッチガスに CO2 を添加した場合に発電室上部の温度が低下し、発電出力が増加することを確認した。								
④石炭ガス化炉連係試 ガス化炉と燃料電池	④石炭ガス化炉連係試験 ガス化炉と燃料電池モジュールの連係工事を実施した。								
4. 燃料電池石炭ガス適 ①高温燃料電池及び I(事業用燃料電池の関	4. 燃料電池石炭ガス適用性研究/IGFC システムの検討 [④4)-(1)] ①高温燃料電池及び IGFC の技術動向調査 事業用燃料電池の開発状況と IGFC 実用化に向けた課題を明らかにした。								
②商用機のシステム検 商用 CO2 分離・回収 選定した。	②商用機のシステム検討 商用 CO2 分離・回収型 IGFC についてシミュレーションを実施し、最適なプロセスフローを 選定した。								
③実証に向けたシステ 実証機に適した燃料 材を選定し、処理方法	③実証に向けたシステム評価 実証機に適した燃料電池の仕様、プロセスフローを検討した。また、被毒成分に対する吸着 材を選定し、処理方法を決定した。								
④実証機試設計 実証機の設計条件を ーティリティ等を明ら	 ④実証機試設計 実証機の設計条件を明らかにし、システム系統、設備構成、物質収支、設備レイアウト、ユーティリティ等を明らかにした。 								
⑤実証試験内容の検討 実証試験にて実証す	でべき試験項目と試験工程を明らかにした。								
投稿論文	1. ガスタービン燃料電池複合発電技術開発 [④3)] 「査読付き」1件、「その他」1件								
特許	1. ガスタービン燃料電池複合発電技術開発 [④3)] 「出願済」6件(うち国際出願0件)								
その他の外部発表 (プレス発表等)	 1. ガスタービン燃料電池複合発電技術開発 [④3)] 「学会等発表」8件、「受賞実績」1件、「HP 掲載」5件、 「展示会等への出展」2件 								

		 2. 燃料電池向け石炭ガスクリーンナップ技術要素研究 [④2)] 「学会等発表」3件 3. 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)] 「学会等発表」4件 					
4 . 成 果 の 実 用 化・事業化に 向けた取組及 び見通しにつ いて	 ガスタービン燃料電池複合発電技術開発 [④3)] GTFCの本格普及のためには燃料電池の大型化・量産化技術開発を進める必要があり、より低 コスト化を見据えた燃料電池の高性能化を指向する。小型 GTFC (1MW 級)を市場投入してユー ザーを拡大することで、燃料電池の量産化体制を構築してコストを低減し、中小型 GTFC (10 万 kW 級)の実証につなげる。また、本事業の成果を CO2 分離・回収型 IGFC 実証事業に反映し、 実証事業の成功に貢献する。また、本事業の成果を CO2 分離・回収型 IGFC 実証事業に反映し、 実証事業の成功に貢献する。また、IGFC 実用化に必要となる燃料電池の性能向上・量産化技術 を確立する。 燃料電池石炭ガスクリーンナップ技術要素研究 [④2)] 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)] 燃料電池石炭ガス適用性研究/IGFC システムの検討 [④4)-(1)] 本事業で得られた成果を、2018 年度より開始する CO2 分離・回収型 IGFC 実証事業の設計、 試験条件、運用方法等に反映し、実証事業の成功に貢献する。また、本事業で得られた成果を、 2022 年度に完了する CO2 分離・回収型 IGFC 実証事業の成果と組み合わせることで、IGFC 商用 機の設計思想に反映する。 						
	作成時期	2016 年 1 月作成					
5. 基本計画に 関する事項	変更履歴	 2016年4月改訂(④2)のPM変更) 2017年2月改訂(④3)4)のPM、PL変更、知財マネジメント適用プロジェクトへの追記) 2018年2月改訂(④2)4)のPL変更) 2018年7月改訂(④2)のPM変更、④2)の評価時期変更) 2019年7月改訂(④3)4)の中間評価の追加、④2)3)4)の事後評価時期の変更、④34)の実施期間の延長、中間目標の策定及び最終目標の修正) 					

プロジェクト用語集

名称	略号	意味
暗騒音		信号の生成、伝送、検出、測定または記録に
background noise		用いるシステムの中にある全ての音源から
		の妨害の全部
加圧形燃料電池		作動圧力が大気圧近傍を超える燃料電池
pressurized fuel cell		(反応ガスの最高使用圧力が、0.1 MPa 以上
		の燃料電池)
ガス精製(ガスクリーンナッ		燃料電池用として、石炭ガス化ガスから被毒
プ)		成分を除去するプロセスであり、被毒成分を
gas clean-up		吸着する吸着剤が用いられる。
ガスタービン燃料電池複合発	GTFC	GTCC に燃料電池を組み合わせたトリプルコ
e 电		ンバインドサイクル方式の発電
Gas Turbine Fuel Cell		
combined cycle		
ガスタービン複合発電	GTCC	ガスタービンと蒸気タービンによる複合発
Gas Turbine Combined Cycle		電
カートリッジ		セルスタックを集合させて、燃料/空気の供
cartridge		給/集電を行う最小ユニット
基体管		円筒形燃料電池において、電極、電解質など
substrate tube		を積層するための多孔性支持管
		表面に他の物質を吸着する性質の強い物質。
adsorbent		物質表面の原子が近接した特定の分子やイ
		オンなどの化学種を結合する。
		空気などの酸化剤ガスを電気化学的に還元
air electrode (cathode)		する電極(負荷側から見て正極である)
空塔速度	SV	単位時間あたりに体積の何倍相当分を処理
Space Velocity		しているかという速度。
		細長いガラス管に対象成分と選択的に反応、
detection tube method		呈色する試薬をつめておき. 一定体積の試料
		を吸引導入したときの呈色した長さから濃
		度を求める方法
	SOFC	電解質に高温でイオン導雷性をもつ酸化物
Solid Oxide Fuel Cell		を用いる燃料電池。電解質としてイオン伝導
		性セラミックスを用いており、作動温度は
		700~1000℃。燃料には水素の他に天然ガス
		などが利用可能
<u> </u>		「「「「「「」」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、
y y (y yy)		一口相協門及びこれにに加く自由門の下勤加体
Surging		の貢重加重、亚のに江力の区向彼数変動によって陸湾付けられる不安定世能
 シフト反応		一酸化炭素と水蒸気から水素と二酸化炭素
シンド次心 Shift repation		あ に 成 条 と 小 絵 へ が ら の 条 と 一 酸 に の 条 と れ ま る に ん 、 条
		「でエルックスル。小庄ルハマノ下区心とも言う。
		$\int_{0}^{2} 0$ + H20 = H2 + C02
1	1	1

触媒燃焼		触媒作用による火炎を形成しない酸化反応
catalytic combustion		
ショートセル		円筒横縞型セルは百個程度のセルが直列に
Short cell		積層されているが、試験のため少数(主に 3
		つ)のセルのみ直列に積層して使用するも
		\mathcal{O}_{\circ}
水素リッチガス		CO2 分離回収型 IGFC では石炭ガス中の CO2
Hydrogen rich gas		を除去するため、H2 割合の高いガスになる。
		CO2 分離・回収型酸素吹 IGCC 実証機で想定
		している H2 成分 85%のガスを水素リッチガ
		スとしている。
石炭ガス化燃料電池複合発電	IGFC	IGCC 同様石炭をガス化し得られた石炭ガス
Integrated coal		化ガスを燃料とし、ガスタービン、蒸気ター
Gasification Fuel Cell		ビンに、さらに燃料電池発電を組み合わせた
combined cycle		複合サイクル火力発電。
石炭ガス化複合発電	IGCC	石炭をガス化し得られた石炭ガス化ガスを
Integrated coal		燃料とし、ガスタービンと蒸気タービンによ
Gasification Combined Cycle		る複合サイクル火力発電。
セルスタック		単セルを複数つなげた円筒型積層体。SOFC
fuel cell stack		の基本構成単位
	LV	単位時間あたりに塔の断面積を通過する流
Liner Velocity	2	体速度。
走查型電子顕微鏡	SEM	電子顕微鏡の一種。電子線を絞って電子ビー
Scanning Electron Microscope		ムとして対象に照射し、対象物から放出され
		る二次電子、反射電子(後方散乱電子、BSE)、
		透過電子、X線、カソードルミネッセンス(蛍
		光)、内部起電力等を検出する事で対象を観
		祭する。
达電端効率 1		燃料電池発電設備に投入される原燃料のも
net electrical efficiency		つ発熱重に対する送電電刀重(熱重換算)の
		比。」」 达電電力重とは、 発電電力重から設備
		内の補機などによる所内動刀の消賀電刀重
		を差しらいたもの」
多目的石炭ガス製造技術開発	EAGLE	化学原料用、水素製造用、合成液体燃料用、
coal Energy Application for		電力用等幅広い用途への適用が可能な石炭
Gas, Liquid & Electricity		ガス化技術及びガス精製技術の確立等を目
		的とする技術開発。
単セル		燃料極、空気極及び基体管が一組となって構
single cell		成される電池の基本構成単位
炭素析出		反応ガス中の炭素化合物の分解によって固
Carbon deposition		体の炭素が系統内に堆積する現象。代表的に
		はブドワール反応。
		2C0 = C + C02

低位発熱量 lower heating value	LHV	燃料を完全燃焼させたときの水蒸気の凝縮 潜熱を差し引いた発熱量
電圧低下率 Voltage drop rate		発電時間に対するセル電圧の低下の割合。
電解質 electrolyte		空気極と燃料極との間のイオン伝導を行う 物質
電子線マイクロアナライザー Electron Probe Micro Analyzer	ЕРМА	電子線を対象物に照射する事により発生す る特性 X 線の波長と強度から構成元素を分 析する電子マイクロプローブ (EMP) 装置の 一つ。元素分析を主体としたものであり、定
		量精度は良いが検出効率が悪く、より高い照 射電流を必要とする。
内部改質方式燃料電池 internal reforming fuel cell		燃料電池モンュール内で自己の発熱を利用 して原燃料の改質を行う燃料電池
二次イオン質量分析法 Secondary Ion Mass Spectrometry	SIMS	質量分析法におけるイオン化方法の種類の 一つ。固体の表面にビーム状の一次イオンを 照射し、そのイオンと固体表面の分子・原子 レベルでの衝突によって発生する二次イオ ンを質量分析計で検出する表面計測法。
燃料極(アノード) fuel electrode (anode)		水素、一酸化炭素などの燃料ガスを電気化学 的に酸化する電極(負荷側から見て負極であ る)
燃料利用率 Fuel utilization		供給燃料の内、燃料電池内で消費される燃料の割合。
被毒成分 posoning component		燃料電池の燃料極の触媒と反応したり、触媒 に吸着する物質のことで、性能低下を引き起 こす。
ブロワ blower		羽根車もしくはロータの回転運動またはピ ストンの往復運動によって気体を圧送する 機械を圧縮機というが、有効吐出し圧力が 200kPa以下のものをブロワと呼ぶ
ベンチ試験 Bench test		事前に想定した設計が正確・妥当であるかど うかを検証・確認するための試験。
マイクロガスタービン micro gas turbine	MGT	ガスタービンの中で、小型のものをマイクロ ガスタービンといい、発電量が小さい一方、 コストと設置面積を抑えられる特徴を持つ
マスフローコントローラ mass flow controller	MFC	流体の質量流量を計測し流量制御を行う機 器
モジュール fuel cell module		所要出力を得るために一つ又は複数のセル スタック、燃料、酸化剤、排気ガス及び電力 の接続部で構成されたセルスタック群

溶融炭酸塩形燃料電池	MCFC	燃料電池の一種。電解質のイオン伝導は炭酸
Molten Carbonate Fuel Cell		イオン(C032-)である。一般的に電解質にリ
		チウム、ナトリウムの混合物が融解した溶融
		炭酸塩、燃料極の触媒にニッケル、空気極の
		触媒に酸化ニッケルが使われる。化学反応が
		高温で行われるため、白金などの高価な触媒
		が不要である。高温で稼働し水素以外に一酸
		化炭素も燃料にできる。作動温度は 700~
		1,000℃程度。
ライナ		燃焼器で燃焼領域、混合領域及びタービン入
flame tube		口に向かう燃焼ガス流路を形成する筒状の
		構造物。燃焼器内筒。
CFD 解析		流体の運動方程式をコンピュータにより数
computational fluid dynamics		値的に計算し、流れを可視化する手法
CO リッチガス		C02 分離回収前の C0 成分が高いガス。
CO rich gas		
EDS 分析		電子ビームを照射し微小領域、局所領域の元
Energy Dispersive X-ray		素を分析する手法
Spectroscopy		
X線回析法	XRD	X 線が結晶格子で回折する結果から結晶内
X – ray diffraction		部で原子がどのように配列しているかを決
		定する手法。
	1	

1. 事業の位置付け・必要性について

1. 事業の背景・目的・位置付け

(1) 事業の背景

エネルギー資源に乏しい我が国にとって、石炭火力、ガス火力は、温室効果ガス の排出という課題があるが、安定供給性や経済性に優れた重要な電源であり、今後 も高効率発電技術の有効利用等により環境負荷を低減しつつ活用していくエネル ギー源であるとされている。また、世界の発電電力量は、新興国の旺盛な需要を背 景に今後も拡大する見通しであり、その中で大きな割合を占める石炭火力、ガス火 力については、より高効率な発電技術の導入が求められている(図 1-1)。

図 1-1 世界の発電電力量の推移 (出展: IEA World Energy Outlook 2018)

(2) 政策的重要性

2014年4月に閣議決定された「第4次エネルギー基本計画」において、石炭火力 は、温室効果ガスの排出量が多いという課題があるが、安定供給性や経済性に優れ た重要なベースロード電源と評価されており、高効率石炭火力発電の有効利用等に より環境負荷を低減しつつ活用していくエネルギー源であるとされている。また、 ガス火力については、化石燃料の中で温室効果ガスの排出が少なく、熱源としての 効率性が高いことから、ミドル電源の中心的な役割を果たしており、今後役割を拡 大していく重要なエネルギー源であるとされている。

2015 年7月に決定された「長期エネルギー需給見通し」において、3E+S(安全性、 安定供給、経済効率性、環境適合)を同時達成しつつ、バランスの取れた電源構成 を実現していくこととしている。火力発電分野においては、石炭火力発電及びLNG 火力発電の高効率化を図り、環境負荷の低減と両立しながら、有効活用を推進する こととしており、2030年時点の電源構成において、高効率化の促進により、石炭火 カは26%、ガス火力は27%の割合を占めると予想されている(図1-2)。火力発電の 高効率化は、再生可能エネルギーの最大限の導入促進、安全性の確認された原子力 発電の活用と合わせ、温室効果ガス削減目標積み上げの基礎となった対策・施策と して位置づけられている。

これを踏まえ、2016年6月に官民協議会で策定した「次世代火力発電に係る技術 ロードマップ」において、火力発電の高効率化、CO2削減を実現するため、次世代 の火力発電技術の早期確立を目指すことが取りまとめられている(図1-3,1-4)。

2018 年7月に閣議決定された「第5次エネルギー基本計画」において、石炭火力 は引き続き重要なベースロード電源と評価されており、再生可能エネルギー導入拡 大に伴う出力調整の必要性を見据えつつ、高効率化・次世代化を推進するとされて いる。またガス火力においては、引き続きミドル電源として中心的な役割を果たし つつ、長期を展望した環境負荷の低減を見据えつつその役割を拡大していく重要な エネルギー源であるとされている。

(出展:次世代火力発電の早期実現に向けた協議会資料)

(出展:次世代火力発電の早期実現に向けた協議会資料)

(3) 我が国の状況

我が国の火力発電の熱効率は世界最高水準を保っている。世界で初めて超々臨界 圧火力発電(USC)を実用化し、さらには高効率な空気吹石炭ガス化複合発電(IGCC) が既に実用化段階であり、酸素吹 IGCC においても実証を完了している。また、効 率向上に大きく寄与するガスタービンにおいて、1600℃級という高温化を世界に先 駆けて実現する等、熾烈な国際競争の中においても、我が国の高効率火力発電シス テムは、トップレベルを維持しており、世界をリードしている。しかしながら、燃 料資源を他国に大きく依存する我が国にとっては、限られた資源の有効利用を図る ことは至上命題であり、今後とも、更なる高効率化を図っていく必要がある。

(4) 国内外の技術動向

燃料電池発電に関しては、米国や韓国、日本などで研究・販売が行われている。 GTFC、IGFCのような火力発電との複合発電に使用可能な燃料電池としては、作動温 度が高く、ガスタービンとの組み合わせが容易で、かつ石炭ガス化ガスも利用可能 であることなどから、溶融炭酸塩型燃料電池(MCFC)と固体酸化物型燃料電池(SOFC) が対象として想定される。

MCFC については、Fuel Cell Energy(米) および同社とライセンス契約を締結し ている POSCO Energy(韓)が市場投入しているものに代表される。MCFC は、カソ ード(空気極)材料の NiO が電解質に溶解し、電解質で内部短絡を起こす問題があ り、これは高圧化で加速される。そのため、常圧システムの商品化が行われている。 日本における MCFC 研究開発は、ムーンライト計画の一部として国家プロジェクト として始まったが、現在は既に解散している状況である。

SOFC については、2013 年に米国 Bloom Energy がモノジェネ型の SOFC を我が国 に市場投入し、2017 年に三菱日立パワーシステムズ㈱(MHPS)の加圧 250kW 級ハイ ブリッドシステムが上市されている。その他、数十 kW 規模の SOFC としては、国 内では NEDO 事業として日立造船㈱の平板型セルを用いた常圧 20kW 級システム及 び富士電機㈱の円筒型セルを用いた常圧 50kW 級システムの実証が行われている

 (図 1-5)。国外では、米国エネルギー省 National Energy Technology Laboratory (NETL)が Solid State Energy Conversion Alliance (SECA) 計画で FuelCell Energy 社の平板型セルを用いた常圧 50kW 級モジュール及び LG Fuel Cell Systems 社の 平板筒型セルを用いた加圧 15kW 級モジュールの開発が行われている他、欧州では、 スイス Hexis 社、英国 Ceres Power やイタリア SOLID-POWER 社などが数 kW と小 型モジュールの開発を行っている。

GTFC、IGFC に適用する場合、大容量化に伴いガスタービンが大型化し、入口圧力 が高くなることから、燃料電池も高圧化に対応する必要がある。MHPS 社製が開発し ている円筒型セルスタックを用いた燃料電池は、NEDO 事業「ガスタービン燃料電池 複合発電技術開発」にて 2.0MPa の高圧化に対応する燃料電池の技術開発を行って おり、これらの用途に適していると考えられる。

名称	5kW級業務用 SOFC (仮)FC-5	15式250kW導入機 (ハイブリッドシステム)	15式 1MW導入機 (ハイブリッドシステム)	FP-100i	ES-5700 Energy Server	(参考) ガスエンジン
メーカー	三浦工業	三菱重工	三菱重工	富士電機	Bloom Energy	A社
外観		9 M	-			
定格出力(kW)	5	250	1350	105	200	400
発電効率(%-LHV)	48	55	55	42	50-60	39.6
総合効率(%-LHV)	90	73(温水) 65(蒸気)	76(温水) 68(蒸 気)	62	-	73.8
ユニット 寸法/設置面積 (m/m ² (m2/kW))	0.7×1.1×1.8∕0.8 (0.15)	12.0×3.2×3.2/40 (0.15)	24.0 × 5.0 × 3.2/120 (0.09)	2.2×5.6×3.4∕12 (0.11)	9.1×2.6×2.1⁄24 (0.12)	8.2×3.5×3.6⁄29 (0.08)
運用方法	ペースロート コジェネ対応可	ペースロート。 コシェネ対応可	ペースロート。 コジェネ対応可	ペースロート [*] コシェネ対応可	ペースロート コジェネ対応不可	DSS運用 コジェネ対応可
備考	SOFC 実証中	SOFC 実証中	SOFC 計画中	PAFC	SOFC 拡張性が高い	-
市場投入予定時期	2020	2017	2018	商用化済	商用化済	-

出典:経産省「水素·燃料電池戦略協議会WG」資料

図 1-5 SOFC の開発状況(出展:経済産業省「水素・燃料電池戦略協議会 WG」)

次世代火力発電に関しては、米国、欧州、中国、韓国等において国家レベルで巨額の研究開発費を投じ、基礎研究から技術開発、実証研究等の様々な取組が行われており、日本と同様に IGCC や IGFC、先進的超々臨界圧火力発電(A-USC)、高効率ガスタービン等の開発が進められている。

IGFC を実用化するためには、基盤となる IGCC 技術が確立されていることが前提 となる。IGCCの実証事業は、1990年代に実施された Buggenum IGCC(オランダ)、 Puertollano IGCC(スペイン)、Wabash River IGCC、Tampa IGCC(いずれもアメリカ) が4大プロジェクトとして知られている。内、Buggenumは、欧州の再生エネルギー 拡大の影響を受け、2013 年 3 月末に廃止され、Puertollano についても、同様の理 由により、2015年8月に廃止されている。Wabash River については、天然ガス価 格の低下や運転費用の増加によりアンモニア製造設備への転換を予定している。な お、Tampa については、ガス化しやすいペトロコークスとの混焼により運転を継続 しているが、スラッギングの発生が主な要因で、連続運転時間が 3,000 時間以下と 短い。中国では、GreenGen プロジェクトとして IGCC、IGFC 技術の開発が行われて おり、250MW級の実証プラントにてIGCCの実証試験が行われるとともに、IGFCに 使用する燃料電池の開発が行われているとの情報がある。日本においては、250MW 規模の空気吹 IGCC 実証プラントにおいて 3,917 時間、166MW 規模の酸素吹 IGCC 実 証プラントにおいて 2,168 時間の連続運転が報告されている。空気吹 IGCC につい ては、540MWの商用機が建設中であり、2020年度には勿来で、2021年度には広野で それぞれ商用機が運転を開始する予定である。また、日本の大崎クールジェン(株) において、2019年3月より商用規模の燃料電池を用いた世界初のCO2分離・回収型 IGFC 実証事業が開始されており、2021 年度末から 2022 年度にかけて行われる実証 試験に向けた準備が進められている。世界における IGCC, IGFC プロジェクトの進捗 状況を図 1-6 に示す。

図 1-6 世界の IGFC, IGCC プロジェクトの進捗例

(Japan CCS フォーラム 2015 NEDO 資料(2015.6)に IAE が加筆, GCCSI データを元にアップデート)

2. NED0 の関与の必要性・制度への適合性

2-1. NED0 が関与することの意義

石炭火力、ガス火力は共通する要素技術が多く、火力発電全体の技術開発を加速す るためには、個別技術開発を統合し、包括的かつ一体的に推進することが有効である。 そこで、次世代火力発電技術に係る事業を NEDO 事業として統合し、「次世代火力発電 等技術開発」として一体的に進めている。

その中でも、石炭火力、ガス火力の発電効率を大幅に引き上げることのできるガス タービン燃料電池複合発電(GTFC)技術、及び石炭ガス化燃料電池複合発電(IGFC)技術 は、従来の火力発電に比べ高効率化による大幅な CO2 排出削減効果が見込まれ、また 火力発電メーカーの海外競争力強化にも貢献できる有益な技術である。一方で、石炭 ガスを含むガスタービンと燃料電池を組み合わせた大型発電システムの構築につい ては世界的に例が無く、技術課題が多く残されており、また投資規模も大きいため、 民間企業だけで進めるのはリスクが高い。一方で、火力発電からの温室効果ガス削減 のためには、これら技術のできるだけ早い実用化・市場投入が求められる状況である。 従って、NEDO がもつこれまでの知識、実績を活かし、研究を推進・加速すべき事業で あるといえる。

2-2. 実施の効果(費用対効果)

(1)経済効果

図1-7に、2018~2040年度における世界の発電設備の新設・リプレース見込みを示す。 2018年~2040年にかけて、世界全体では、石炭火力は730GW(31.7GW/年)、ガス火力 は1,506GW(65.5GW/年)が新設・リプレースされる見込みである。うちアジア・大洋 州では石炭火力584GW(25.4GW/年)、ガス火力482GW(21.0GW/年)の増加が見込まれ、 新設容量の大半を占める。アジア・大洋州は産炭国・産ガス国も多く、他産業との連 携等のニーズに応じた日本の高効率火力発電技術の導入促進で地球環境問題対策に大 きく貢献することが期待出来る。

ガス火力の発電原価を12万円/kW(コスト等検証委員会で提示された2030年のLNG火 力発電建設単価)とすると、2018~2040年におけるガス火力の市場規模は約8兆円/年 と試算される。また同様に、石炭火力の発電原価を25万円/kW(コスト等検証委員会で 提示された2030年の石炭火力発電建設単価)とすると、2018~2040年における石炭火 力の市場規模は約8兆円/年と試算され、ガス火力と同様に大きな市場が見込まれてい る。更に、国内における石炭火力は、2020年からの30年間でのリプレース需要約34GW と見込まれており、ここから想定される市場規模は約8兆円と試算される。

ガス火力、石炭火力共に新設・リプレースの市場は大きく、一方で温室効果ガス削減の観点からは高効率発電への置き換えが進展するため、GTFC, IGFCのシェアを拡大することで、日本発の技術の国際展開に貢献することができ、大きな経済効果が見込める。

図 1-7 世界の発電設備の新設・リプレース見込み (出展: IEA World Energy Outlook 2018)

(2) CO2削減効果

ガス火力において、現行の最高効率である1500℃級GTCCの発電効率52%をベースとした場合、1500℃級GTFCの導入により発電効率は63%まで向上するため、500MW級発電所に導入した場合、1基あたりのC02排出量を18万t/年減らすことができ、1500℃級GTCC比で約17%のC02排出削減効果が見込める。

また、石炭火力においては、現行の最高効率であるUSC(超超臨界圧微粉炭火力)の 発電効率40%をベースとした場合、IGFCの導入により発電効率は55%まで向上するため、 500MW級発電所に導入した場合、1基あたりのCO2排出量を33万t/年減らすことができ、 USC比で約28%のCO2排出削減効果が見込める。

	発電効率	kWh あたりの CO2 排出量	C02 排出量*	C02 削減量	CO2 削減割合
1500℃級 GTCC	52%	0.34kg/kWh	104 万 t/年	ベース	ベース
1700℃級 GTCC	57%	0.31kg/kWh	95万 t/年	9万t/年	約 9%
1500℃級 GTFC	63%	0.28kg/kWh	86万t/年	18万 t/年	約 17%

表1-1 ガス火力におけるGTFC適用時のCO2削減効果の試算(500MW級発電所)

表1-2 石炭火力におけるIGFC適用時のC02削減効果の試算(500MW級発電所)

	発電効率	kWh あたりの CO2 排出量	C02 排出量*	C02 削減量	C02 削減割合
現行 USC	40%	0.82kg/kWh	251 万 t/年	ベース	ベース
IGCC	46%	0.71kg/kWh	218 万 t/年	33 万 t/年	約 13%
IGFC	55%	0.59kg/kWh	181 万 t/年	70 万 t/年	約 28%

*500MW規模の発電所に適用された場合の排出量を試算 500MW×8,760時間×0.7(稼働率) =3,066,000MWh/年 1500℃級GTCC : 3,066,000kWh/年×0.34kg/kWh=104万t/年 現行USC : 3,066,000kWh/年×0.82kg/kWh=251万t/年

2. 研究開発マネジメントについて

1. 事業の目標

1-1. 事業の目標設定の背景

1-1-1. 石炭ガス化燃料電池複合発電(IGFC) 実証事業について

NED0は、石炭火力発電から排出される二酸化炭素(CO2)を大幅に削減するため、 究極の高効率発電技術である石炭ガス化燃料電池複合発電(IGFC)とCO2分離・回収 を組み合わせた革新的低炭素石炭火力発電の実現を目指す「石炭ガス化燃料電池複合 発電実証事業(助成事業)」に大崎クールジェン株式会社(※)と取り組んでいる。

当該事業は3つの段階に分かれており、第1段階では、IGFCのベースとなる酸素吹 石炭ガス化複合発電(IGCC)の実証を、第2段階では酸素吹 IGCCにCO2分離回収設 備を付加したCO2分離・回収型酸素吹IGCCの実証を、第3段階ではCO2分離・回収 型酸素吹IGCCに燃料電池を組み合わせたCO2分離・回収型IGFCの実証をそれぞれ実 施している。このうち、第3段階であるCO2分離・回収型IGFCについては、2019年 3月から事業を開始しており、現在は実証試験に向けた準備を行っている。実証試験 は2021年度末~2022年度を予定している(図2-1-1,図2-1-2,表2-1-1)。

当該実証事業は、2012年度~2015年度までは経済産業省の直轄下、2016年度以降 はNEDOが事業を承継して進められている。2025年度頃にIGFCの技術を確立するため に取り組んでおり、究極の高効率発電技術の実現に向けてその意義は大きい。一方で、 石炭ガス化複合発電と燃料電池を組み合わせた高効率発電技術実証は世界初の試み であり、解決すべき課題が残されている。今回の評価対象である各基盤技術開発で得 られた成果については、大崎クールジェンの第3段階実証事業の設計や計画に適時反 映していくこととしている。

※中国電力株式会社と電源開発株式会社の共同出資会社

図 2-1-1 大崎クールジェン(株)全景 (出展:大崎クールジェン(株)より提供)

図 2-1-2 大崎クールジェン事業の概要

表 2-1-1 大崎クールジェン事業のスケジュール

年度	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
第1段階 酸素吹IGCC実証		設計	・製作・掛	居付		実証	式験				
第2段階 CO₂分離・回収型IGCC実証					۲	設計・製作	₣∙据付	実	証試験		
第3段階 CO ₂ 分離・回収型IGFC実証							[設計	ŀ·製作·	据付	実証 試験

1-1-2. IGFC 用燃料電池について

IGFC に使用する燃料電池には、大容量かつ事業用ガスタービンとの連係運転が可能 な設備であることが要求されるため、これに適用可能性の高い燃料電池を選択する必 要がある。燃料電池としては、作動温度が高く、ガスタービンとの組み合わせが容易 で、かつ石炭ガス化ガスも利用可能であることなどから、溶融炭酸塩型燃料電池

(MCFC)と固体酸化物型燃料電池(SOFC)が対象として想定される。うち、MCFC については、カソード(空気極)材料のNi0が電解質に溶解し、電解質で内部短絡を起こす問題があり、これは高圧化で加速される課題がある。現時点で、高圧化対応の可能性が最も高いのは SOFC とされ、MHPS が円筒型 SOFC セルスタックを用いた加圧型燃料 電池モジュール(250kW級、圧力 0.23MPa)を上市している状況である。

図 2-1-3 円筒型固体酸化物形燃料電池 (SOFC)

1-1-3. IGFC 実証に向けた課題と取組

IGFC 実現に向けた技術課題と取組を表 2-1-2 に示す。燃料電池の課題としては、運転圧力の違い(高圧化)と燃料電池の大容量化の課題が挙げられる。GTFC、IGFC を実現するためには、大型のガスタービンと燃料電池を組み合わせる必要があり、事業用ガスタービンは入口圧力が 2.0~3.0MPa となるため、これに対応できる燃料電池を開発する必要がある。燃料電池の高圧化に伴い、温度分布の不均一化やリークなどの課題について対策が必要となる。また、GTFC、IGFC を実現するためには大型の燃料電池システムを構築する必要がある。商用規模の GTFC, IGFC における燃料電池モジュールの最小単位は 1MW 程度と想定されている。燃料電池モジュールを 1MW 級に大容量化することで、電気およびガスの偏流が予想され、これに対し燃料電池モジュールを最適化する必要がある。

また、現状の250kW級GTFCシステムは天然ガスを燃料として設計されており、IGFC 実現のためには、石炭ガス化ガスに適したシステムを設計する必要がある。石炭ガス 適用における課題としては、微量成分の影響と燃料ガス組成の違いが挙げられる。微 量成分については、石炭ガス化ガスには天然ガスに含まれない燃料電池を被毒する可 能性のある成分が微量含まれており、これら被毒成分について、燃料電池性能に与え る影響を把握するとともに、その除去方法を検討する必要がある。また、燃料を天然 ガスから C0 と H2 を主成分とする石炭ガスに変更する場合、天然ガスの場合は燃料極 の入口付近でメタン改質に伴う吸熱反応の影響を受けるのに対し、石炭ガスではその 効果が得られないことから、石炭ガスに最適な冷却システムを構築する必要がある。 これらの課題について、NED0 は基盤技術開発を実施して解決に取り組んでいる。

	技術的課題	基盤技術開発での取り組み
運転圧力の違い	マイクロGTとの組合せ : 約0.3MPa 1700℃級GTとの組合せ : 約2.5MPa 運転圧力の上昇に伴う温度分布の不均一 化対策	④3)ガスタービン燃料電池複合発電技術開発 カートリッジによる2.0MPa程度までの高圧試験を行 い、温度分布、発電特性を確認
大容量化	大容量化に伴う電気及びガスの編流対策	④3)ガスタービン燃料電池複合発電技術開発 ハーフモジュールを用いたガス分配性、温度分布等 のデータを取得し、制御方法の最適化
燃料ガス組成 の違い	石炭ガス化ガス(水素リッチガス)では、メタ ン改質反応(吸熱反応)による冷却効果が ないため、新たな冷却システムの構築	④4)燃料電池石炭ガス適用性研究 カートリッジ及び250kW級モジュールによる水素リッチ ガスに対応した再循環ガス冷却システム等の効果を 確認し、運転条件を適正化
微量成分の影響	石炭ガス化ガス中の微量成分の影響によ りセル性能の低下及び劣化率の増大が予 想される。微量成分の閾値及び除去方法 の明確化	 ④4)燃料電池石炭ガス適用性研究 250kW級モジュールによる小型ガス化炉の実ガス試験による検証 ④2)燃料電池向け石炭ガスクリーンナップ技術要素研究 単セルスタックを用いた微量成分の影響把握及び除去技術の適正化

表 2-1-2 燃料電池の適用に向けた技術的課題と取組

図 2-1-5 IGFC 技術確立に向けた基盤技術開発

表 2-1-3 IGFC 技術確立に向けた基盤技術開発と委託先

課題		委託事業名	委託先
燃料電池の大容 量化, 高圧化	④3)ガスタービン燃き	料電池複合発電技術開発	三菱日立パワーシステムズ(株) 日本特殊陶業(株)
燃料電池への石 炭ガスの適用	④2)燃料電池向け石 究	「炭ガスクリーンナップ技術要素研	電源開発(株)
(微量成分の影響、 燃料ガス組成の違	④4)燃料電池石炭 ガス適用性研究	(1)燃料電池モジュールの石炭ガ ス適用性研究	電源開発(株)
		(2)IGFCシステムの検討	電源開発(株) 中国電力(株)

1-2. 各基盤技術開発事業の目標

火力発電から排出される CO2 を大幅に削減させるべく、石炭火力、LNG 火力ともに、 究極的な高効率技術であるガスタービンと蒸気タービンを組み合わせたコンバイン ドサイクルに燃料電池を組み合わせたトリプルコンバインドサイクル(第3世代)の 技術を確立することで、革新的低炭素石炭火力発電の実現を目指す。各基盤技術開発 事業の目標を以下の通り設定する。

1-2-1. ガスタービン燃料電池複合発電技術開発[④3)]

【中間目標(2019年度)】

中小型 GTFC(10 万 kW)の要素技術を開発する。

- ・ 高圧 SOFC モジュールを開発する。
- ガスタービンとの連係技術を確立する(燃焼器、燃料/空気差圧制御系、排燃料・排空気・空気抽気)。

【最終目標(2021年度)】

中小型 GTFC(10 万 kW)の要素技術を確立する。

燃料電池の高性能化による中小型 GTFC システムの最適化を行う。

【目標設定の根拠】

GTFC, IGFC 普及のためには、大容量かつ高圧対応が可能な燃料電池の開発、量産 化技術の開発が不可欠である。本目標の達成により、小型 GTFC の商用化が可能と なり、得られた成果は中小型 GTFC の実証に活用することができる。また、本事業 で得られた成果は IGFC 実証事業に活用することができる。

1-2-2. 燃料電池向け石炭ガスクリーンナップ要素技術研究[④2)]

【最終目標(2017年度)】

模擬ガス試験により燃料電池の被毒耐性を評価する。

模擬ガス試験により燃料電池用ガス精製技術性能を評価し、ガス精製技術を確立 する。

【目標設定の根拠】

石炭ガスには天然ガスには含まれない微量の燃料電池被毒成分が含まれており、 IGFC 普及のためには被毒成分の特定、定量化、および被毒成分の除去方法の確立が 必須である。本目標の達成により、IGFC 普及に向けた石炭ガスクリーンナップの基 礎技術が確立され、IGFC 実証試験の詳細設計及び試験内容検討に反映することがで きる。

1-2-3. 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)]

【中間目標(2019年度)】

H2 リッチガスを燃料とした場合の燃料電池モジュールの基本性能を確認するとと もに、発電性能を最適化するための運用性を確立する。また、石炭ガスを燃料とした 場合の燃料電池モジュールの基本性能を確認する。

【最終目標(2021年度)】

石炭ガスを燃料とした場合の燃料電池モジュールの運用性と性能を把握し、課題を抽出する。

【目標設定の根拠】

本目標の達成により、IGFC 実証試験の詳細設計や試験内容を具体化できるとともに、 商用 IGFC の設計に向けたデータを得ることができる。

1-2-4. 燃料電池石炭ガス適用性研究/IGFC システムの検討[④4)-(1)]

【最終目標(2018年度)】

IGFC 実証機の容量を決定し、実証機の試設計を完了する。

【目標設定の根拠】

本事業で得られる IGFC 実証機の試設計の成果は、2018 年度から開始する CO2 分離・ 回収型 IGFC 実証事業に活用することができる。

2. 事業の計画内容

2-1.研究開発の内容

2-1-1. ガスタービン燃料電池複合発電技術開発 [④3)]

ガスタービン燃料電池複合発電(GTFC)技術は、天然ガスを改質して燃料電池で発電 した後に、改質残ガスをガスタービンに供給して発電し、さらに排熱を利用して蒸気 タービンで発電するトリプル複合発電技術であり、ガス火力発電技術の中で最も高効 率化が図れる。

本技術開発において、燃料電池の高圧化、大容量化に資する技術を開発し、小型 GTFC (1,000kW級)の商用化、量産化を進めてコストを低減し、中小型 GTFC (10 万 kW級) の実証を経て、2025 年頃に技術を確立する。また、本事業を通じて得られた成果については、C02 分離・回収型 IGFC 実証事業へ活用する。

図 2-2-1 ガスタービン燃料電池複合発電技術開発 事業概要

本事業では、小型 GTFC ハーフモジュール実証、セルスタック低コスト品質安定化 技術開発、高性能セルスタックを適用したモジュール性能検証等の研究開発などの実施により小型 GTFC システムを確立し、57%LHV(低位発熱量基準)の発電効率(送電端)の見通しを得ることで、中小型 GTFC の要素技術を確立することを目的とする。 また、中小型 GTFC や IGFC の運転圧力である 2.0MPa 程度の高圧条件下にてカートリッジ試験を実施し、高圧化での圧力特性と放熱抑制の効果を把握し、システムの適正 化を検討する。

表 2-2-1 ガスタービン燃料電池複合発電技術開発 研究開発目標と根拠

砏	F究開発項目	研究開発目標	根拠
① 小型	(a)小型GTFC ハーフモジュー ル実証	 高圧、大容量化対応SOFCモジュール、各機器開発 MW級モジュールで送電端効率57%LHVの見通しを得る 小型GTFC(1,000kW級)に使用するガスタービンの開発 運転圧力0.6MPa級のMGTとSOFCの連係技術確立 	小型GTFC(出力1,000kW級)商用化のために 必要な技術を開発し、中小型GTFCの実証に つなげるため
の シス テム	(b)セルスタック 低コスト品質 安定化技術開発	 セルスタックの品質ばらつきが性能に及ぼす許容範囲の明確化による歩留り向上 	 燃料電池ロードマップのコスト目標(2025年度 に30万円/kW)達成のため、燃料電池製造コ ストを現状の1/2以下にする必要があり 創
化	(c)高性能セルス タック 性能検証	 低コスト品質安定化技術を反映した高性能セルスタック での温度分布改善の効果検証 	造工程の効率化やセルの高性能化によるコ ストダウンが必要となるため
②高圧 モジョ	SOFC ∟ールの開発	 高圧SOFCモジュール(~2.0MPa級)開発に向けた設計 データの取得および 運転条件の検討 	中小型GTFC(10万kW級、圧力1~2MPa程 度)の実証につなげるため

表 2-2-2 研究開発項目とスケジュール、年度予算

	年度	2016 fy	2017fy	2018fy	2019 fy	2020fy	2021fy	2022fy
研究陽	評価時期				◇ 中間評価			◆ 事後評価
0	(a)小型GTFCハーフ		フモジュール	用システム	開発			
小型	モジュール実証	MM級向	ナマイクロガ	スタービン開	発			
GTF Cの	GTF (b)セルスタック		立て程連続化	技術開発	\supset			
システム	低山人下品具 安定化技術開発	成膜	技術開発	,			_	
化	(c)高性能セルスタッ ク性能検証					高性能も	い記験	
②高日 開	ESOFCモジュールの 発			高圧試験	\square			

年度	2016 fy	2017fy	2018fy	2019fy	2020fy	2021 fy	合計
研究開発費(百万円)	556	1,297	574	97	69	22	2,613

2-1-2. 燃料電池向け石炭ガスクリーンナップ要素技術研究 [④2)]

石炭をガス化して得られた石炭ガス中には、燃料電池の被毒成分が含まれており、 石炭ガスを燃料電池に適用するためには、微粒子や硫黄化合物の他、多種類の被毒成 分を精密除去する必要がある。燃料電池の長期安定稼働の実現に向け、燃料電池実セ ルへの通ガス試験により石炭ガス化ガス中の被毒成分を高度に除去する技術を確立 する。

文献等から、燃料電池の被毒成分は、S, C1, Si, B, As, P, Se, Cd, Sbの9種類 とされている。これらの被毒成分のうち、運転環境において気体として存在するもの について、石炭ガス化ガスの模擬ガス試験により燃料電池の発電性能へ与える影響を 確認することで、被毒耐性を確認し、被毒成分を特定する。また、特定された被毒成 分に対して、成分を許容レベルまで高効率に除去する吸着剤を検討することでガス精 製技術を検討するとともに、被毒成分除去設備の試設計を行う。

図 2-2-2 燃料電池向け石炭ガスクリーンナップ技術要素研究 事業概要

表 2-2-3 燃料電池向け石炭ガスクリーンナップ技術要素研究 研究開発目標と根拠

研究開発項目	研究開発目標	根拠
①セル被毒性評価	SOFCセルの被毒耐性を調べ、石炭ガス 中の燃料電池被毒成分を特定する。	石炭ガス中の被毒成分の特定及び適用可能
②燃料電池用ガス精 製技術性能評価 既存の吸着剤について、SOFC被毒成 分に対する除去性能を評価し、適用可 能性の高い吸着剤を選定する。		最適な被毒成分除去システムを設計すること ができる。
③燃料電池用ガス精 製装置の試設計	上記結果を基に吸着塔を試設計し、燃 料電池用ガス精製装置について検討す る。	OCG第3段階向けの燃料電池用ガス精製装置 を設計するために必要な情報の根拠とする。

表 2-2-4 研究開発項目とスケジュール、年度予算

年度	2015fy	2016 fy	2017fy	2018fy	2019fy
評価時期研究開発項目					◆ 事後評価
①セル被毒耐性評価	火然半斗雷	電池セル被毒影響	語平価試験		
②燃料電池用ガス精製 技術性能評価		吸着剤評価試	ije 💦		
③燃料電池用ガス精製 装置の試設計			試設計		

年度	2015fy	2016fy	2017fy	2018fy	合計
研究開発費(百万円)	399	150	150	-	699

2-1-3. 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研 究[④4)-(2)]

天然ガスをベースに開発されている 250kW 級 SOFC モジュールを用いて、CO2 分離・ 回収型 IGFC を想定した石炭ガス化ガス(水素リッチガス)の適用性について検証試 験を行うとともに、石炭ガス化設備と燃料電池の連係運転に係る検討を行う。

具体的には、天然ガスを水素リッチガスに改質した燃料を用いた場合の燃料電池モジュールの運用性、性能等を把握するとともに、天然ガス燃料の場合との比較から課題を抽出し、水素リッチガスに対し最適なシステムを検討する。また、石炭ガス化の 実ガスを燃料として、燃料電池の被毒成分をガス精製によりクリーンナップしたうえ で燃料電池モジュールに供給し、その運用性、性能等を把握するとともに、石炭ガス 適用時の課題を抽出し、石炭ガスに対し最適なシステムを検討する。試験終了時には、 装置の解体調査を行うことで、石炭ガス適用時の課題を抽出する。

図 2-2-3 燃料電池モジュールの石炭ガス適用性研究 事業概要

表 2-2-5	燃料電池モジュールの石炭ガス適用性研究	研究開発目標と根拠

研究開発項目	研究開発目標	根拠		
①水素リッチガス適用お よび石炭ガス化設備連携 に係る運転・制御の検討	燃料電池モジュールに水素リッチガスを適用し、発電特性や運 転制御、運用等に関する課題を抽出する。	燃料電池モジュールは水素リッチガス用に 設計したものでないため		
②燃料電池モジュール試 験設備設計・製作・据付	燃料電池モジュール設備、ユーティリティ供給設備等の設計、 製作、据付を行う。	_		
③燃料電池カードルジ試 験	カートリッジ (25kW級)を用いて水素リッチガス適用時の発電特性や温度挙動等の基礎データを取得する。	モジュール試験に反映するため。		
④燃料電池モジュール基 本特性確認試験	設計のベースとなる天然ガス運転時の発電特性、起動・停止 時のプラント挙動等を確認する。			
⑤水素リッチガス切替試 験	天然ガスから水素リッチガスへ切替え、発電特性やモジュール 内温度分布の変化等を確認する。	水素リッチガス試験時に燃料電池モジュールの発電特性を把握する必要があるため ルの発電特性を把握する必要があるため		
⑥水素リッチガス最大負 荷試験	再循環冷却器の効果を確認し、水素リッチガス運転可能な最 大負荷、発電特性や温度挙動を把握する。	ホネリリカスを燃料電池モンユールに過 用した場合の運用性、適用性を確認し、出 力を最大化する運転条件を見出す。		
⑦水素リッチガス起動・停 止試験	起動・停止から温度挙動、昇温・降温レート、運転制約の有無 等を確認し起動・停止方法を確立する。			
⑧実証機模擬ガス試験	IGFC実証機のガスにはH2,N2の他CO2が含まれるためCO2の 影響を確認し、実証機運用データに反映する。	より実ガスに近いCO2混合ガスでデータを 採取し実証試験に活用する。		
⑨石炭ガス化炉連係試 験	ガス化設備と燃料電池モジュールを連係し、発電特性及び連 係運転時の起動停止・緊急停止等の運用性(協調性)を確認。	実証機に必要なガス化炉との連係制御及 び発電特性を確認しOCG運用に活かす		
⑩石炭ガス(COリッチガ ス)適用に係る技術検討	机上検討からCOリッチガスの課題を抽出し、モジュールで発 電試験から課題解決に向けた技術検討を行う。	COリッチガスの運転は前例がなく、事前に 課題を抽出し検討する必要性のため		
⑪燃料電池モジュールの 解体調査	モジュールの解体調査を行い、石炭ガス適用時の課題を抽出 する。	COリッチガス運転後のモジュールに与える 影響を確認するため		

		· · ·					
年度	2016fy	2017fy	2018fy	2019fy	2020fy	2021 fy	2022fy
評価時期研究開発項目				◇ 中間評価			◆ 事後評価
①水素リッチガス適用および石炭ガス化設 備連係に係る運転・制御の検討							
②燃料電池モジュール試験設備の製作							
③燃料電池カートリッジ試験							
@燃料電池モジュール基本特性確認試験		D					
⑤水索リッチガス切替試験		D					
®水素リッチガス最大負荷試験		D	D				
⑦水素リッチガス起動・停止試験		D					·
⑧実証機模擬ガス試験							
③石炭ガス化炉連係試験	石)	長ガス化炉連	係副期後調査計構	黄討)OCG核	擬ガス・石炭	ガス試験	
⑩石炭ガス(COリッチガス)適用に係る技 術検討			石炭ガス	技術検討	石炭ガ	ス試験	
の燃料電池モジュールの解体調査							
年度	2016fy	2017fy	2018fy	2019fy	2020fy	2021 fy	合計
研究開発費(百万円)	131	1,203	196	760	160	115	2,565

表 2-2-6 研究開発項目とスケジュール、年度予算

2-1-4. 燃料電池石炭ガス適用性研究/IGFC システムの検討[④4)-(1)]

IGFC 実証にあたり、IGFC を構成する要素技術の状況を把握するとともに、課題を 整理し、実証可能な IGFC 機及びそれを用いた実証試験の内容について検討する。

具体的には、国内外における高温型燃料電池及び IGFC の技術開発動向をレビュー することにより、最新情報を入手し、IGFC の実用化に向けた課題の整理を行うことで、 IGFC 実証に適した燃料電池につき精査する。また、CO2 分離・回収型 IGFC の商用機 システムについて、CO2 分離・回収方法や燃料電池設置位置等を検討し、望ましいプ ロセスフローを選定する。更に、IGFC の実用化に向けた課題、商用化システムの検討 結果及び「燃料電池モジュールの石炭ガス適用性研究」の成果を踏まえて、IGFC 実証 システムについて検討を行い、実証機の容量を決定のうえ、試設計を行うことで、IGFC 実証事業のベースデータとする。

図 2-2-4 IGFC システムの検討 事業概要

表 2-2-7 IGFC システムの検討 研究開発目標と根拠

研究開発項目	研究開発目標	根拠			
①高温燃料電池及びIGF Cの技術動向調査	最新情報を入手し、IGFCの実用化に 向けた課題の整理を行う。	IGFC実証機に適した燃料電池の選定のための情報を把握するとともに、IGFC実証試験における検証項目を把握する必要があるため。			
②商用機のシステム検討	CO2分離・回収型IGFCについて、CO2 分離・回収方法や燃料電池設置位置 等を検討し、望ましいプロセスフロー を選定する。	CO2分離・回型IGFCに最適なプロセスを明 らかにするため。			
③実証に向けたシステム 評価	実証機向け燃料電池の種類、発電容 量、燃料電池への石炭ガス分岐位置、 石炭ガス中の被毒成分の処理方法等 を決定する。	、実証機の試設計を行うに当たり、システム 仕様を決める必要があるため。			
④実証機試設計	IGFC実証システムについて検討を行 い、実証機の容量を決定のうえ、試設 計を行う。	実証機のシステム系統、レイアウト、ユー ティリティ等プラントのイメージを明らかに するため。			
⑤実証試験内容の検討	IGFC実証機における試験内容を検討 する。	IGFCの課題及び開発状況を踏まえて、検 証内容を明らかにするため。			

表 2-2-8 研究開発項目とスケジュール、年度予算

年度	2016fy	2017fy	2018fy	2019fy
評価時期 研究開発項目				◆ 事後評価
①高温燃料電池及びIGFCの 技術動向調査				
②商用機のシステム検討				
③実証に向けたシステム評価				
④実証機試設計				
⑤実証試験内容の検討				
年度	2016fy	2017 fy	2018fy	合計
研究開発費(百万円)	9.2	23.8	61.1	94.1

2-2.研究開発の費用

各事業の年度ごとの費用を表 2-2-9 に示す。2015 年度~2018 年度は実績、2019 年 度以降は計画値を示す。

	2015 在 <i>库</i>	2016 在 <i>库</i>	2017 在 <i>庫</i>	2018 在唐	2019 在唐	2020 在唐	2021 在庫	事業
ガスタービン燃料電	十戊	十戊	十戊	十戊	十戊	十戊	十戊	
池複合発電技術開発	—	556	1, 297	574	97	69	22	2, 613
[(<u>4</u>)3)]								
燃料電池向け石炭ガ								
スクリーンナップ技	399	150	150	—	—	—	—	699
術要素研究 [④2)]								
燃料電池モジュール								
の石炭ガス適用性研	—	131	1,203	196	760	160	115	2, 565
究 [④4)-(2)]								
IGFC システムの検討		0	0.4	C1				0.4
[4]4)-(1)]		9	24	61				94
年度合計	399	844	2,674	831	857	229	137	5,971

表 2-2-9 各事業の研究開発予算

2-3.研究開発の実施体制

プロジェクトの進行全体の企画・管理やプロジェクトに求められる技術的成果及び 政策的効果を最大化させるため、必要に応じてプロジェクトマネージャー(PM)を任 命する。また、各実施者の研究開発ポテンシャルを最大限に活用し、効率的かつ効果 的に研究開発を推進する観点から、必要に応じてプロジェクトリーダー(PL)を指名 する。各研究開発の実施体制を以下に示す。

図 2-2-5 ガスタービン燃料電池複合発電技術開発 [④3)]の実施体制

図 2-2-6 燃料電池向け石炭ガスクリーンナップ技術要素研究[④2)]の実施体制

- 設備連係に係る運転・制御の検討
- 図 2-2-7 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究 [④4)-(2)]の実施体制

図 2-2-8 燃料電池石炭ガス適用性研究/IGFC システムの検討 [④4)-(1)]の実施体制

2-4. 研究開発の運営管理

NED0は、研究開発全体の管理及び執行に責任を負い、研究開発の進捗のほか、外部 環境の変化等を適切に把握し、必要な措置を講じるものとする。運営管理は、効率的 かつ効果的な方法を取り入れることとし、次に揚げる事項を実施する。

① 進捗把握·管理

PMは、PLや研究開発実施者と密接に連携し、研究開発の進捗状況を把握するとともに、事業がスムーズに進捗するよう適切にマネジメントを行う。

② 技術分野における動向の把握・分析

PMは、プロジェクトで取り込む技術分野について、内外の技術開発動向、政策動向、 市場動向等について調査し、技術の普及方策の分析及び検討を行う。

③ 外部有識者による指導

PMは、外部有識者で構成する技術検討委員会を定期的に開催し、事業の進捗や計画、 目標達成の見通しなどにつき指導・助言を受けることで、より効果的な事業推進に努 める。

参考:これまでに実施した技術検討委員会 2018年1月30日 2018年10月15日 2019年6月10日
2-5.研究開発成果の実用化に向けたマネジメントの妥当性

(1)研究開発の実用化に向けた取組

本事業は、革新的な高効率発電技術である GTFC、IGFC の基盤技術を開発するもの であり、本事業における実用化とは、成果を基に GTFC、IGFC の各技術開発が実証フ ェーズに移行することである。従い、実用化の定義は、「事業成果が IGFC 実証事業 に活用されること、もしくは、中小型 GTFC を構成する主要な要素が開発され、発電 システム構築の目処がつくこと」とする。

GTFC においては、従来(出力 250kW 級、運転圧力 0.2MPa 級)に比べ、中小型 GTFC (出力 10 万 kW 級、運転圧力 1.0~2.0MPa 級)により近い容量・圧力条件の小型 GTFC (出力 1,000kW 級、運転圧力 0.6MPa 級)のガスタービン連係技術を確立し、早期市 場投入を目指す。また、小型 GTFC(1,000kW 級)の市場投入、及び、中小型 GTFC(10 万 kW 級)の実証を行うためには、セルスタックの量産化、低コスト化が必須であり、 製造工程において量産に必要な技術開発を行う。

IGFC においては、IGFC を構成する燃料電池モジュールについて、石炭ガスを燃料 とした場合の運用性や性能を把握する必要があることから、実燃料電池モジュール を用いた石炭ガス燃料の適用性試験を行い、その結果を踏まえて、IGFC の技術確立 に必要な実証機に係るシステム検討を行う必要性がある。その成果を、2019年3月 より開始した CO2 分離・回収型 IGFC 実証事業の設計や運用計画に反映する。

(2) 実用化に向けた知財戦略

実用化・事業化につなげる知財戦略・標準化戦略については、ノウハウとして保 有する方が有利な技術は出願せず、知財として確保する方が有利な技術については 積極的に特許として出願する方針とする。

知的財産管理については、実施者は社内の知的財産部門と協議して、知的財産戦略 上有望な開発成果については権利化について検討することとしている。また、共同実 施者間及び実施者と再委託先との間では、知財の取扱に係る契約を締結し、成果の権 利化について協議することとしている。

3. 情勢変化への対応

2014年4月に閣議決定された「第4次エネルギー基本計画」において、化石燃料については、次世代高効率石炭火力発電技術の開発・実用化を推進すること、また高効率LNG火力発電の技術開発を促進すること、とされた。これを受けて2015年7月に決定された「長期エネルギー需給見通し」において、石炭火力、LNG火力の高効率化を進めつつ環境負荷の低減と両立しながら活用することで、2030年の石炭火力の比率を26%程度、LNG火力の比率を27%程度とする方向性が示された。また、2015年12月にパリ協定が採択され、日本の目標としては、2030年度に2013年度比26%の温室効果ガスを削減することが提出されている中、達成に向けては石炭火力、LNG火力の高効率化が前提となっている。更に、2018年7月に閣議決定された「第5次エネルギー基本計画」において、IGCC・IGFC等の次世代高効率石炭火力発電技術の開発・実用化を推進すること、また高効率LNG火力発電の技術開発を促進すること、とする方針が維持されている。

このような外部状況に加え、GTFC、IGFCともに実用化に向けた取り組みが進展して いる。GTFCについては、段階的に大型化への流れが進展している。三菱日立パワーシ ステムズ(株)から上梓されている250kW級加圧型SOFCモジュールについて、三菱地 所(株)、安藤ハザマ(株)より受注を受けている状況である。また、1MW級モジュール についても市場ニーズが見込まれており、本事業の成果を基に早期市場投入が待たれ る。更に、2019年7月5日付プレスリリースによると、日本特殊陶業(株)と三菱日 立パワーシステムズ(株)の間で、燃料電池セルスタックの製造・販売を行う合弁会 社の設立・共同運営に関する契約を締結しており、セルスタック量産化に向けた取り 組みが加速している。

IGFC については、技術導入の前提となる IGCC について実用化に向けた取り組みが 進んでいる。空気吹 IGCC についてはすでに実証フェーズを終え、現在は 540MW 級商 用機の建設が、勿来、広野で進んでおり、勿来は 2020 年の、広野は 2021 年の運転開 始を計画している。また、酸素吹 IGCC について、実証試験は 2018 年度に完了し、大 崎クールジェン(株)の親会社である電源開発(株)・中国電力(株)にて商用化の検討が 進められている。2019 年 4 月 24 日付プレスリリースによると、電源開発が山口宇部 パワー西沖の山発電所の新設計画にて、酸素吹石炭ガス化複合発電(IGCC) による商 用機開発への計画変更を検討する旨を表明している。

以上のように、GTFC, IGFC の実用化に向けた環境が整いつつあり、本事業の重要性 は一層高まっている。

3. 研究開発成果について

1. 事業全体の成果

1-1. ガスタービン燃料電池複合発電技術開発

表 3-1-1 ガスタービン燃料電池複合発電技術開発の中間目標(2019 年度)および達 成状況

研究	R開発項目	目標	成果	達成度	今後の課題と 解決方針
①小型GT	(a)小型 GTFC ハーフモ ジュール 実証	 高圧、大容量化対応のSOFC モジュール、機器開発 MW級モジュールで送電端効 率57%LHVの見通しを得る 小型GTFC(1,000kW級)に使 用するガスタービンの開発 マイクロガスタービン(MGT)と SOFCの連係技術確立 	 小型GTFC用に大容量化したSOFCモジュー ルと各システム機器を開発 燃焼器温度を管理値内に抑制できる改良型 のMGTを開発 SOFCとMGTを連係し、起動〜昇温〜SOFC 低負荷の運転を実施 		2019年度内に SOFCシステム性 能を検証
FCのシステム化	 (b)セル スタック 低コスト 品質安定 化技術 	セルスタックの品質ばらつきが 性能に及ぼす許容範囲の明確 化による歩留り向上	 連続炉模擬検証炉にて、窒素ガス量の増加 や降温時のエア供給量増加などにより、連 続化による焼成時間の短縮に目処がつき、 品質を保ちつつ製造時間1/3を達成 成膜条件と成膜状態の関係を把握し品質を 安定化 	△ (2019年9月 達成見込)	焼成光熱費削減に 向けたパラメータ 試験を実施
	(c)高性 能セルス タック検 証	低コスト品質安定化技術を反映 した高性能セルスタックでの温 度分布改善の効果検証	 高性能セルスタックを用いたハーフモジュー ル試験計画の検討 	△ (事後)	2020年度から試験 開始
27 モジ	高圧SOFC ジュール開 発	高圧SOFCモジュール(2MPa級) 開発に向けた設計データの取 得および運転条件の検討	 カードリッジにて高圧下(~2.1MPa)の試験 を実施。また、放熟対策を実施。 単セルスタックで~1.5MPaの圧力特性を取 得。また耐久試験を実施し電圧低下特性を 把握(低圧と同等) 	△ (2019年9月 達成見込)	0.6MPa以上の運 転圧力で放熱増加 の傾向があり、放 熱低減策を検討

◎大きく上回って達成、〇達成、△達成見込み(中間)、×未達

表 3-1-2 ガスタービン燃料電池複合発電技術開発の最終目標(2021 年度)および達 成見通し

研究開発項目	現状	最終目標 (2021年度末)	達成見通し
①小型GTFCのシステ ム化 (a)小型GTFCハーフモ ジュール実証	MGTを改良型に換装し、 SOFCと連係したシステム試 験を実施し、性能を確認中	小型SOFCシステムを完成し、 フルモジュール時1,000kW級、 発電効率57%LHV(送電端) の見通しを得る。	2019年度中に目標達 成の見込み
 ①小型GTFCのシステム化 (c)高性能セルスタックの性能検証 	高性能セルスタックを用いた ハーフモジュール試験計画 の検討	低コスト品質安定化技術を反 映した高性能セルスタックでの モジュール内温度分布改善の 効果を検証し、GTFCの大容 量低コスト化の見通しを得る	2021年度中に達成見 込み

1-2. 燃料電池向け石炭ガスクリーンナップ技術要素研究

表 3-1-3 燃料電池向け石炭ガスクリーンナップ技術要素研究の最終目標(2017年度) および達成状況

研究開発項目	目標	成果	達成度
①セル被毒耐性評価	SOFCセルの被毒耐性を調べ、 石炭ガス中の燃料電池被毒成 分を特定する。	電池の性能に影響を及ぼす被毒成分 はH2SeとH2Sであることを特定。	0
②燃料電池用ガス精 製技術性能評価	既存の吸着剤について、SOFC 被毒成分に対する除去性能を評 価し、適用可能性の高い吸着剤 を選定する。	特定した被毒成分を定量下限値以下 まで除去可能となる最適な吸着剤を選 定	0
③燃料電池用ガス精 製装置の試設計	上記結果を基に吸着塔を試設計 し、燃料電池用ガス精製装置に ついて検討する。	実証機の脱硫塔および水素化物吸着 塔の試設計を実施	0

※◎大きく上回って達成、〇達成、△達成見込み(中間)、×未達

1-3. 燃料電池モジュールの石炭ガス適用性研究

表 3-1-4 燃料電池モジュールの石炭ガス適用性研究の中間目標(2019 年度)および 達成状況

研究開発 項目	目標	成果	達成度	今後の課題と 解決方針
燃料電池 モジュール 試験に向 けた検討	 ①水素リッチガス適用および石炭ガス 化設備連係に係る運転・制御の検討 ②燃料電池モジュール試験設備を設計・製作・据付 ③燃料電池カートリッジ試験による基礎 データ取得 	 運転・制御の検討を実施 試験用の250kW級燃料電池モジュールを製作 カートリッジ試験にて水素リッチガスの発電基本特性を把握 	0	_
燃料電池 モジュール 基本特性 確認試験	 ④燃料電池モジュール基本特性確認 ⑤水素リッチガス切替時の特性を把握 ⑦起動・停止方法の確立 	 	0	_
水素リッチ ガス最大 負荷試験	⑥水素リッチガス最大負荷試験による 燃料電池モジュールの発電性能を最適 化するための運用性確立 ⑧実証機模擬ガス試験によるガス組成 の影響把握	 再循環流量や燃料利用率等運転パラメータの変更により発電出力改善を確認 水素リッチガスにCO2を添加した場合に発電室上部の温度が低下し、発電出力が増加することを確認 	0	_
石炭ガス 化炉連係 試験	 ③ガス化炉と燃料電池を連結し発電特性及び運用性確認 ⑩COリッチガスの発電特性を把握 ⑪解体調査によりCOの影響把握 	 ガス化炉と燃料電池モジュー ルの連係工事を実施 	△ 2021年度 達成見込	 2019年度に実 ガス試験開始 2020年度に解 体調査を実施

※◎大きく上回って達成、○達成、△達成見込み(中間)、×未達

表 3-1-5 燃料電池モジュールの石炭ガス適用性研究の最終目標(2021年度)および

研究開発項目	現状	最終目標	達成見通し		
⑨石炭ガス化炉連係試 験	ガス化設備との連係に向け て連係系統及び燃料電池 用ガス精製設備の設計・製 作・据付を行い、試験を計画 中	石炭ガスを燃料とした場合の 燃料電池モジュールの発電試 験を実施し、運用性と性能を 把握。課題を抽出し、IGFC実 証機の設計・運用・試験計画 へ反映する。	2019-2020年度にかけ て達成見込み		
⑩石炭ガス(COリッチ ガス)適用に係る技術 検討	COリッチガス試験に向けて、 熱力学平衡計算等から炭素 析出領域を検討するととも に、COリッチガス運転での 試験詳細と課題を検討中	COリッチガスを燃料とした場合の燃料電池モジュールの発電試験の結果から性能を把握し、実証機に向けた課題を抽出する。	2019-2020年度にかけ て達成見込み		
⑪燃料電池モジュール の解体調査	解体調査箇所、内容、費用 等について検討中	運転終了後に解体調査を実 施し、石炭ガス適用時の課題 を抽出する。	2021年度に達成見込 み		

達成見通し

1-4. IGFC システムの検討

表 3-1-6 IGFC システムの検討の最終目標(2019 年度)および達成状況

技術課題	目標	成果	達成度
①高温燃料電 池及びIGFCの 技術動向調査	最新情報を入手し、IGFCの実用化に 向けた課題の整理を行う。	事業用燃料電池の開発状況とIGFC実用化に 向けた課題を明らかにした。	0
②商用機のシス テム検討	CO2分離・回収型IGFCについて、 CO2分離・回収方法や燃料電池設置 位置等を検討し、望ましいプロセスフ ローを選定する。	商用CO2分離・回収型IGCFCについてシミュ レーションを実施し、最適なプロセスフローを選 定した。	0
③実証に向けた システム評価	実証機向け燃料電池の種類、発電容 量、燃料電池への石炭ガス分岐位置、 石炭ガス中の被毒成分の処理方法等 を決定する。	実証機に適した燃料電池の仕様、プロセスフ ローを検討した。また、被毒成分に対する吸着 材を選定し、処理方法を決定した。	0
④実証機試設 計	IGFC実証システムについて検討を行 い、実証機の容量を決定のうえ、試設 計を行う。	実証機の設計条件を明らかにし、システム系統、 設備構成、物質収支、設備レイアウト、ユーティ リティ等を明らかにした。	0
⑤実証試験内 容の検討	IGFC実証機における試験内容を検討 する。	実証すべき試験項目と試験工程を明らかにした。	0

◎大きく上回って達成、〇達成、△達成見込み(中間)、×未達

2. 研究開発項目毎の成果

2-1. ガスタービン燃料電池複合発電技術開発

本研究では、従来(出力 250kW級、運転圧力 0.2MPa級)に比べ、中小型 GTFC(出力 10万 kW級、運転圧力 1.0~2.0MPa級)により近い容量・圧力条件の小型 GTFC(出力 1,000kW級、運転圧力 0.6MPa級)のガスタービン連係技術を確立し、2020 年度から の市場投入を目指す。また、小型 GTFC(1,000kW級)の市場投入、及び、中小型 GTFC (10万 kW級)の実証を行うためには、セルスタックの量産化、低コスト化が必須で あり、製造工程において量産に必要な技術開発を行う。更に、中小型 GTFC の基本技 術を確立すべく、高圧モジュール開発を行うことを目的とする。加えて、本プロジェ クトで開発した低コスト品質安定化技術を反映した高性能セルスタックによるモジ ュール特性を検証する。

中小型 GTFC(10 万 kW 級)技術確立に向け、本事業では中小型 GTFC の要素技術を 確立するため、以下の事業を実施する。

【実施項目】

①小型 GTFC(出力 1,000kW 級、運転圧力 0.6MPa 級)のシステム化

(a)小型 GTFC ハーフモジュール実証

(b)セルスタック低コスト品質安定化技術開発

(c)高性能セルスタックの性能検証

②高圧 SOFC モジュールの開発(運転圧力~2.0MPa 級)

(a) 高圧カートリッジ試験

(b)高圧単セルスタック試験

① 小型 GTFC(出力 1,000kW 級、運転圧力 0.6MPa 級)のシステム化

(a) 小型 GTFC ハーフモジュール実証

小型 GTFC(1,000kW級、運転圧力 0.6MPa級)の実用化に向け、従来の技術(250kW級、運転圧力 0.2MPa級)と比べ中小型 GTFC(10万 kW級、運転圧力 1.0~2.0MPa級) により近い容量・圧力条件のガスタービンとの連係技術を確立し、小型 GTFC(1,000kW級)の市場投入につなげる。

小型 GTFC(1,000kW級)は SOFC モジュール容器を2 基設置する計画であるが、本 研究開発では実証コスト低減の観点から SOFC モジュール容器1 基のみで試験を行っ た。これをハーフモジュールと称し、本来のモジュール容器2 基のシステムをフルモ ジュールと称する。フルモジュールとハーフモジュールの目標仕様を表 3-2-1-1 に示 す。

A C L I I				
	目標仕様			
項目	1,000kW級ハイブリッド機実機	実証機		
	(フルモジュール)	(ハーフモジュール)		
発電効率	57%LHV(交流,送電端)	43%LHV(交流,送電端)		
定格出力	1250k₩(交流,送電端)	680kW(交流,送電端)		
SOFC 単体発電効 率	54%LHV(交流)	54%LHV(交流)		
設置面積	18 m (W) \times 9.5m (L) \times 3.8m (H)	18 m (W) \times 5m (L) \times 3.8m (H)		
運転圧力	0.6 MPa 級	0.6 MPa 級		
モジュール容器台数	2	1		
カートリッシ゛数	20 カートリッシ゛ / モシ゛ ュール	20 カートリッシ゛ /モシ゛ュール		
概略構成	#市ガス **	都市ガス		

表 3-2-1-1 フルモジュール実機とハーフモジュール実証機 目標仕様

(i) 小型 GTFC 用 SOFC 開発

(i-1) SOFC モジュールの開発

(i-1-1)モジュール基本設計及び詳細設計

表 3-7 の目標仕様に基づき、小型 GTFC 用 SOFC モジュールの基本設計を行った。基本的な仕様とシステム概要図、並びに外観を表 3-2-1-2 および図 3-2-1-1 に示す。モジュール容器内に 20 カートリッジを配置する。

Ţ	〔 目	GTFC フルモジュール	GTFC ハーフモジュー		
			ル		
サブモジュール カートリッジ数		10 カートリッジ/サブモジュール(支持枠)			
エジー ル	サブモジュール数	2 サブモジュール/モジュール			
モジュール	カートリッジ数	20 カートリッジ/モジュール			
OTEC 2/7 = 1	モジュール数	2	1		
GIFUンステム	カートリッジ数	40	20		

表 3-2-1-2 基本仕様

図 3-2-1-1 システム概要図と外観写真

(i-1-2)カートリッジ温度分布、ガス分配性解析

ハーフモジュール実証機では運転圧力が 0.6MPa 級と従来(0.2MPa 級)よりも高圧 となるため、従来のカートリッジ構造では循環流が増加して発電室の温度が低下する 可能性があった。この対策として断熱構造の見直しを行い、実際の試験結果から 0.6MPa 運転時の放熱量予測を行った。断熱構造の見直し概要を図 3-2-1-2 に示す。

図 3-2-1-2 に示すように、従来のカートリッジ構造では側面に隙間が発生しやすい 構造であったため、煙突効果による循環空気により熱が発電室外へ持ち出される問題 があった。この対策としてカートリッジ周囲を箱型断熱材で覆うことで可能な限り発 電室を密封し、さらに外装板を設置することで空気の流入を防止する構造に改良して いる。

図 3-2-1-2 断熱構造の見直し

図 3-2-1-3 はこの改善を施したカートリッジで発電試験を行い、従来カートリッジ 構造との比較を行った結果であり、0.23MPa にて放熱量が大幅に低減できることが確 認できた。また、本結果をもとに 0.6MPa での放熱量を予測したところ、従来カート リッジ構造で 0.23MPa 発電時とほぼ同等の放熱量に抑制できる見込みを得た。

図 3-2-1-3 カートリッジ放熱量の比較

加圧時の発電特性についても単セルスタックとカートリッジの試験を行い、確認した。図 3-2-1-4 に単セルスタックでの発電試験結果を示す。セルスタックは圧力に比例して起電力が向上しつつ、セル抵抗が低下して作動電圧が向上し、0.23MPa に比べ約1.1 倍の出力が得られることを確認した。カートリッジ発電試験を実施した結果を図 3-2-1-5 に示す。0.6MPa におけるカートリッジ出力は単セルスタック同様、0.23MPa 運転時の約1.1 倍まで上昇する見込みを得た。

図 3-2-1-4 加圧運転時のセルスタック発電性能

図 3-2-1-5 加圧運転時のカートリッジ発電性能

断熱性能を向上させたカートリッジの高圧条件下における温度分布検討のため、 0.23MPa 試験時の温度分布について電気-熱流動-化学反応連成 CFD 解析を実施した。 その結果を図 3-2-1-6 に示す。セルスタック温度分布コンタ図、空気流線及び酸素濃 度に関する解析結果から、循環流等の発生は見られず、均一に近い状態で空気が発電 室内を上昇していることが解る。また、本解析結果のグラフ(図 3-2-1-7)に実際の 試験で得られた温度データをプロットしたところ、解析値と計測値が良く一致してい ることが確認できた。

図 3-2-1-6 セルスタック温度分布/空気流線図

図 3-2-1-7 セルスタック温度分布-解析値と計測値

(i-1-3)モジュール製作

ハーフモジュール実証機にて使用するモジュール容器は内部に 20 個のカートリッジが設置できるよう大型化するため、モジュール容器の強度についても詳細な検討が必要となる。高圧運転を考慮し耐圧は 0.98MPa とし、耐震性は水平方向に 0.46・垂直方向に 0.26、風荷重は 38m/s を想定している。上記条件でモジュール容器の変形量を計算したところ、図 3-2-1-8 に示すとおり通常運転時の最大変位は 2.60mm、地震による最大変位は 5.33mm となり、内部カートリッジ保護に必要な変位量 6mm 以下に抑制可能なことが確認できた。

図 3-2-1-8 モジュール容器の運転時および地震時の変位量

(i-1-4)モジュール特性評価

モジュール容器内の各カートリッジに燃料と空気を均等に供給するため、カートリッジ間分配予測の精査及びカートリッジ枝管に設置するオリフィス径の選定を行った。選定したオリフィス径での流量偏差および圧力損失の計算結果を図 3-2-1-9 に示す。燃料系統での流量偏差は-0.6~+0.6%と十分小さく、圧力損失も目標としていた2,500Pa以下を達成した。空気系統についても流量偏差は-0.4~+0.4%に収まっており、圧力損失も目標である4,000Pa以下を達成した。

空気系統の流量偏差

空気系統の各部圧損

図 3-2-1-9 各カートリッジの流量偏差/圧力損失

※各要素の説明

供給	母管管摩擦	供給側母簪で発生する。分岐以外の圧損	排出	枝管管摩擦	排出側枝管で発生する。分岐・オリフィス以外の 圧損
供諂	母管分岐	供給側の(母管→枝管)の分岐で発生する圧 損の母管分	排出	枝管オリフィ ス	排出側の枝管オリフィスで発生する圧損
供給	枝管分岐	供給側の(母管→枝管)の分岐で発生する圧 損の枝管分	排出	枝管合流	排出側の(枝管→母管)の合流で発生する圧損の 枝管分
供給	検管オリフィ ス	供給側の検管オリフィスで発生する圧損	排出	母管合流	排出側の(枝管→母管)の合流で発生する圧損の 母管分
供籍	枎管管摩擦	供給側枝管で発生する。分岐・オリフィス以 外の圧損	排出	母管管摩擦	排出側母管で発生する。分岐以外の圧損
	カートリッジ	カートリッジ入口~出口で発生する圧損 (なお空気側は供給・排出各々で区分した)			

(i-2) 小型 GTFC 用システムの開発

(i-2-1)システム基本設計及び詳細設計

250kW 級をベースに 0.6MPa 級への高圧化及び SOFC 大容量化に対応するよう機器仕 様及びシステム系統を検討した。その結果を図 3-2-1-10 に示す。250kW 級機からの主 な変更として、非常時を含めた停止時の消費動力を低減するため、保護用空気圧縮機 をブロワに変更し、小流量マスフローコントローラの電動弁化等を行った。

図 3-2-1-10 小型 GTFC システム系統

(i-2-2)システムシミュレーション

ハーフモジュール実証機は弊社長崎工場敷地内へ設置するため、工場周辺に対する 環境騒音への影響を評価した。

シミュレーションは各機器の騒音レベルをメーカ等から入手して音源をモデル化 し、想定した音源から評価点に与える各機器の影響を解析により評価した。図 3-2-1-11 に評価点と機器配置の位置関係を示す。評価点として、直近敷地境界線上 (P-01) と近隣住宅 (P-02)の二箇所を設定した。音源は表 3-2-1-3 に記載する機器 をモデル化している。

図 3-2-1-11 評価点と機器配置の位置関係

項目	各機器の設定値		
MGT	放射音:0.A. (Overall 值) 73.4dB(A)		
ガスコンプレッサ	放射音:0.A.75.0dB(A)		
補機モジュール (燃料ユニット)	内部音源に再循環ブロワ(0.A.60dB(A))を設定し 透過音計算 →機側騒音 46.5dB(A)で設定		
補機モジュール (空気ユニット)	内部音源に空気コンプレッサ(0. A. 49dB(A))を設 定し透過音計算 →機側騒音 35. 6dB(A)で設定		
補機モジュール換気ファン(各モジュール)	放射音:0.A.68dB(A)		
MGT 排ガスサイレンサ	放射音: 0. A. 68. 6dB(A)		
蒸気ボイラ	放射音:0.A.68.2dB(A)		

表 3-2-1-3 音源対象機器

騒音予測結果を表 3-2-1-4 に、騒音コンタ図を図 3-2-1-12 に示す。なお、評価点 P-02 については近隣に 3 階建てのビルがあるため、高さ方向の傾向確認のために高さ 方向 3 点の評価点を追加した。シミュレーション結果は以下の通りである。 防音壁無しでも、近傍の境界(P-01)及び正門付近(P-02)ともに規制値を満足する。

民家近傍である P-02 においては、暗騒音 55.6dBA に対して予測値 44.5dBA である。 評価点高さ 15m 地点では 48.5dBA となり、約 4dB 上昇するが暗騒音以下である。 以上より、評価点を地上 1.2m 点とした場合、防音壁による対策は不要と判明した。

評価点	高さ[m]	騒音規制値 [dB(A)]	予測値 [dB(A)]	適否
P-01	1.2	55	54.2	\bigcirc
P-02	1.2	50	44.5	\bigcirc
P-02-2	5	50	46.1	0
P-02-3	10	50	47.5	\bigcirc
P-02-4	15	50	48.5	0

表 3-2-1-4 シミュレーション結果

図 3-2-1-12 騒音コンタ図

これまでのシミュレーション結果を確認するため、全ての機器を設置した条件にて MGT インターロック時の敷地境界騒音計測を行った。計測結果を図 3-2-1-13 に示す。 計測の結果、MGT インターロック時には排空気および排燃料ベント操作により大気中 に放風操作があり最も騒音が大きくなるが、敷地境界騒音への影響はほとんど無いこ とが確認できた。

図 3-2-1-13 MGT インターロック時の敷地境界騒音計測結果 (赤:暗騒音、赤:インターロック時の計測値)

また、夜間の暗騒音データを取得するため、交通騒音や虫などの外乱が少ない冬期 (2018/12/27)に計測を実施した。その結果を図 3-2-1-14 に示す。当該地域は外乱 の影響が無ければ規制値 55dBA 以下を満足する事が確認できた。

図 3-2-1-14 夜間敷地境界暗騒音計測結果(2018/12/27 22:17:40)

(i-2-3)システム製作

2017年末より弊社長崎工場内にハーフモジュール実証機の据付工事を開始した。その様子を図 3-2-1-15 に示す。据付工事後、各機器の作動および動作の確認試験(コールド試験)は問題なく完了した。

設備配置

主要機器据付前 敷地全景

MGT 設置

都市ガス圧縮機

圧力容器搬入

屋内設備設置状況

システム全景

図 3-2-1-15 小型 GTFC 用システム据付状況

(ii) 小型 GTFC 用 MGT 開発

小型 GTFC(1,000kW級、運転圧力 0.6MPa級)の実用化に向け、従来の技術(250kW級、運転圧力 0.2MPa級)向けマイクロガスタービン(MGT)をベースとしながら MGTの開発を行った。要求される仕様を表 3-2-1-5 に示す。

	250kW 級向け MGT	1,000kW 級向け MGT	
型番 TPC50RA		TPC300A	
定格出力	定格出力 50kW@15℃ 295kW@25℃		
· 寸法 ₩2,550×D1,000×H2,600		W1, 500×D4, 000×H2, 602	
圧力比 3.67		6. 42	
回転数 80,000 rpm		40,000 rpm	
発電機 永久磁石同期型		交流同期発電機	
	370V 、2.66kHz、3 相 4 極	6,600V 、 50 or 60Hz、3相4極	
インバータにて		減速機にて 1500 or 1800 rpm に減速	
	200/210/220V、50/60Hz に変換		

表 3-2-1-5 マイクロガスタービン仕様比較

図 3-2-1-16 に開発項目を示す。SOFC の低カロリー排燃料、低酸素・高温排空気条件下での安定燃焼が可能な燃焼器の開発、SOFC との連係に必須となる圧縮機の最適化、SOFC 発電性能への悪影響が出ない取合構造を有する MGT ケーシングの最適化、SOFC との連係運転を可能とする制御・保護技術の開発などの開発項目に取り組んだ。

図 3-2-1-16 小型 GTFC 向け MGT 開発項目

(ii-1) 燃焼器開発

小型 GTFC 向け MGT は SOFC において反応を終えた燃料である排燃料を燃焼させて MGT の発電をおこなっている。MGT に供給される排燃料は都市ガスと比較して可燃成 分が少なく低カロリー大流量燃料となっており、燃焼させるために低カロリー燃焼器 の開発が必要となる。250 k W級 SOFC-MGT ハイブリットシステムにおいて使用してい る燃焼器の設計パラメータをベースに小型 GTFC (1,000kW級) に使用する燃焼器の開 発設計を実施した。これまでに5 個の試作を実施しており、判明した課題に対して修 正を施しつつ最適な形状の燃焼器開発を行っている。 SOFC との組み合わせ条件を模擬するため SOFC からの排空気および排燃料を模擬で きる評価設備をトヨタエナジー社内に構築し事前評価をおこなうとともに、ハーフモ ジュール実証機に搭載し評価を実施する。

- 燃焼器1 2016年度検討燃焼器
- 燃焼器 2 2016 年度試作燃焼器をベースに冷却性の改善をおこなった燃焼器
- 燃焼器3 燃焼器2から燃焼室内の滞留時間を短くした燃焼器
- 燃焼器4 燃焼器3と同形状で各種評価用燃焼器
- 燃焼器5 燃焼器3と同形状だが冷却孔を追加した燃焼器(冷却ライナ)

2017年度に試作した小型GTFC向けのMGTパッケージをMHPS長崎工場内のハーフモジュール実証機に設置し、実際のSOFCとMGTの組み合わせ条件下における評価を実施した。試験用燃焼器は燃焼器3を使用したが、SOFC昇温時の運転条件において燃焼器ライナの温度が上昇することが判明したため燃焼器ライナを保護するためMGTの出力を制限して運転を行った。MGTの出力を制限したことによりMGTの排気温度が低下したが、SOFCの昇温工程時はMGTの排気ガスにより再生熱交を用いてSOFCへの圧縮空気温度の上昇をはかっているため、MGTの排気ガス温度を低下させないよう、高負荷にて運転する必要がある。そのため、昇温アシスト系統(圧縮機出口空気を燃焼器入口に戻す系統)を追加することにより燃焼器入口空気温度を低下させライナ温度の抑制をはかったが、SOFCへ供給される高温圧縮空気量が減少するためSOFCの昇温に多くの時間を費やす影響が発生した。

起動時の燃焼器ライナ温度高の対策としてライナに冷却孔を追加した冷却ライナ の開発を行い(図 3-2-1-17)、壁面温度が大幅に低下することが確認できた。

無冷却ライナ

冷却ライナ

図 3-2-1-17 燃焼器壁面温度高対策

(ii-2) 圧縮機最適化

300kW用MGT 圧縮機はSOFC 組み合わせ運転時にMGT の空気流量を制限しているター ビン1段静翼へ流入する燃焼空気(排空気+排燃料)が増加するため圧縮機圧力が上 昇し、圧縮機の圧力上昇により圧縮機サージに至る恐れがあった。SOFC に適合するた めに平成29年度に空気流量を減少させた圧縮機を試作したが、試作した圧縮機では SOFC へ供給される空気量、圧力比が減少するためシステム総合効率が低下する可能性 があった。 SOFC および MGT の運転条件の再検討を行った結果、SOFC 定格運転中では MGT は部 分負荷運用されるため圧縮機サージ領域まで十分なマージンが確保されていること が確認できた。また SOFC 組み合わせ運転時における MGT 圧縮機のサージマージンが 厳しい条件は SOFC 昇温工程時の MGT 出力が高い条件であることが確認できたため、 SOFC 昇温工程時は MGT から SOFC へ供給する圧縮空気を外部にベントすることにより MGT の1段目静翼に流入する燃焼空気を減少させ、サージンマージンを確保する運転 方法に見直した。本運転方法を採用することで MGT 圧縮機の空気流量を減少させる必 要がなくなり、標準の 300kW-MGT 用圧縮機を採用することができた。

(ii-3) MGT ケーシング最適化

SOFC 向け MGT は MGT の圧縮機で圧縮した空気を SOFC へ供給する必要がある。また SOFC において反応を終えた空気(排空気)のタービンへの供給および低カロリー燃焼 器を接続する必要があり、MGT ケーシングを試作した。試作したケーシングを組み込 んだ MGT (図 3-2-1-18)をハーフモジュール実証機に搭載し評価を開始した。

図 3-2-1-18 小型 GTFC 用 MGT エンジン

小型 GTFC 向けの MGT、低カロリー燃焼器、MGT 制御バルブ等の補機類を収納するこ とができるパッケージ(図 3-2-1-19)をハーフモジュール実証機に組み込んだ。また MGT の排気騒音を敷地境界における規制値 55dBA 以下に低減をはかるため排気サイレ ンサーを設置している。

図 3-2-1-19 小型 GTFC 用ガスタービンパッケージ

(ii-4) SOFC との連係運転

SOFC と連係をおこなうため、250 k W級 SOFC 向け MGT 制御コントローラをベースと し、系統連系盤および高圧盤を一体化させ、さらに MGT 制御コントローラを内蔵した MGT 制御盤を MGT パッケージに搭載している。SOFC との組合せシステムにおいて必要 なバルブ制御や小型 GTFC 向けの排ガス中の窒素酸化物を低減する為におこなう蒸気 噴射の制御を追加した。またハーフモジュール実証機にて燃焼器の燃料ノズル周辺の 温度が高くなる条件が確認されたため、窒素酸化物を低減するための蒸気噴射系統か ら蒸気を噴射することにより冷却をはかる制御を追加している。あわせて、エンジン 運転中に MGT 運転時に圧損増加により MGT 圧縮機サージに至る可能性がある場合、事 前に MGT をトリップさせるサージ検出制御を追加した。

SOFC 制御機器との信号確認および MGT の単体運転を実施したところ、MGT から SOFC に供給される圧縮空気量が予定よりも少ないことが判明した。本問題については(ii -5)にて詳細を記す。

(ii -5) SOFC への供給空気量増加に関する MGT 本体の改良

(ii-4)にて記載のとおり、MGT 単体試験にて MGT の圧縮機から SOFC へ供給される空 気量が MGT の吸込み空気量と比較して 20%以上少ないことが判明した。空気量が少な い要因として、圧縮機からタービン側への内部バイパスが考えられる。内部バイパス は通常 MGT 内部部品の勘合部のクリアランスにより発生しているが、通常コージェネ レーションで使用する場合は内部バイパスが発生してもタービン側へ流入する空気 量は変わらない為 MGT 性能への大きな影響はない。しかし SOFC と連係運転を実施す る場合、SOFC への空気量の減少は SOFC 出力および効率を低下させるため、MGT の内 部バイパス量は最小限にする必要がある。

この問題を解決するため、250kW 級ハイブリッドシステムで実績のある圧縮機とタ ービンが別室となるケーシング構造へ構造を変更した(図 3-2-1-20)。本構造は、圧 縮機とタービン部を分離するため、圧縮空気が内部パイパス箇所を経由しない。従っ て、グランドリークと呼ばれる冷却およびシール等に用いられる空気以外の全量が SOFC へ供給可能となり、SOFC への供給空気量増大が期待できる。内部バイパスを低 減させた MGT はスクロールコンプレッサおよびタービンハウジング、エンジンハウジ ングと呼ばれるケーシングから構成されるが、これらの部品の試作をおこなった。MGT 主軸系(圧縮機およびタービンロータ)についてはこれまでの構成を使用している。

図 3-2-1-20 SOFC 供給空気流量低下対策

試作したスクロールコンプレッサ等を採用した MGT についてトヨタエナジー社内の エンジン評価ベンチで性能評価を実施し、MGT の性能(空気流量、圧力比)はこれま で評価してきた MGT と同等であることを確認した。

さらにトヨタエナジー社内にある SOFC からの排空気および排燃料を模擬できる評価設備にて SOFC と連係運転できることの模擬確認評価をおこなった。評価設備において MGT の吐出空気流量の確認をおこない、MGT 吸い込み空気量①に対し SOFC への供給空気量②は 4.4%減(150kW 時)であることを確認した(図 3-2-1-21)。また MGT 圧縮機のサージ特性を確認し、これまでの MGT と同等のサージマージンが確保されていることを確認した。あわせてハーフモジュール模擬条件(排空気温度条件および排燃料の体積、熱量条件模擬条件)において運転できることを確認した。

図 3-2-1-21 SOFC 供給空気流量確認

試作した MGT および冷却ライナ燃焼器を MHPS 長崎工場に設置されるハーフモジュ ール実証機へ搭載した。搭載後、MGT の単体試運転を実施し、問題なく運転できるこ とを確認した。今後、ハーフモジュール実証機において組み合わせ運転評価を実施す る。

(iii) ガスタービンとの連係運転技術の確立

(iii-1) SOFC-MGT 連係運転技術

図 3-2-1-22 に示すように、昇温開始時は、MGT 出力を高め MGT 排空気温度を高める ことで SOFC モジュールを昇温し、一定温度到達後、SOFC の空気供給系統に都市ガス を供給しセルスタックのカソードで触媒燃焼して昇温を行うプロセスである"発電室 燃焼"にて発電に必要な温度まで昇温する連係運転技術を確立した。また、負荷電流 24mA/cm2(定格 330mA/cm2、7%負荷)まで印加し、問題なく運転できることを確認し た。運転圧力も高まったが差圧も起動〜昇温〜低負荷まで安定に制御できることを確 認した。

図 3-2-1-22 昇温時における MGT 連係運転

(iii-2) 大容量化時の温度制御技術

ハーフモジュール実証機は 20 台のカートリッジで構成され、昇温は(iii-1)項で も示した通り、ガスタービンの排熱で 450℃程度まで昇温後、セルスタックの空気極 で燃料ガスを触媒燃焼させて昇温するため、空気系統に発電室燃焼用都市ガスが主系 統ノズルより供給される。全 20 台のうち、端部に配置されるカートリッジは放熱が 大きくなるため、主系統ノズルに加え都市ガス追加投入用の個別系統ノズルを設置し ている。主系統及び個別系統ノズルにおけるガス混合について詳細な解析を行い、昇 温時のガス流量アンバランス改善を行った。その結果を図 3-2-1-23 および図 3-2-1-24 に示す。

燃焼都市ガス流量に加え、モジュール内の温度解析、燃料・空気利用率の解析を行い、管理値内で運転可能な開発を行った。

図 3-2-1-23 主系統ノズル解析

図 3-2-1-24 各カートリッジ都市ガス濃度

(iii-3) 高圧化時の差圧制御技術

0.6MPa 級ハーフモジュール実証機運転に必須となる微差圧制御技術の開発に取り 組み、図 3-2-1-22 に示す通り、0.2MPa 級と同等の精度でコントロールできる差圧制 御技術を確立した。 (b)セルスタック低コスト品質安定化技術開発

(i)要素検討(安定搬送方法、炉内温度·雰囲気制御方法、解析手法構築、他)

焼成技術検証では、エネルギーロスが少なく低コストで大量生産するため、従来の バッチ炉焼成(セラミックス製の円筒管であるサヤ内に製品を吊り下げ輻射熱を利用 する焼成方法)からサヤレス搬送台車を用いた連続焼成(セラミック製の棒で枠組み した専用台車(サヤレス)に製品を吊り下げ、搬送しながら、直接製品を加温する焼成 方法)への移行を目指した。そのため、安定した搬送を可能とする搬送方法やサヤレ ス焼成時の炉内温度・雰囲気制御方法について検討した。

サヤレス搬送台車のフレーム構造の最適化による安定した搬送方法の検討

セルスタックは細径長尺体であり、それを吊下げて焼成するため、焼成炉は通常の 焼成炉と比較し高さが高く幅が狭い不安定な構造体となる。また、1400℃を超える焼 成温度で長期に渡り使用できる構造体を設計する必要があるため、サヤレス搬送台車 のフレーム構造(支柱形状、肉厚、長梁、短梁の配置、本数等)は、静的構造解析を 用いて設計した。

シミュレーション技術を活用した連続炉模擬検証炉の均一温度・雰囲気制御方法の検討

従来のバッチ式焼成炉は、サヤ内を雰囲気制御しながら焼成するため、均一温度・ 雰囲気で焼成することが可能であった。本研究では、サヤを無くし、焼成炉の内壁お よび焼成用ヒータと近接する環境で均一温度・雰囲気で焼成する必要があり、焼成炉 仕様検討ではシミュレーション技術を活用しながら、サヤレスフレーム設計、焼成用 ヒータ配置等について検討した。

焼成炉にサヤレス搬送台車を配置し、所定のメッシュを形成、それぞれの物性値を 設定して解析した。サヤレス構造においても最高温度域で、約10℃の温度分布で制御 できることを確認した(図 3-2-1-25)。

図 3-2-1-25 焼成温度解析結果

【成膜検証装置】

成膜品質を明確化するための統計的解析手法を活用した品質ばらつき判定手法の 検討

成膜品質ばらつきが発電性能に及ぼす影響を検証するため、従来の成膜装置とは異 なり、様々な品質パラメータが制御可能な成膜検証装置仕様を検討した。装置は成膜 圧力、成膜スピード、スキージドクター角度等を可変制御できる機構を付与した。装 置以外もスクリーンマスクのテンション、スラリー粘度等、成膜品質に及ぼす影響を 想定し、検証計画を策定した。

(ii) 連続炉模擬検証炉、成膜検証装置の導入、立ち上げ

要素検討と並行して設備仕様について検討し、連続炉模擬検証炉と成膜検証装置を 日本特殊陶業(株)小牧工場内に導入した。

【連続炉模擬検証炉】

導入した連続炉模擬検証炉において、焼成プログラムと炉内の実測温度を比較した ところ、脱バインダー域、最高温度域の温度誤差は、共に10℃以内でコントロール可 能であることを確認した。本結果は設備導入前に解析していたシミュレーション解析 と同等の結果であることも確認できた。

【成膜検証装置】

導入した成膜検証装置において、設備の機能確認、及び電極や電解質の成膜基本条件を設定した。

(iii) 焼成温度·雰囲気制御開発

【連続炉模擬検証炉】

連続炉模擬検証炉を用いて、セルスタックを低コストで大量生産可能な量産装置に 適用できる焼成技術の検討を実施した。

焼成条件は既存条件をベースに検証したが、処理量増加毎に焼成不具合が生じたた め、シミュレーションを用い製品周辺のガス流れ(製品配置、高さの影響の検証)、 導入ガスの供給・排気流れを解析し、炉内換気効率を向上させて適正化を図った。そ の他焼成温度プロファイル、ガス流量、炉内圧力等の条件を変更した検証試験を実施 し、脱脂域は約2.5倍の時間を要するものの、一度に約300本焼成可能な焼成条件を 見出した。

焼成プロファイルの短縮化やガス使用量の削減等、更なる低コスト化について検討 するためには、連続炉模擬検証炉の改造が必要であることが分かり、検証炉内の偏流 を防止するために、『検証装置の給排気能力向上』、『ガス供給流量増加』、『ガス導入 口の増設』等の工事を実施した。

(iv) 成膜状態·品質·性能検証試験

成膜検証装置において、電極や電解質の膜厚、成膜速度・印刷スキージ(スラリー 塗布用のゴム製板)角度・印圧等の様々な成膜条件を変化させて試験を行ったが、機 能不足であったため、スキージユニットの位置微調整機能、角度調整機能等、容易且 つ正確に初期設定可能とする調整機構を追加し高精度で試験を行った。そして、その 成膜状態(膜厚やニジミ、カスレ、未充填等の外観、等)を新たに導入した成膜測定 装置を用いてインラインで計測・定量化し得られたデータを焼成後の品質、発電性能 と紐付け統計的解析を行い、膜厚や成膜品質に大きく影響を及ぼす成膜条件を得た。 それらの成膜条件を最適化することで、安定した成膜品質で且つ製造時間を1/3 に 低減できる目途付けができた。

(v) 低コスト化技術開発

【連続炉模擬検証炉】

連続炉模擬検証炉において焼成条件を各種変更し、製造時間短縮に向けた検証試験 を実施した。具体的には、窒素ガス供給量の増加による炉内換気効率の向上、降温時 のエア供給量増加による焼成時間の短縮により、目標である製造時間 1/3 を達成した (図 3-2-1-26)。

1本あたりの焼成時間

図 3-2-1-26 1 本あたりの焼成時間

しかしながら、焼成工程におけるエネルギー使用量(電気、ガス)の観点では、焼 成サヤを無くした構造の適用により電気の使用量は削減できたものの、換気効率向上 のための窒素ガス使用量が増加したため、顕著な削減が見られなかった(図 3-2-1-27)。 そのため、2019年度は焼成処理量の増加且つ処理時間の短縮、及び窒素ガス使用量の 低減によるエネルギー使用量を削減する量産技術の確立を目指す。

1本あたりの光熱費

図 3-2-1-27 1 本あたりの光熱量

【発電特性】

成膜検証装置にて最適化された条件で成膜し、連続炉模擬検証炉で焼成したセルス タックの発電性能は、既設炉焼成品と同等の発電性能であることを確認した。(図 3-2-1-28)

図 3-2-1-28 発電特性

(c) 高性能セルスタックの性能検証

セルスタックの低コスト化には、製造コストの低減が有効であり、本事業では、焼 成工程、並びに印刷工程に成果を得たが、セルスタックの高出力化が更なるコストダ ウンに有効である。

印刷精度向上・薄肉化、印刷パターン変更、発電面積増大化などの手段により、発 電性能を高めることができる目処を図 3-2-1-29 に示す通り、独自開発で得ており、 検証を進めている。本成果を本事業の低コスト品質安定化技術に反映し、独自開発し

た高性能セルスタックをハーフモジュールに適用することで、発電性能、温度分布特性を検証する。

単セル試験結果

(i) MW 級ハーフモジュール実証機への高性能セルスタックの適用

高性能セルスタックを適用したカートリッジを小型 GTFC ハーフモジュール実証機 に一部換装し、高圧下での発電特性を検証すると共に、システムでの検証も実施する。 高性能セルスタックの生産は、本事業のセルスタック低コスト品質安定化技術で開発 した焼成技術と成膜技術を活用する。

高性能セルスタックを適用したカートリッジ2基を独自に製作後、MW級ハーフモジュール実証機に組込む。2カートリッジとするのは、図 3-2-1-30に示す通り、高性能セルスタックを同一容器内で適用する場合、出力、発熱ともに増加し、同一仕様のシステムを適用した検証が困難なためである。このため、図 3-2-1-31に示す通り、GTFCハーフモジュール実証機に組み込んでいる 20 台のカートリッジのうち、5 台を取り出し、高性能カートリッジ2 台を組み込む。

カートリッジ構成の変更に伴い、一部配管・集電線等の変更、パワーコンディショ ナの設定変更、制御システムの改修などの改造を行い、高性能カートリッジの運転圧 力 0.6MPa 級での SOFC 発電量、温度分布などのデータを採取し、ガス分配性、断熱構 造を含めたモジュール性能を評価すると共に、小型 GTFC ハーフモジュール実証機と しての特性評価・検証を実施する。

高性能カートリッジのモジュール、並びに小型 GTFC ハーフモジュール実証機での 特性評価結果から、小型 GTFC のシステム基本構成を改良設計する。また、関連する 他事業等の成果と本継続研究で得られた成果を組み合わせ、IGFC にも適用できる SOFC システムの基本構成の改良検討を行い、関連する他事業等の成果に反映する予定であ る。

図 3-2-1-29 高性能セルスタックによる出力増加(独自開発)

図 3-2-1-30 モジュール実証機への高性能セルスタック適用法の検討

図 3-2-1-31 ハーフモジュール実証機への高性能セルスタックの適用

②高圧 SOFC モジュールの開発(運転圧力~2.0MPa 級)

(a) 高圧カートリッジ試験

(i) カートリッジ製作

製作したカートリッジを図 3-2-1-32 に示す。カートリッジはハーフモジュール実 証機と同一構造であり、カートリッジ廻りを箱形断熱材で覆い、発電室を可能な限り 密閉した構造となっている。

カートリッジ外観 サブモジュール化 図 3-2-1-32 高圧試験用カートリッジ

(ii) カートリッジ圧力特性試験

製作した高圧試験向けカートリッジの低圧での性能検査を弊社長崎工場の試験設備にて実施した。性能検査にて確認した運転圧力は 0.23MPaG および 0.3MPaG である。 0.23MPaG は従来の運転圧力に相当し、0.3MPaG は試験装置の上限運転圧力である。

その後、カートリッジを移設し、三菱重工業㈱総合研究所(高砂)に移設し、~2.1MPa までの試験が可能な高圧カートリッジ試験装置に据え付け、カートリッジの高圧下で の特性評価試験を実施した。高圧試験(その1)にて実施した~1.5MPaG までの圧力 特性の試験結果を図 3-2-1-33 に示す。

図 3-2-1-33 カートリッジ出力の圧力依存性(高圧試験その1)

0.53MPaG でのカートリッジ出力は 0.23MPaG の約 1.1 倍に向上したが、加圧による放 熱量の増加が大きく、1.0MPaG および 1.5MPaG でのカートリッジ出力は予想曲線より も低い結果となった。本結果よりカートリッジの断熱構造の強化が必要であることが 判明したため、カートリッジを取り出して点検することとした。

(iii) カートリッジ開放点検・再組立

カートリッジを取り出して開放点検を行ったところ、カートリッジ下部のサブモジ ュール枠と燃料排出ヘッダの金属接触部に、枠のたわみなどでわずかに隙間が発生し ている事が明らかとなった。この隙間にて図 3-2-1-34 に示すサブモジュール内外の ガス循環が発生し、発電室内の熱が持ち出されていると推定される。この問題解決の ためシール構造を強化した改良型カートリッジを製作し、高圧試験(その 2)にて評 価を行うこととした。

図 3-2-1-34 推定されるカートリッジ放熱経路

(iv) 高圧試験(その2)

放熱対策を強化した改良型カートリッジを高圧カートリッジ試験装置に組み込み、 高圧試験(その2)にて1.5MPaGまでの圧力特性を評価した。その結果を図3-2-1-35 および図3-2-1-36に示す。

カートリッジ出力は予想曲線と概ね一致する結果となり、放熱対策が一定の効果を 上げたことが確認できた。一方、放熱量は試験前に予測していた放熱量よりも大きく、 放熱量予測(二乗)とほぼ一致する結果となり、特に 0.6MPa 以上の運転圧力での放 熱増加が顕著であり、高圧化の課題であることが分かった。

図 3-2-1-35 カートリッジ出力の圧力依存性(高圧試験その2)

図 3-2-1-36 放熱量の運転圧力依存性

(b)高圧単セルスタック試験

(i) 発電特性試験

高圧単セルスタック試験装置を使用して高圧条件でのセルスタック発電特性試験 を実施し、圧力をパラメータとして実機運転条件に反映するための基礎データを取得 した。本試験から得られた IV 特性から運転点(セル平均電圧 0.75V)での出力を計算 し、中圧セルスタック試験結果から予測した性能向上カーブと同等の結果が得られた。 その結果を図 3-2-1-37 に示す。

図 3-2-1-37 セルスタック出力の圧力依存性

(ii) 信頼性·耐久性試験

実機環境を模擬した高圧条件(1.5MPaG)にてセルスタックの3500時間耐久性試験 を実施した。その結果を図 3-2-1-38 に示す。セル全体電圧が耐久性試験開始初期に 低下する傾向が認められ、特に800℃以下の低温部位は常圧よりも電圧低下が大きい 傾向が確認されたが、電圧低下は1000時間程度で安定し、それ以降は安定した性能 を示している。

1000 時間以降のセル電圧低下率は 0.014%/1000h であり、1.5MPaG の高圧条件で も 3500 時間レベルの運用が可能であることが確認できた。

図 3-2-1-38 高圧条件(1.5MPaG)における長期耐久試験セル電圧推移

(ⅲ) 解体分析

高圧耐久性試験後のセルスタックを取り出し解体分析を実施した。外観観察の結果、 空気極に割れや剥離は認められず健全であった。光学顕微鏡にて素子部の断面を観察 したところ、図 3-2-1-39 に示すように燃料極内の Ni の粗大化が確認された。高圧耐 久試験の影響と推定されるが、先述の通り、顕著な性能への影響は観察されなかった。

図 3-2-1-39 セルスタックの光学顕微鏡撮影結果

2-2. 燃料電池向け石炭ガスクリーンナップ技術要素研究

1. 研究概要

IGFC 特有の課題の一つとして、石炭ガスに含まれる微量成分の一部が燃料電池の劣 化を招き、長期信頼性を損なう可能性が懸念されている。そのため、本研究開発は、 石炭ガス中の被毒成分が燃料電池へ及ぼす影響を把握するとともに、燃料電池の被毒 成分を除去するための燃料電池用ガス精製技術を確立することを目的として実施し た。

燃料電池用ガス精製技術の検討にあたっては、SOFCの被毒成分を把握するとともに、 被毒成分に対するSOFC実セルの被毒耐性を調べ、その上でSOFCに影響を及ぼす被毒成 分を除去するためのガス精製技術を検討した。

これまで国内外の大学や研究機関等で行われている SOFC 被毒に関する研究につい て調査したところ、硫黄(S)、塩素(C1)、ヒ素(As)、リン(P)、セレン(Se)、ホ ウ素(B)、アンチモン(Sb)、カドミウム(Cd)、ケイ素(Si)などが被毒を引き起こ す成分として報告されているため石炭ガス中含まれる被毒成分を対象として評価し た。(図 3-2-2-1)

図 3-2-2-1 評価対象被毒成分の選定フロー

2. 実施内容

研究開発項目① セル被毒耐性評価

SOFCの被毒耐性評価として、個別被毒影響評価試験と長期被毒耐性評価試験を実施 した(図 3-2-2-2 参照)。なお、試験に用いた燃料電池は三菱日立パワーシステムズ (株)製の円筒横縞形 SOFC とした。

図 3-2-2-2 セル被毒耐性評価試験

(1) 個別被毒影響評価試験

評価対象とした被毒成分(AsH3, PH3, H2Se, B2H6, HC1, H2S) について SOFC のシ ョートセル (3素子で構成されたセルスタック)にて水素 80%、窒素 20%の割合で常圧 にて供給し、被毒成分をそれぞれ設定濃度になるように添加し、個別に被毒影響を評 価した。

図 3-2-2-3 個別被毒影響評価試験 設備イメージ

図 3-2-2-4 ショートセル(基体菅)の電圧測定点

①個別被毒影響評価試験

(a) アルシン (AsH3)

アルシン(AsH3)では、1ppmを約950時間添加したが、電圧の変化は見られなかった。ただし、試験後にショートセルを取り外した際、排燃料側の部品に白色の付着物

が観察された。この付着物について走査型電子顕微鏡(SEM)観察及び電子線マイク ロアナライザー(EPMA)による分析を行ったところセルの材料であるZr、Niが多く 検出された。この結果から、AsH3はセルを分解している可能性が示唆される。そのた め、電圧には影響は生じていないが、長期間の発電においては電圧への影響が発現す る可能性が考えられる。

分析項目	分析結果
光顕・SEM	基体管内表面で細かい粒状物質が確認された。
EPMA	基体管内表面で As が検出された。
SIMS	妨害イオンの影響で、As の分布は得られなかった。

表 3-2-2-1 AsH3 被毒試験のセル分析結果

(b) ホスフィン(PH3)

次にホスフィン (PH3) 1ppm を添加した。約 660 時間添加したが、電圧の変化は見ら れなかった。セル分析を実施したところ、基体管内表面に細かな粒状物質が付着して いることが確認され、EPMA 分析で P であることが確認された。また、二次イオン質量 分析法 (SIMS) 分析では基体管内部に P が局所的に確認されたことから、基体管によ って P が燃料極に侵入することを防いでいると考えられる。

10	
分析項目	分析結果
光顕・SEM	基体管内表面で細かい粒状物質が確認された。
EPMA	基体管内表面でPが検出された。
SIMS	基体管でPが局所的に検出された。

表 3-2-2-2 PH3 被毒試験のセル分析結果

(c) セレン化水素 (H2Se)

続いて、セレン化水素(H2Se) 1ppm を添加した。その結果、H2Se 添加後約 180 時間から、入口素子、出口素子の電圧が順に低下し、燃料の流れ方向に被毒が進行していることが確認された。その後、入口素子と出口素子ともに電圧が安定したことから、被毒が飽和状態に達した可能性が考えられる。

図 3-2-2-5 H2Se 1ppm 添加時の経時的な電圧変化

その後 H2Se の添加を停止したところ、セル電圧および各素子電圧が徐々に回復す る挙動が確認されたが、電圧低下前の値までは戻らなかった。既往の研究で、燃料極 のNi との反応物生成によって被毒を起こすことが報告されており、反応物生成によ る不可逆の性能劣化を引き起こした可能性も考えられる。

• •					
	H2Se 濃度				
項目	1ppm	1ppm (2 回目)	0.5ppm		
H2Se 添加~電圧低下開始(h)	169	156	324		
電圧低下開始~安定(h)	110	90	179		
H2Se 添加後の電圧比(%)	91.7% (-8.3%)	91.7% (-8.3%)	93.0% (-7.0%)		
H2Se 添加停止後の電圧比(%)	_	95.0% (+3.3%)	95.7% (+2.7%)		

表 3-2-2-3 H2Se 濃度による試験結果の比較

試験後にセル分析を実施したところ、基体管内表面で細かい粒状物質が確認された。 EPMA 分析により確認したところ、基体管内表面で Se が検出された。SIMS 分析におい ては燃料極中にも Se が分布していることを確認した。この結果から Se が燃料極に到 達し、被毒影響を生じさせている可能性が考えられる。

図 3-2-2-7 燃料極/基体管全体における SIMS 分析結果

分析項目	分析結果
光顕・SEM	基体管内表面で細かい粒状物質が確認された。
EPMA	基体管内表面で Se が検出された。
SIMS	燃料極及び基体管で Se が検出された。

表 3-2-2-4 H2Se 被毒試験のセル分析結果

(d) ジボラン (B2H6)

ジボラン(B2H6)については、1ppm約740時間添加したが、特に電圧の変化・付着物は観察されなかった。

(e) 塩化水素(HC1)

塩化水素(HC1)は10ppm添加し試験したが、セル電圧でみると電圧の変化は無かった。試験後、ショートセルを取り外した際、排燃料側の金属部品に白色の結晶が付着していることが確認され、X線回折法(XRD法)による分析を行った結果、塩化アンモニウム(NH4C1)であることが判明した。

• •	
分析項目	分析結果
光顕・SEM	付着物は確認されなかった。
EPMA	C1 は検出されなかった。
SIMS	C1 は検出されなかった。

表 3-2-2-5 HC1 被毒試験のセル分析結果

図 3-2-2-8 排燃料側の部品で確認された付着物

(f) 硫化水素 (H2S)

続いて硫化水素(H2S) H2S 1ppm 添加時を添加した。H2S 添加後約 90 時間から入口 素子、出口素子電圧が順次低下し、燃料の流れ方向に沿って被毒が進行していること が確認された。Ni への吸着により、電圧が低下した可能性が考えられる。その後、入 口および出口素子ともに電圧が安定したことから、Sの被毒が平衡状態に達したこと が考えられる。電圧変化率は-3.3%となった。温度を上げることで吸着した S が脱離 するとの報告から、発電温度を 900℃から 930℃に変更し、電圧の変化を確認したが、 温度上昇によりセルの抵抗が減少したため電圧が上昇したものの、S の脱離による電 圧の回復傾向は明確に確認できなかった。その後、H2S の添加を停止したところ、セ ル電圧および各素子電圧が徐々に回復する傾向が見られたが、被毒による電圧低下前 の値までは戻らないことが確認された。

図 3-2-2-9 H2S 1ppm 添加時の経時的な電圧変化

試験終了後、セル分析を実施したところ、基体管内表面に針状の物質が生成していることが確認された。EPMA分析により確認したところ、基体管内表面でSが検出された。(図 3-2-2-10,図 3-2-2-11)

リファレンスセル

H2S 被毒試験セル

図 3-2-2-10 基体管内表面における SEM 観察結果

図 3-2-2-11 燃料極/基体管全体における SIMS 分析結果

分析項目	分析結果
光顕・SEM	燃料極の触媒 Ni が粗大化していることが確認された。また、基体管内表面に針状の物質が生成していることが確認された。
EPMA	基体管内表面でSが検出された。
SIMS	燃料極と基体管でSが検出された。

表 3-2-2-6 H2S 被毒試験のセル分析結果

(2) 長期被毒耐性評価試験

石炭ガス中の主要な被毒成分である H2S と HC1 について、実ガス中の濃度レベルを 模擬して長期(5,000 時間以上)の被毒耐性を調べ、既存のガス精製設備以上の対策 の必要性について評価した。被毒試験セルは、被毒成分を添加しない条件で約2,000 時間程度の初期発電を行い、セル性能の安定を確認してから H2S と HC1 を各 1ppm 被 毒成分を添加した。また、セル性能についてはセル電圧の他、セルスタックの燃料入 口素子(以下、入口素子)、燃料中央素子(以下、中央素子)、燃料出口素子(以下、 出口素子)の電圧を測定した。なお、運転温度は入口、中央、出口ともに一定となる 様に調整した。セルスタックの電圧測定点を図 3-2-2-13、試験条件を表 3-2-2-7 に示 す。

図 3-2-2-12 長期被毒耐性評価試験 設備イメージ

図 3-2-2-13 セルスタックの電圧測定点

表 3-2-2-7 長期被毒耐性評価試験条件

燃料 H2 濃度[%]	80
燃料 N2 濃度[%]	20
H2S 濃度[ppm]	1.0
HC1 濃度[ppm]	1.0
加湿濃度[%]	1.0
燃料利用率[%]	60
空気利用率[%]	20
圧力[MPa]	0.101
運転温度[℃]	900
電流密度[mA/cm ²]	350

(長期被毒耐性評価試験結果)

被毒試験セルの経時的な電圧変化を図 3-2-2-14 に示す。被毒試験は約7500 時間実施し、被毒成分添加後約40時間から約3%電圧低下が生じることが確認された。セル 電圧低下が一定値に収束して以降、約5000時間継続したが経時的な電圧変化は確認 されなかった。個別被毒影響評価試験から電圧低下はH2Sの影響であることが考えられ、燃料電池入口H2S濃度を1ppmに抑えれば最大3%電圧低下するが運転継続は可能 と考えられる。

図 3-2-2-14 被毒試験セルの経時的な電圧変化

試験終了後、セルスタック試験装置の開放点検を実施した。開放点検の結果、被毒 試験セルの排燃料部の金属部品で腐食が確認された。燃料に添加した HC1 によって生 じたものと考えられる。(図 3-2-2-15)

(a) リファレンスセル

(b) 被毒試験セル

図 3-2-2-15 被毒試験セル 排燃料部の腐食

被毒試験終了後、光学顕微鏡、SEM、EPMA、SIMSを用いてセル断面の組織観察及び 元素分析を実施した。リファレンスセル及び被毒試験セルにおけるSIMS分析結果(図 3-2-2-16)から、被毒試験セルの基体管と燃料極において、リファレンスセルの約3 倍の強度でSが検出された。また、C1については、基体管及び燃料極で検出された。

図 3-2-2-16 燃料極/基体管全体における SIMS 分析結果 分析結果のまとめを表 3-2-2-8 に示す。

分析項目	分析結果
光顕・SEM	付着物は確認されなかった。
EPMA	S、Cl は検出されなかった。
SIMS	S が燃料極及び基体管で検出された。 また、C1 が基体管および燃料極/電解質界面で検出 された。

表 3-2-2-8 セル分析結果まとめ

研究開発項目② 燃料電池用ガス精製技術性能評価

燃料電池用ガス精製技術には、燃料電池の被毒許容濃度を下回るレベルまで被毒成 分を除去する性能が求められる。燃料電池用ガス精製技術としては可能な限り被毒成 分を除去する吸着剤を選定する必要があるが、不純物を除去可能な吸着剤について、 各被毒成分の除去性能を調べた。選定した吸着剤を評価するためのスクリーニング試 験として、①吸着容量試験、②低濃度リーク確認試験、③被毒成分除去性能評価を行 った。

(1) スクリーニング試験

① 吸着容量試験

評価用の吸着剤として、アルシン(AsH3)、ホスフィン(PH3)、セレン化水素(H2Se)、 ジボラン(B2H6)の水素化物用3種類、H2S用3種類、HC1用2種類を試験した(図 3-2-2-17)。 表 3-2-2-9に被毒成分と吸着剤の組み合わせ、表 3-2-2-10に試験条 件を示す。被毒成分の供給濃度は2,000ppmとし、検知管法で被毒成分が検出され た時点を吸着剤の破過とした。吸着容量試験のイメージを図 3-2-2-18に示す。

AsH3、PH3、H2Se、B2H6 用						
吸着剤A	吸着剤 B	吸着剤C				
	Contraction of the second seco	5 mars -				
	H2S 用					
吸着剤 B	吸着剤 D	吸着剤 E				
Contraction of the second seco	A A A A A A A A A A A A A A A A A A A					
HC1	. 用					
吸着剤 F	吸着剤 G					

図 3-2-2-17 吸着剤写真

吸着剤	主成分	AsH3	PH3	H3Se	B2H6	H2S	HC1
吸着剤 A	Cu	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_	_
吸着剤 B	Cu	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_
吸着剤C	Fe/Mn	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_	
吸着剤 D	Zn	—	—	—	—	\bigcirc	_
吸着剤 E	Zn/Cu	—	_	—	_	\bigcirc	
吸着剤 F	A1/Mg	—	—	—	—	_	\bigcirc
吸着剤 G*	NaA102	_	_	_			0

表 3-2-2-9 SOFC 被毒成分と吸着剤の組み合わせ

※(一財)電力中央研究所で開発されたハロゲン化物吸収剤

	H2/N2	被毒成分濃	LV	SV	温度
吸着剤	[%]	度	[m/s]	[hr-1]	$[^{\circ}C]$
		[ppm]			
吸着剤 A					20-25(室温)
吸着剤 B					20-25(室温)
吸着剤C					20-25(室温)
吸着剤 D	75/25	2,000	0.25	1,000	350
吸着剤 E ^{*1}					350
吸着剤 F					20-25(室温)
吸着剤 G					450

表 3-2-2-10 吸着容量試験条件

※1 吸着剤 E は H2 にて還元後に実施

図 3-2-2-18 吸着容量試験イメージ

(吸着容量試験結果)

吸着容量試験の結果、最も吸着容量の高い吸着剤の吸着容量を基準とした場合(吸着容量比)の各吸着剤の吸着容量の相対比を図 3-2-2-19 に示す。また、カラム内温度上昇幅 ΔT のグラフを図 3-2-2-20 に示す。

図 3-2-2-20 各吸着剤のカラム温度上昇幅

水素化物については、AsH3、PH3、H2Se に対しては吸着剤 B が最も吸着容量が大き く、B2H6 に対しては吸着剤 A が最も吸着容量が大きい結果となった。吸着剤 B の特徴 として PH3 や H2Se に対して大きな吸着容量を有するものの、AsH3 に対しては 1/3 程 度に低下することが確認された。一方、吸着剤 A と吸着剤 C については H2Se に対す る吸着容量は大きいものの、AsH3 や PH3 に対しては吸着容量が小さく、特に PH3 に対 する吸着剤 C の吸着容量は著しく小さいことが確認された。

H2S については、吸着剤 D と吸着剤 E と比較すると吸着剤 B がやや吸着容量は小さかった。これは、吸着剤 D と吸着剤 E については吸着剤の運用温度が 350℃と高く、H2S と吸着剤の反応が進みやすいと考えられる。

HC1 については、吸着剤Fおよび吸着剤Gともに大きな吸着容量を示したが、吸着剤Gの方が吸着容量は大きかった。これは、吸着剤Gについては吸着剤の温度が450℃

と高く HC1 と吸着剤との反応が進みやすいと考えられる。

なお、水素化物の吸着において温度上昇幅を比較すると、吸着容量が大きいもの程 低く、吸着容量が小さいもの程高くなる傾向にあることがわかった。また、B2H6 での 試験において、最大で 60℃程度の温度上昇を確認したが、2,000ppm という高濃度の 試験であることを考慮すると運用上特に問題となる温度上昇ではないと言える。

吸着容量試験終了後、カラムより吸着剤を大気開放とした時に発熱が生じた組み合わせがあった。その組み合わせを表 3-2-2-11 に示す。

吸着剤	主成分	AsH3	PH3	H2Se	B2H6	H2S	HC1
吸着剤A	Cu	有	有	無	有	_	
吸着剤B	Cu	有	有	無	有	無	
吸着剤C	Fe/Mn	有	有	有	発火		
吸着剤D	Zn	_	_	_		無	
吸着剤E	Zn/Cu	—	_			無	
吸着剤F	A1/Mg	—	_			_	無
吸着剤G	NaA102		_	_	_	_	無

表 3-2-2-11 吸着容量調査後の大気開放時の発熱の有無

H2S および HC1 と各吸着剤の組み合わせ、また、H2Se と吸着剤 A および吸着剤 B の 組み合わせでは発熱が見られなかったが、その他組み合わせでは発熱が見られた。こ れは、水素化物により還元された吸着剤が大気中の酸素と反応して発熱したと考えら れる。

なお、B2H6と吸着剤Cの組み合わせに関しては、大気開放時に発火まで至ったことから、この組み合わせについては危険が伴うため、低濃度リーク確認試験は中止した。

② 低濃度リーク確認試験

吸着剤の低濃度除去性能を確認するため低濃度リーク確認試験を実施した。低濃度 の場合、評価に長時間がかかることから加速試験とし、加速方法は吸着容量試験によ り破過までの吸着容量を既に把握している事から、初期~50%消費状態および 50%~ 90%消費状態の間は、2,000ppm で被毒成分を供給し、低濃度除去性能は試験開始時と 中間(50%消費状態)と破過直前(90%消費状態)で確認することとした(図 3-2-2-21 参照)。被毒成分濃度である AsH3、B2H6、H2Se、PH3 については 1ppm と 0.1ppm、H2S、 HC1 については 10ppm と 1ppm とし、カラム出口のガス分析を行うことで低濃度の被毒 成分のリークの有無を調べた。ガス通気条件を表 3-2-2-12 に示す。カラム出口のガ ス分析には吸収液法を用いた。低濃度リーク確認試験イメージを図 3-2-2-22 に示す。

試験時間

図 3-2-2-21 低濃度リーク確認試験ガスサンプリングイメージ

102212	4 因很及了 了 他的时候 7 不 也 风 不 日		
H2 流量	2.475L/min		
N2 流量	0.825L/min		
LV	0.25m/s		
SV	1000hr-1		
被毒成分濃度	10ppm、1ppm 1ppm、0.1ppm H2S、HC1 AsH3、B2H6、H2Se、PH		
被毒成分濃度 (加速時)	2,000ppm		

表 3-2-2-12 低濃度リーク確認試験ガス通気条件

図 3-2-2-22 低濃度リーク確認試験イメージ

(低濃度リーク確認試験結果)

全ての吸着剤についてカラム出口に被毒成分は検出されず、定量下限値以下まで 除去可能であることが確認された。1ppm や 0.1ppm の低濃度であっても充分な吸着性 能が得られ、フィルタ捕集の結果も、いずれの組み合わせにおいても定量下限値以 下であることが確認された。

③ 被毒成分除去性能評価

吸着容量試験および低濃度リーク確認試験の結果を基に、被毒影響が確認された H2SeとH2Sを除去対象とする吸着剤について、吸着容量、低濃度除去性能、圧力損 失を評価した。

(被毒成分除去性能評価結果)

(a) H2Se

H2Se について、各試験結果を基にした吸着剤の吸着容量、低濃度除去性能、圧力損失の比較を表 3-2-2-13 に示す。

农 5 2 2 15 H25e 际公用双有刑比较				
四主刘	評価項目			
败有荆	吸着容量	除去性能	圧力損失	
А	0	\bigcirc	0	
В	\bigcirc	\bigcirc	0	
С	\bigcirc	\bigcirc	×	

表 3-2-2-13 H2Se 除去用吸着剤比較

すべての吸着剤で高い吸着容量と低濃度除去性能を示し、特に吸着剤Bの吸着容量 が高かった。圧力損失に関しては、吸着剤Aと吸着剤Bは使用前後で大きな変化は見 られなかったが、吸着剤Cに関しては使用中に剤が粉化してしまい圧力損失が高くな った。

(b) H2S

H2S について吸着剤の吸着容量、低濃度除去性能、圧力損失の比較を表 3-2-2-14 に示す。

四主刘	評価項目			
败有荆	吸着容量	除去性能	圧力損失	
В	\bigtriangleup	\bigcirc	\bigcirc	
D	0	\bigcirc	0	
Е	\bigcirc	\bigcirc	\bigcirc	

表 3-2-2-14 H2S 除去用吸着剤比較

H2S に関しては、吸着容量に関しては吸着剤 D と吸着剤 E が高い吸着容量を示し、 吸着剤 B は他の 2 種と比較して 2/3 程度と低かった。低濃度除去性能に関してはすべ ての吸着剤で良好な性能を有しており、圧力損失についても使用前後で大きな変化が なかった。 以上の評価により、H2Se に関しては吸着剤A、B が燃料電池用ガス精製に適用できる可能性があり、H2S に関しては、吸着剤B、D、E のいずれも吸着剤も適用できる可能性がある。本研究では、吸着容量が最も大きい吸着剤Bと吸着剤Dを用いてベンチ 試験ならびに燃料電池用ガス精製設備の試設計を行った。

(2) ベンチ試験

ベンチ試験は実プラントでの使用条件を模擬して、スクリーニング試験で確認した 吸着性能が得られることを検証するために実施した。試験で用いた吸着剤は、スクリ ーニング試験において、H2Se に対して吸着容量が最も大きい吸着剤 B、H2S に対して 吸着容量が最も大きい吸着剤 D とした。想定したプラントの仕様(燃料電池出力)お よび通気ガス条件を表 3-2-2-15 に示す。

燃料電池出力	2.4MW
通期ガス流量	1,900Nm3/h
H2/N2 濃度	85/15
被毒成分濃度(H2S)	0.1ppm
被毒成分濃度(H ₂ Se)	0.01ppm

表 3-2-2-15 想定したプラントの仕様および通気ガス条件

ここでガス精製塔の寿命を5年とした場合、ベンチ試験で性能を評価するためには、 被毒成分濃度を上げて濃度加速にて試験する必要があるが試験時間の制約から146倍 にして試験した。H2Seの場合、146倍→1.46ppm以上並びにH2Sの場合、実機想定の 146倍→14.6ppm以上の濃度でベンチ試験を行うことで、5年の寿命を示すことから、 供給濃度はH2Seを1.5ppm、H2Sを15ppmとした。ベンチ試験条件を表 3-2-2-16に示 す。吸着塔について実プラントガス通気条件、LV:0.25m/s以下、SV:1,000hr⁻¹以下の 条件およびL/D:1.2とした。

	H2Se	H2S
カラム	H:900m $\times \phi$:22.1mm	
	0.3	45L
H2 流量	4.93]	L/min
N2 流量	0.87L/min	
H2/N2 濃度	85/15	
被毒成分濃度	1.5ppm	15ppm
吸着剤	吸着剤 B	吸着剤 D
温度	常温	350°C
LV	0.25m/s	
SV	1,000hr ⁻¹	

表 3-2-2-16 ベンチ試験条件

H2Seのベンチ試験イメージを図 3-2-2-23 に示す。H2Se ベンチ試験では、H2Se 1.5ppm を 300 時間通気した。

図 3-2-2-23 H2Se ベンチ試験イメージ

H2S ベンチ試験イメージを図 3-2-2-24 に示す。H2S ベンチ試験では、H2S 15ppm を 300 時間通気し、吸着塔排気からフィルタを介してガスバッグに捕集し性能を調べた。

図 3-2-2-24 H2S ベンチ試験イメージ

(ベンチ試験結果)

(a) H2Se

吸着剤 B における H2Se ベンチ試験の結果を図 3-2-2-25、図 3-2-2-26 に示すととも にカラム出口の分析結果を表 3-2-2-17 に示す。

図 3-2-2-25 吸着剤 B における H2Se ベンチ試験時のカラム内温度

図 3-2-2-26 吸着剤 B における H2Se ベンチ試験前後のカラム内差圧

	吸収瓶			フィルタ
	ppb			$\gamma + \gamma \nu \gamma$
	1本目	2本目	3本目	μ g/m
1~15回目	<1.0	<1.0	<1.0	<1.0

表 3-2-2-17 吸着剤 B における H2Se ベンチ試験分析結果

H2Se を供給してもカラム内温度が一定温度を保っていることから、温度制御に影響 を及ぼすような発熱はないことを確認した。また、試験前後のカラムの差圧は、試験 前後で変化は見られず吸着剤の形状も変化していないことも確認した。ガス分析の結 果では、すべての条件において定量下限値以下であったことから、低濃度リーク確認 試験の結果同様、H2Se を吸着剤 B により除去できていることが確認された。フィルタ の分析では、すべての条件において定量下限値以下であったことから、使用後の吸着 剤や被毒成分の酸化物の飛散がないことを確認した。 (b) H2S

吸着剤 D における H2S ベンチ試験の結果を図 3-2-2-27、図 3-2-2-28 に示すととも にカラム出口の分析結果を表 3-2-2-18 に示す。

図 3-2-2-28 吸着剤 D における H2S ベンチ試験前後のカラム内差圧

	吸収瓶			フィルタ
	ppb			$\gamma \gamma \mu \gamma$
	1本目 2本目 3本目			μ g/m
1~15回目	<1.0	<1.0	<1.0	<10

表 3-2-2-18 吸着剤 D における H2S ベンチ試験分析結果

H2S を供給してもカラム内温度が一定温度を保っていることから、温度制御に影響 を及ぼすような発熱はないことを確認した。また、試験前後のカラムの差圧は、試験 前後で変化は見られず吸着剤の形状も変化していないことも確認した。ガス分析の結 果では、すべての条件において定量下限値以下であったことから、低濃度リーク確認 試験の結果同様、H2S を吸着剤 D により除去できていることが確認された。フィルタ の分析では、すべての条件において定量下限値以下であったことから、使用後の吸着 剤や被毒成分の酸化物の飛散がないことを確認した。

研究開発項目③ 燃料電池用ガス精製装置の試設計 (1)燃料電池用ガス精製装置の試設計

燃料電池用ガス精製技術性能評価で得られた設計データを用いて吸着塔を試設計 し、付帯設備を含めたシステム構成について検討した。

① IGFC システム構成

本検討では、NED0「石炭ガス化燃料電池複合発電実証事業」で計画されている CO2 分離・回収型 IGFC 実証試験および NED0「ガスタービン燃料電池複合発電技術開発」 で進められている 1.2MW 級(600kW×2 並列) SOFC 開発を参考に、CO2 分離・回収型 IGFC (SOFC 容量: 2.4MW)を想定して燃料電池用ガス精製装置の検討を行った。図 3-2-2-29 に本検討で想定する CO2 分離・回収型 IGFC の全体構成を示す。

図 3-2-2-29 CO2 分離・回収型 IGFC 全体構成案

原燃料である石炭を石炭ガス化炉に供給し、一酸化炭素(CO)と水素(H2)を主成 分とする生成ガスを発生させる。生成ガスには硫化水素(H2S)や硫化カルボニル(COS) などの硫黄化合物の他、アンモニア(NH3)やハロゲン化物(HC1,HF)等の不純物が 多く含まれているため、水洗塔やH2S吸収塔などからなる湿式ガス精製設備を設置し てこれらの不純物を除去している。H2S吸収塔で硫黄分を除去した精製ガスはガスタ ービンの燃料となり、ガスタービンで発電を行う。また、高温のガスタービン排気か ら排熱回収ボイラを用いて熱を回収し、蒸気タービンで発電を行う複合発電システム が IGCC となる。

さらに、CO2 分離・回収型 IGFC システムの場合、H2S 吸収塔出口の精製ガスを CO2 分離・回収設備に導入し、シフト反応器を用いて一酸化炭素(CO)を二酸化炭素(CO2) と水素(H2)に変換し、CO2 濃度を高めて CO2 を吸収塔で除去している。そのため、 CO2 吸収塔出口のガス組成は、水素を主成分とした水素リッチガス(水素濃度:80~ 85%程度)となり、この水素リッチガスを燃料電池へ供給して発電を行うシステムが CO2 分離・回収型 IGFC となる。

② 燃料ガス条件

燃料電池用ガス精製装置は、燃料電池へ供給される燃料流量に合わせて設計する必要がある。本検討では、燃料ガスに含まれる被毒成分については、個別被毒影響評価 試験の結果を踏まえ、硫化水素(H2S)とセレン化水素(H2Se)を想定し、NED0「IGFC 向け石炭ガス化ガスのクリーンナップ要素研究」の結果を参考に H2S 濃度 0.1ppm、 H2Se 濃度 0.01ppm を想定して検討を行った。表 3-2-2-19 に燃料ガス条件を示す。

	20 MM 12 - 214 1
燃料電池出力	2.4MW (DC 端)
燃料組成	水素:80%、窒素:20%
燃料流量	1,900Nm ³ /h
燃料入口温度	40°C
燃料入口圧力	2.0MPa
燃料中 H ₂ S 濃度	0.1ppm
燃料中 H ₂ Se 濃度	0.01ppm
燃料流量 燃料入口温度 燃料入口圧力 燃料中 H ₂ S 濃度 燃料中 H ₂ Se 濃度	1,900Nm ³ /h 40°C 2.0MPa 0.1ppm 0.01ppm

表 3-2-2-19 燃料ガス条件

③ 燃料電池用ガス精製装置のシステム構成

燃料電池用ガス精製装置のシステム構成としては、燃料電池に供給される燃料を脱 硫塔と水素化物吸着塔に全量通気し H2S と H2Se を除去するものとした。

また、脱硫塔の運転温度は約 350℃となるが、CO2 分離・回収設備出口の水素リッ チガスの温度は 40℃であるためヒータを用いて昇温しヒータ熱量を試算した。

燃料電池用ガス精製装置構成例を図 3-2-2-30 に示す。

図 3-2-2-30 燃料電池用ガス精製装置構成例

④ 脱硫塔の試設計

脱硫塔の設計では、脱硫剤の量論的な必要量は燃料ガス中のH2S 濃度、脱硫剤の吸 着容量および交換周期(寿命)から吸着剤の充填容量、塔内径、充填層高さを決定す る必要がある。吸着剤の吸着容量については、燃料電池用ガス精製技術性能評価に おいて実施したスクリーニング試験の結果をもとに脱硫塔の線速度(LV値)、空塔速 度(SV値)および脱硫塔の内径Dに対する充填層高Hの比(H/D)から充填量を設定 した。なお、吸着容量の単位[L/L]は吸着剤の単位体積[L]あたり吸着可能な被毒成分 の容量[L]、および単位[L/kg]は吸着剤の単位重量[kg]あたり吸着可能な被毒成分の 容量[L]を表す。表 3-2-2-20 に脱硫塔の設計条件を示す。

	12 11 1910	
燃料流量	:	1,900 Nm ³ /h
燃料中 H ₂ S 濃度	:	0.1 ppm
運転圧力	:	2.0 MPa
運転温度	:	350 °C
設計流量	:	206 m ³ /h
設計線速度 LV	:	0.25 m/s
設計空塔速度 SV	:	1,000 h^{-1}
設計 H/D	:	1.2
設計四美容量	:	63 L/L
叹可以自分里	:	70 L/kg

表 3-2-2-20 脱硫塔の設計条件

上記の設計条件で検討すると、年間あたりの燃料量は 16,644,000Nm³/年、年間あ たり処理される H2S 量は 1.66Nm³/年となる。そのため、脱硫剤の交換周期を 5 年に 仮定すると H2S 処理量は 8.32Nm³となり、脱硫剤の吸着容量から求められる量論的な 必要量は約 0.133m³(約 119kg)となる。検討の結果、設計 LV や設計 SV から求められ る脱硫剤充填層のサイズは ϕ 540mm×1,300mmH(充填容量: 0.3m³、約 270kg)となり、 量論的な必要量に対して裕度を持った充填容量となる。表 3-2-2-21 に脱硫塔の設計 仕様、図 3-2-2-31 に脱硫塔概略図を示す。

表 3-2-2-21	-2-21 脱硫塔設計仕様	
充填層サイズ	:	ϕ 540mm $ imes$ 1, 300mm
脱硫剤充填量	:	$0.30m^3$ (270kg)
SV 值	:	約 687 h ⁻¹

機器名 脱硫塔 数量 1 内径 540mm 長さ 1,300mm 処理流量 1,900Nm3/h 設計温度 350℃ 設計圧力 2,0MPa 材質 SUS 充填量 270kg

図 3-2-2-31 脱硫塔概略図

④ 水素化物吸着塔の試設計

脱硫塔と同様、2.4MW 機を想定すると、年間あたりの燃料ガス量は 16,644,000Nm³ /年、年間あたり除去すべき H2Se 量は 0.17Nm³/年となる。そのため、吸着剤の交換 周期を 5 年と仮定した場合、H2Se の総処理量は 0.83Nm³となり、吸着剤の吸着容量か ら求められる量論的な吸着剤の必要量は 0.01m³(約 9kg)となる。表 3-2-2-22 に水素 化物吸着塔の設計条件を示す。

:	1,900 Nm ³ /h
:	0.01 ppm
:	2.0 MPa
:	40 °C
:	104 m ³ /h
:	0.25 m/s
:	1,000 h ⁻¹
:	1.2
:	90 L/L
:	90 L/kg

表 3-2-2-22 水素化物吸着塔の設計条件

水素化物吸着塔の設計についてはベンチ試験で確認した吸着性能を確保するため、 線速度 LV=0.25m/s 以下、空塔速度 SV=1,000h⁻¹以下の条件を満足する必要がある。 検討の結果、吸着剤充填層サイズは \$\phi 380mm \times 1,700mm (充填容量:0.2m³、約200kg) となり、必要吸着剤量に対して十分裕度を持った設計となる。表 3-2-2-23 に水素化 物吸着塔の設計仕様、図 3-2-2-32 に水素化物吸着塔概略図を示す。

A02220		/次有41以时114
設計LV	:	0.25 m/s
設計 H/D	:	1.2
吸着塔サイズ	:	ϕ 380mm $ imes$ 1, 700mm
吸着剤充填量	:	$0.20m^3$ (200kg)
SV 値	:	約 520 h ⁻¹

表 3-2-2-23 水素化物吸着塔設計仕様

図 3-2-2-32 水素化物吸着塔概略図

(2)燃料電池出力と燃料電池用ガス精製装置容量に関する検討

燃料電池と燃料電池用ガス精製装置による脱硫塔や水素化物吸着塔の容器サイズ およびヒータ容量について検討した。

図 3-2-2-33 に燃料電池出力と燃料流量の関係を示す。水素リッチガス(水素 80: 窒素 20)、ガス圧力 2.0MPa、燃料電池の燃料利用率を 80%に想定すると、燃料電池出 力 5MW での燃料流量は約 4,000Nm³/h であるが、20MW クラスになると約 16,000Nm³/h 規模となる。

次に、燃料電池出力と塔サイズの関係について図 3-2-2-34、燃料電池出力と吸着剤 充填量の関係について図 3-2-2-35 に示す。

本検討では、設計線速度 LV=0.25、設計空塔速度 SV=1000h⁻¹、充填層高 H と塔内径 D の比を H/D=1.2 として検討した。水素化物吸着塔については、燃料ガス中の H2Se 濃度が低く、運用温度が常温となることが想定されるため、脱硫塔よりもコンパクト

な設計となる。設計 LV=0.25m/s を満足するように塔内径 D を決定すると燃料電池の 出力が 15MW クラス以上になると 1m を超えるサイズとなる。また、充填容量は 9MW 未 満では H/D から求められる充填容量が小さく SV=1000h⁻¹以下を満足できないため、設 計 SV から充填容量を設計する必要がある。なお、9MW 以上になると H/D=1.2 により充 填容量が求められる充填容量が大きくなり、SV=1000h⁻¹以下を満足することができる。 また、17MW クラス以上で充填容量(重量)は 1t を超える規模となる。

燃料電池の出力規模を1MW、5MW、10MW、20MW とした場合の燃料電池ガス精製装置の概略仕様について表 3-2-2-24 に示す。

燃料電池出力		MW	1	5	10	20
水素リッチガス流量		Nm3/h	800	4,000	8,000	16,000
脱硫塔	塔内径D	m	0.360	0.790	1.120	1.570
	充填層高H	m	0.870	0.950	1.350	1.890
	脱硫剤重量	t	0.078	0.414	1.179	3.285
水素化物 吸着塔	塔内径D	m	0.260	0.560	0.790	1.120
	充填層高H	m	0.847	0.894	0.950	1.350
	水素化物吸着剤重量	t	0.044	0.218	0.460	1.310

表 3-2-2-24 燃料電池出力とガス精製装置概略仕様

次に、燃料電池用ガス精製装置に設置する熱交換器について概略検討を行った。図 3-2-2-36に燃料電池用ガス精製装置構成例を示す。前述の通り、脱硫塔の運転温度は 350℃であるが、水素化物吸着塔の運転温度は常温となるため、脱硫塔前に再生熱交 換器とヒータを設置し、水素化物吸着器の上流側にクーラを設置する構成が考えられ る。

図 3-2-2-37 に燃料電池出力とヒータ容量の関係、図 3-2-2-38 に燃料電池出力とク ーラ冷却水量の関係を示す。

燃料電池の出力規模が増加するのに伴い燃料流量が比例して増加するが、脱硫塔の 運転温度を確保するために外部から供給する熱量は極力抑えるほうが好ましい。図 3-2-2-37より再生熱交換器での交換熱量が大きく温度差を大きくとるほどヒータ容 量が小さくなる。さらに、水素化物吸着塔の上流に設置するクーラについても再生熱 交換器での交換熱量が大きくなるほど、冷却水の流量を少なくできる。

そのため、燃料電池の規模が大きくなるほど、再生熱交換器の容量を大きくし、最 適化を図る必要があると考えられる。また、燃料流量が大きくなるほどクーラ出口の 凝縮水が増加するため、ノックアウトドラムを設ける必要がある。

図 3-2-2-36 燃料電池用ガス精製装置構成例

図 3-2-2-38 燃料電池出力とクーラ冷却水量の関係

3. 総括及び結論

国立研究開発法人新エネルギー・産業技術総合開発機構の委託事業として 2015 年9 月から 2018 年 2 月末まで実施した「ゼロエミッション石炭火力技術開発プロジェク ト/ゼロエミッション石炭火力基盤技術開発/燃料電池向け石炭ガスクリーンナッ プ技術要素研究」において得られた成果の要約は以下の通り。

3.1 セル被毒耐性評価

燃料電池用ガス精製技術を検討するにあたり、IGFCへの適用が期待される三菱日立 パワーシステムズ(株)製「円筒横縞形固体酸化物形燃料電池(SOFC)」の実セルを 用いて被毒影響を与える成分を特定するための個別被毒影響評価試験を実施した。ま た、石炭ガス中の主要な不純物である硫化水素(H2S)と塩化水素(HC1)の影響を長 期で確認するための長期被毒耐性評価試験を実施した。

(1) 個別被毒影響評価試験

石炭ガス中に存在する可能性の高い被毒成分としてアルシン(AsH3)、ホスフィン (PH3)、セレン化水素(H2Se)、ジボラン(B2H6)、塩化水素(HC1)、硫化水素(H2S) について、それぞれ被毒試験を実施した。

①アルシン(AsH3)については、被毒による電圧低下は確認されなかった。また、被 毒試験後のセル分析では基体管内表面に As が確認されたが、燃料極には検出されて おらず、基体管によって As が燃料極に侵入することを防いでいると考えられる。一 方、排燃料系統にセルの構成材料であるZr等を多く含んだ付着物が確認されており、 AsH3 はセルを分解している可能性が示唆される。

②ホスフィン(PH3)については、被毒による電圧低下は確認されなかった。また、 セル分析の結果、基体管内表面に粒状の物質が付着しており、Pであることが確認さ れた。また、基体管内部にもPが検出されたが、燃料極には確認されておらず、基体 管によってPの侵入を防いでいると考えられる。

③セレン化水素(H2Se)については、被毒による明確な電圧低下が確認された。H2Se 濃度 1ppm で約 8%、0.5ppm で約 7%程度の比較的大きな電圧降下が生じた。また、セル 分析では基体管内部および燃料極にも Se が検出されており、燃料極に到達した Se に よって電圧低下が生じていると考えられる。

④ジボラン(B2H6)については、被毒による電圧低下は確認されなかった。また、セル分析の結果、いずれの箇所にもBは検出されなかった。

⑤塩化水素(HC1)については、他よりも高い 10ppm で被毒試験を実施したが、被毒 による電圧低下は生じておらず、セル分析でも C1 は検出されなかった。しかし、試 験後の排燃料系統に塩化アンモニウム(NH4C1)の結晶が付着していることが確認さ れた。これは、セル内部で生じたアンモニア(NH3)と HC1 が反応して NH4C1 を生成 し、低温部で析出したものと考えられる。そのため、HC1 はセルの被毒は生じないも のの、小口径配管などでは配管閉塞などの影響を生じる懸念がある。

⑥硫化水素(H2S)については、被毒による明確な電圧降下が確認された。H2S 濃度 1ppmでは約3%、0.5ppmで約2.7%の電圧降下であった。また、被毒試験後のセル分析 の結果、基体管や燃料極に広くSが検出されており、燃料極では触媒Niが粗大化し ている様子も確認された。

<まとめ>

燃料電池の性能に大きな影響を及ぼす被毒成分は H2Se と H2S であることが判明した。また、セル分析の結果、電圧低下を生じた H2S と H2Se は燃料極中にも S や Se が存在していたが、その他の成分については燃料極中には確認されておらず、基体管表面または内部にのみにとどまり、電圧低下を発現するまでには至らなかったと考えられる。なお、AsH3 については電圧低下等の影響は生じていないものの、セルを分解している可能性が示唆される。

(2) 長期被毒耐性評価試験

石炭ガス中の主要な被毒成分である H2S と HC1 を各 1ppm ずつ燃料に添加し、約 7,526 時間の被毒試験を実施した。試験の結果、被毒成分を添加した 40 時間後から約 3%程度の電圧低下が生じ、セルの入口素子から出口素子にかけて順に電圧低下が進 行している様子が確認された。また、セル電圧低下が一定値に収束して以降、約5,500 時間程度試験を継続したが経時的な電圧低下は確認されなかった。なお、個別被毒影 響評価試験では HC1 による電圧低下は生じていないことから、電圧低下は H2S に起因 するものと考えられる。なお、性能表示式による解析の結果、燃料極反応抵抗が被毒 前に比べて約 2.3 倍に増加していることが判明した。また、被毒試験後のセル分析で は、基体管や燃料極に S や C1 が広く分布している様子や燃料極/電解質界面に C1 が 帯状に存在している様子などが確認された。

本試験の結果から、既存のガス精製技術を用いて燃料電池入口 H2S 濃度を 1ppm 以 下に抑えれば最大 3%程度の電圧低下が生じるものの、燃料電池の運転継続は可能と 考えられる。さらに、本研究で別途評価した脱硫剤は H2S を定量下限以下まで除去で きる能力を有しており、現行技術を用いて十分な対策を講じることが可能と判断され る。

3.2 燃料電池用ガス精製技術性能評価

石炭ガス中の被毒成分を除去するための燃料電池用ガス精製として適用可能な化 学吸着を利用した吸着剤についてスクリーニング試験を実施した。さらに燃料電池用 ガス精製の設計に必要なデータを確認するためのベンチ試験を実施した。

(1) スクリーニング試験

石炭ガス中に含まれるアルシン(AsH3)、ホスフィン(PH3)、セレン化水素(H2Se)、 ジボラン(B2H6)等の水素化物用吸着剤として3種類、塩化水素(HC1)用吸着剤2 種類、硫化水素(H2S)用吸着剤3種類について吸着容量試験および低濃度リーク確 認試験を実施した。

①吸着容量試験

本試験では被毒成分濃度を 2,000ppm として供給し、吸着剤が破過するまでの吸着容量を確認した。試験の結果は以下の通り。

(i) 水素化物用吸着剤

今回供試した3種類の吸着剤については、いずれもH2Seに対して大きな吸着容量 を示し、H2Seは比較的除去しやすい成分であることが確認された。そのため、セル被 毒耐性評価で被毒影響が確認されたH2Seに対しても除去対策が可能であると考えら れる。さらに、AsH3に対しては吸着容量が比較的小さいものの、吸着除去可能である ことを確認した。

(ii) 硫化水素用吸着剂

今回供試した3種類の吸着剤については、いずれもH2Sを吸着除去が可能であり、 吸着剤D(Zn系)の吸着容量が最も大きいことを確認した。

(iii) 塩化水素用吸着剤

今回供試した2種類の吸着剤ともHC1に対して大きな吸着容量を有することを確認した。

②低濃度リーク確認試験

実ガス中の濃度レベルを想定し、各被毒成分を 1ppm や 0.1ppm の低い濃度で供給し た場合における吸着性能を確認した。試験の結果、いずれの吸着剤についてもカラム 出口に被毒成分は検出されず、被毒成分が低濃度であってもリークすることなく定量 下限値以下まで除去可能であることを確認した。

なお、低濃度リーク試験ではカラム出口の被毒成分を測定するために吸収液法を採用したことから、別途、被毒成分を捕集するための吸収液およびサンプリング条件を検討した。その結果、HC1、H2Se、PH3、AsH3の測定に適した吸収液を選定することができた。今回確認した吸収液は、実プラントにおける被毒成分の測定用吸収液として適用できる。

(2) ベンチ試験

個別被毒耐性評価試験で被毒影響が確認された H2Se および H2S に対して高い吸着 容量を有する吸着剤 B(Cu系)と吸着剤 D(Zn系)を用いて、実プラントでの使用条 件を想定して吸着性能を確認した。試験の結果、いずれの試験においてもカラム出口 へのリークや異常な温度上昇は確認されず、実プラントにも適用可能な条件であるこ とを確認した。

(3) 吸着剤分析評価

吸着容量試験前後の吸着剤について細孔特性や被毒成分の吸着濃度、吸着状態等を

分析し、カラムにおける吸着剤の消費状況を確認した。分析の結果、被毒成分が吸着 剤の主成分と反応し、吸着されている状態を確認した。また、カラム内の吸着分布を 把握した。

3.3 燃料電池用ガス精製装置の試設計

出力 2.4MW の燃料電池を想定し、燃料電池用ガス精製装置のシステム構成を検討するとともに、脱硫塔および水素化物吸着塔の試設計を行った。

試設計の結果、IGFC の場合 2MPa 程度の高圧となるため実流量が少なく、被毒成分 濃度も低いことから脱硫剤および水素化物用吸着剤の充填容量は数100kg 程度のレベ ルになることを確認した。また、燃料電池容量に対する燃料電池用ガス精製装置の容 量について検討を行った結果、燃料電池が10MW 級以上になると脱硫剤は1tを超え、 20MW 以上で水素化物吸着塔も1tを超える規模になることを把握した。なお、実プラ ントの設計においてはCO2 分離・回収設備出口における被毒成分濃度を確認し、設計 条件を見直す必要がある。

2-3. 燃料電池モジュールの石炭ガス適用性研究

1. 研究概要

「次世代火力発電に係る技術ロードマップ」において、石炭ガス化燃料電池複合 発電(IGFC)の開発方針として、2025年度頃の技術確立、発電効率55%及び量産後 従来機並の発電単価の実現を目指すことが示されている。現在開発されている固体 酸化物形燃料電池(SOFC)は、主に天然ガス(主成分:CH4)を燃料としており、石 炭ガス(COリッチガス:主成分CO/H2/N2)やCO2分離・回収後の石炭ガス(水素リ ッチガス:主成分H2/N2)を燃料とする場合、特性が異なると想定されるため、事 前の検証にて課題を抽出し対策を検討することが重要となる。

本プロジェクトでは、天然ガスを燃料として三菱日立パワーシステムズ(株)で開発された固体酸化物形燃料電池(SOFC)(以後、燃料電池という)とマイクロガス タービンを組み合わせた250kW級燃料電池モジュール設備を用いてCO2分離・回収型 IGFCを想定した石炭ガス(水素リッチガス)の適用性について試験を行い、発電特 性や運転制約の有無を確認した。

2. 実施内容

研究開発項目① 水素リッチガス適用および石炭ガス化設備連係に係る運転・制御性 の検討

水素リッチガスを燃料として使用する場合、天然ガスを燃料とする場合と比較し、 改質反応による吸熱が無くなることによりカートリッジ内の熱バランスが変化し、セ ルスタックおよび各ガス温度が上昇することが予想される。それに伴いセルスタック 温度、金属部材温度(ヘッダ温度、管板温度)が上昇し、耐熱温度を超過する可能性 が懸念された。図 3-2-3-1 にセル廻りの温度分布のイメージを示す。

そのため、水素リッチガス混合比や運転パラメータがカートリッジ熱バランスに与える影響を検討するためにCFDを用いた電気-熱流動-化学反応連成解析手法を用いてモジュール中のセルスタックを模擬したモデルでの熱バランス解析を実施した。

図 3-2-3-1 天然ガスおよび水素リッチガス供給時のセル廻り温度分布イメージ

(a)水素リッチガス混合比変化

水素リッチガス混合比を 0%~100%まで変化させた場合の影響を確認するため、4 モデルケース(天然ガス、水素ガス、水素ガス混合比 50%、水素ガス混合比 25%)の 解析を行い、別途実施したカートリッジ試験の結果(3.参照)と比較した。

その結果、温度分布の傾向や最高温度を概略再現していることを確認した。水素混 合比が上昇すると、セルスタック最高温度の位置がセルスタックの中央部から上部方 向にシフトすると共に最高温度が高くなった。これは、水素リッチガス混合比増加に 伴い、セルスタック内部での改質反応が発生する領域が減少することで最高温度とな る場所が上部方向へシフトしたものと考えられる。図 3-2-3-2 に解析結果を示す。

図 3-2-3-2 水素混合比変化時のセルスタック温度分布

(b)入口燃料温度変化

水素リッチガス100%条件における温度分布改善を目的として、上部側の入口燃料温度の変化が温度分布に及ぼす影響について解析を実施した。図 3-2-3-3 に解析結果を示す。

カートリッジ試験では入口燃料温度が低下することによりセルスタック温度もわ
ずかに低下することを確認した。解析結果でも同様であり、試験結果を再現し、試験 結果の妥当性を確認できた。

図 3-2-3-3 入口燃料温度変化時のセルスタック温度分布

(c)再循環流量変化

水素リッチガス 100%条件における温度分布改善を目的として再循環流量の変化が 温度分布に及ぼす影響について解析を実施した。図 3-2-3-4 に解析結果を示す。

再循環流量を増加すると、セルスタック内で最高温度となる位置が下側へシフトし、 下部側の温度が上昇してセルスタック温度分布を大幅に改善できることを確認した。

図 3-2-3-4 再循環流量変化時のセルスタック温度分布

(d)システム利用率変化

燃料投入量を調整してシステム燃料利用率を変化させた時の、セルスタック温度分 布に及ぼす影響を確認した。

カートリッジ試験の設備上の制約から、システム燃料利用率の低下は未実施であったが、解析手法によりシステム燃料利用率低下時の温度分布の変化を予測した。図 3-2-3-5 に解析結果を示す。

システム燃料利用率を 82%から 70%へ低下させると、セルスタックの最高温度が 15℃程度低下する結果となった。システム燃料利用率を低下するには燃料投入量を増 加することになり、燃料増加による冷却効果が大きくなったことが影響したと考えら れる。

図 3-2-3-5 システム燃料利用率変化時のセルスタック温度分布

(e)入口空気温度変化

セルスタック温度分布の改善効果を確認するために、セルスタック下部側から供給 する入口空気温度を変化させた時の温度分布を予測した。図 3-2-3-6 に解析結果を示 す。

入口空気温度が高いほどセルスタック下部温度が上昇することを確認したが、中 部・上部もほぼ同等に温度が上昇し、セルスタック最高温度も上昇した。そのことか ら、入口空気温度変化によるセルスタック温度分布の改善効果は比較的小さいことが 分かった。

図 3-2-3-6 空気入口温度変化時のセルスタック温度分布

(f)C02 濃度変化

石炭ガス化ガスから CO2 分離回収した水素リッチガスでは、一部の CO2 が残留する ことも想定されることから、CO2 濃度がセルスタック温度分布へ及ぼす影響を確認す るため、CO2 濃度を 0%、3%、8%に変化させて解析を実施した。図 3-2-3-7 に解析結果 を示す。

水素リッチガス中の CO2 濃度の上昇に伴い、セルスタックの最高温度が低下し、上 部温度も低下した。これはCO2を含まない水素リッチガスでは水性ガスシフト反応(CO + H20 \leftrightarrow CO2 + H2)が発生しないが、CO2 を添加することで水性ガス逆シフト反応が 生じ、逆シフト反応の吸熱によりセルスタックの上部温度が低下したものと考えられ る。一方、セルスタック下部では逆シフト反応により生じた CO によるメタネーショ ン反応 (CO + 3H2 \rightarrow CH4 + H2O)の発熱により下部温度が上昇し、セルスタック温 度分布が改善する傾向が見られた。

図 3-2-3-7 CO2 濃度変化時のセルスタック温度分布

(ii)再循環冷却器検討

上記の検討により、水素リッチガス適用に伴う温度上昇対策として、入口燃料温度 を下げる運用が有効であると考え、再循環ガスを冷却するための再循環冷却器を追設 し、燃料電池モジュールの設計に反映した。図 3-2-3-8 に燃料電池モジュールの概略 系統を示す。

図 3-2-3-8 燃料電池モジュールの概略系統

研究開発項目② 燃料電池モジュール試験設備の設計・製作・据付

三菱日立パワーシステムズ(株)で開発された固体酸化物形燃料電池(SOFC)とマイクロガスタービンを組み合わせた250kW級燃料電池モジュール試験設備(図 3-2-3-9)やユーティリティ供給設備(図 3-2-3-10)等の据付工事および試運転調整を実施し、2017年11月末までに据付を完了した。

		平成29年(2017)										
	1	2	3	4	5	6	7	8	9	10	11	12
水素トレーラー庫工事												
基礎工事												
外構工事												
電源設備工事					_							
ユーティリティ供給設備 据付工事				(機器製作				試運転調整	据付工事			
燃料電池モジュール試験 設備据付工事				(機器製作)				裁調整・試	据 運転	付工事	

兼	3-	-2-	-3-	-1	工程表
1	U.	4	U	- L	

図 3-2-3-9 燃料電池モジュール試験設備

(a)LNG/N2 供給設備

(b)水素供給設備

図 3-2-3-11 試験設備概略系統

研究開発項目③ 燃料電池カートリッジ試験

燃料電池モジュールの基本構成単位となるカートリッジ(出力 25kW 級)を用いて 水素リッチガス(H2/N2)適用時の発電特性や温度挙動等の基礎データを取得し、燃 料電池モジュールでの水素リッチガス試験の詳細計画に反映した。

2016 年度はカートリッジの製作、据付を行うとともに試験を開始し、2017 年度に かけて水素リッチガス適用時のデータを取得した。本試験では、水素リッチガス運転 による電流-電圧特性等の発電特性やカートリッジ各部の温度データを取得した。特 に、燃料電池モジュールを用いた試験ではモジュール内の計測点数が限られることか ら、カートリッジ試験にてカートリッジ各部の詳細な温度測定を行い、温度分布を把 握した。

図 3-2-3-12 燃料電池カートリッジ試験

(i) LNG での発電特性確認試験

LNG100%でのリファレンスデータを取得するための発電特性確認試験を行った。装置起動後、運転圧力230kPaGへの加圧操作を行い、燃料・空気加熱ヒータにて発電室燃焼開始温度まで昇温後、LNGでの発電室燃焼によりセル温度を発電可能温度(800℃以上目安)まで昇温し、定格負荷までの負荷上げを実施した。その後、温度を静定させデータを取得した。図 3-2-3-13 にセル温度分布を示す。この結果から、LNG における発電特性を確認した。LNG での運転では主成分であるメタンの改質反応により上部温度が下がるため、中部温度が最高温度となった。

図 3-2-3-13 LNG 発電時の温度分布

(ii) 水素リッチガスでの発電特性確認試験

水素リッチガス混合率を0%、25%、50%、75%、100%と徐々に増加した際の発電性能、 温度分布、管板温度の上昇有無を確認したところ、水素リッチガス混合率を増加させ るとセル最高温度は上昇傾向となった。なお本燃料電池では、設備保護のため発電室 最高温度を930℃以下になる様に電流値を増減する自動運転制御を行う。図 3-2-3-14 に示すように、水素リッチガス混合率上昇に伴いセル上部温度が上昇し、下部温度が 低下する傾向が見られた。水素リッチガス 100%条件では、LNG の定格負荷での出力の約 75%の出力が得られた。

図 3-2-3-14 水素リッチガス混合率変化時の温度分布 ([]は都市ガス運転時を 100%とした時の出力割合)

研究開発項目④ 燃料電池モジュール基本特性確認試験

液化天然ガス(LNG)を用いて燃料電池モジュールの起動・停止時のプラント挙動、 発電特性、温度分布等の水素リッチガス運転時のリファレンスとなる基本性能を確認 した。図 3-2-3-15 に運転実績を示す。

項目	実績
目標定格出力	最大 250.6kW(AC) SOFC:215.7kW MGT: 34.9kW
目標発電効率	最大 55.0% (AC)
システム燃料利用率	最大 83.0%
空気利用率	最大 25.2%
運転時間	402時間

表 3-2-3-2 基本特性確認試験での運転実績表

研究開発項目⑤ 水素リッチガス切替試験

図 3-2-3-16 に水素リッチガスでの運転実績を示す。LNG 運転中に水素リッチガスを 供給して徐々にその割合を高め、最終的に水素リッチガスのみの運転に切替える試験 を実施した。図 3-2-3-17 に水素リッチガス試験時の発電室温度分布、図 3-2-3-18 に 水素リッチガス切替試験時の発電出力推移を示す。試験の結果、水素リッチガスの混 合割合の増加に伴い、カートリッジ試験と同様にメタン改質による吸熱が減少するこ とで、上部温度が大きく上がり、下部温度が低下した。また、上部温度を管理値以下 に抑えるため、電流を下げた結果、出力が 74%程度まで低下した。

図 3-2-3-17 水素リッチガス切替試験時の温度分布

図 3-2-3-18 水素リッチガス切替試験時の発電出力推移

研究開発項目⑥ 水素リッチガス最大負荷試験

水素リッチガスのみで運転可能な最大負荷を確認し、発電特性や温度挙動を確認した。

(a)入口燃料温度変化

図 3-2-3-19 に入口燃料温度を変化させた時の発電室温度・出力推移を示す。入口 燃料温度は再循環冷却器を用いて下げることができる。再循環冷却器の空気ファン (冷却器再循環冷却ファン)の回転数を変化させ、温度を調節した。入口燃料温度を 75℃下げると、上部温度がわずかに低下することで、出力が2%程度上昇したことを確 認した。

図 3-2-3-19 入口燃料温度変化時の発電室温度・出力推移

(b)再循環流量変化

図 3-2-3-20 に再循環流量を変化させた時の発電室温度・出力推移を示す。再循環 流量を 65Nm3/h 増やすと、上部温度が低下し、下部温度が上昇した。また、発電出力 においても 2%程度の改善を確認した。これは、ガス流量の冷却効果が大きくなり、最 高温度が下がったため、電流上昇につながったと考えられる。

図 3-2-3-20 再循環流量変化時の発電室温度・出力推移

(c)入口空気温度変化

図 3-2-3-21 に入口空気温度を変化させた時の発電室温度・出力推移を示す。入口 空気温度を 10℃下げると、出力は 1%程度向上した。これは、モジュール供給空気の 冷却効果が大きくなり、最高温度が下がったため、電流上昇につながったと考えられ

図 3-2-3-21 入口空気温度変化時の発電室温度・出力推移

(d)システム燃料利用率変化

図 3-2-3-22 に入口空気温度を変化させた時の発電室温度・出力推移を示す。シス テム燃料利用率を 78%から 70%まで下げた結果、流量増加により上部温度が下がり、 温度分布が改善されることを確認した。また、出力も 5%程度改善され、発電性能の向 上に大きく寄与することを確認した。これは、温度分布の改善に加え、燃料の供給流 量増加により再循環系統内の水素濃度上昇による電圧向上のためと考えられる。

図 3-2-3-22 システム燃料利用率変化時の発電室温度・出力推移

(e)最大負荷試験

以上の条件を全て出力が大きくなる様に調整し、水素リッチガス適用時の出力改善

効果を確認した。図 3-2-3-23 に水素リッチガス最大負荷試験時における発電出力の 推移を示す。水素リッチガス切替後のベース条件から、再循環流量や入口燃料温度等 のパラメータを調整することで、発電出力を 11%程度改善することができた。

図 3-2-3-23 水素リッチガス最大負荷試験における発電出力推移

研究開発項目⑦ 水素リッチガス起動・停止試験

実証機ではLNGを使用できないことから、水素リッチガスでの燃料電池モジュールの起動・停止試験を実施した。燃料電池を起動するには発電反応が起きる温度まで昇温する必要があるが、発電室温度を上げるために、空気極側に燃料を注入し発電室燃焼をさせることで昇温している。適切な燃料制御を行わないと自着火現象が発生し、燃料系統の配管部を損傷させてしまうため、制御調整を行った。その結果を図 3-2-3-24 に示す。水素リッチガスのみを用いた場合でも、水素リッチガス用に制御調整を行うことで起動・停止が可能であることを確認した。また、水素リッチガスでの 停止過程についても、LNGと同様の挙動を示すことを確認した。

図 3-2-3-24 LNG および水素リッチガスにおける起動・停止実績

研究開発項目⑧ 実証機模擬ガス試験

(1) 実証機模擬ガス切替試験

これまでは CO2 分離回収後の水素リッチガス組成である H2:85%とするため、H2 と N2 の 2 種類のガスで組成調整して試験を行ってきたが、実証機である CO2 分離回収後

のガスには H2, N2 以外に CO2, CO, CH4 も含まれると想定される。そのため実証機に則 したガス組成とするため CO2, CO, CH4 の炭素成分をまとめて CO2 で代替し、水素リッ チガスに CO2 を添加したガスを「実証機模擬ガス」として試験を行った。図 3-2-3-25 に実証機模擬ガス切替時の発電室温度分布の推移を示す。カートリッジ試験で得られ たように、最大温度が発電室上部から発電室中部へ移動する傾向にあることを確認し た。この結果から CO2 が発電室温度の分布に影響を与えることが明らかになった。更 に実証機には CO2 以外に CO が含まれていることから CO の影響も想定され、CO を含む ガスでの試験が望まれる。

図 3-2-3-25 発電室内温度分布の推移

(2) 最大負荷試験

水素リッチガス適用時において、パラメータ調整による出力改善効果を確認したが、 実証機模擬ガスでも同様にパラメータ調整による最大負荷を確認した。

図 3-2-3-26 に実証機模擬ガスでの最大負荷試験時における発電出力の推移を示す。 ベース条件を比較すると実証機模擬ガスでは水素リッチガスよりも出力が高いこと が確認された。再循環ガスを分析したところ、CO が検出されたことから、逆シフト反 応により吸熱が進み、その分電流上昇につながったことが考えられた。

また、どのパラメータ変化に対しても、水素リッチガスと同様の傾向で出力が変化 し、ベース条件から 8.5%程度の出力改善を行うことができた。この結果から少量の C02 添加においても発電特性に影響を及ぼすことがわかった。

図 3-2-3-26 実証機模擬ガス最大負荷試験における発電出力推移

(f)起動·停止試験

実証機模擬ガスを用いた燃料電池モジュールの起動・停止試験を実施した。発電室 燃焼には水素濃度を密度計で常時測定し制御調整を行っているが、CO2 により密度変 化が生じ制御パラメータが変化することから、密度補正を行い適切な制御が行われる 様に制御ロジックの調整を行った。制御調整を行うことでCO2 を添加した場合におい ても、自着火することなく起動することができた。その結果を図 3-2-3-27 に示す。 水素リッチガスと比較するとほぼ同等の起動・停止時間となった(水素リッチガスで の起動に関しては保持時間を除いた時間とする)。

図 3-2-3-27 水素リッチガスおよび実証機模擬ガスにおける起動・停止実績

研究開発項目⑨ 石炭ガス化炉連係試験

石炭ガス化炉との連係運転時におけるプラント挙動および制御性について、電源開 発株式会社 若松総合事業所に設置の石炭ガス化炉との連係試験を行う。昨年度実施 した「ゼロエミッション石炭火力技術開発プロジェクト/ゼロエミッション石炭火力 基盤技術開発/燃料電池向け石炭ガスクリーンナップ技術要素研究」での成果を基に、 現在、石炭ガス化炉から供給される石炭ガス中の SOFC 被毒成分を除去するための燃 料電池用ガス精製設備を設置し、試験を実施している。

図 3-2-3-28 燃料電池用ガス精製設備の概略系統

図 3-2-3-29 燃料電池用ガス精製設備(追設工事中)

研究開発項目⑩ 石炭ガス(C0リッチガス)適用に係る技術検討

「ゼロエミッション石炭火力技術開発プロジェクト/ゼロエミッション石炭火力基 盤技術開発/燃料電池向け石炭ガスクリーンナップ技術要素研究」で評価した吸着剤 を対象に C0 リッチガスにおける吸着性能を評価した。また加圧下にて吸着剤を使用 するため還元ガス雰囲気における吸着剤の還元開始温度(吸着剤と還元ガスが反応し 始める温度。吸着剤は還元すると機能しなくなる。)の圧力依存性を調べた。

結果、C0 リッチガス雰囲気においても吸着剤の吸着容量に変化はなかった。一方で、 吸着剤の還元開始温度に関して、C0 リッチガスとすることで吸着剤 A は還元開始温度 が上がり、吸着剤 B は還元開始温度が下がる結果となった。この結果から、吸着剤の 使用温度(40℃)においては、吸着剤 A の方が還元開始までの温度差を取れることか ら、より安定して使用できることが分かった。

今回の石炭ガス連係試験では C0 リッチガス環境下での使用となることから、吸着 剤 A を採用することとした。表 3-2-3-3 に還元ガス雰囲気における吸着剤の還元開始 温度を示す。

吸着剤	圧力 [MPa]	水素リッチガス [℃]	C0 リッチガス [℃]
吸着剤 A	大気圧	180	216
	0.3	154	190
	0.6	136	186
	0.9	132	182
吸着剤 B	大気圧	140	94
	0.3	130	76
	0.6	123	72
	0.9	120	70

表 3-2-3-3 還元ガス雰囲気での吸着剤還元開始温度

研究開発項目⑪ 燃料電池モジュールの解体調査

石炭ガス化炉連係試験終了後、炭素析出や微量な不純物の影響を確認するため、燃料電池モジュールを圧力容器から取り出した後、解体調査を行い内部の状況を確認す る。

2-4. IGFC システムの検討

1. 事業全体の成果

本研究において、IGFCの技術確立に向けた実証機について、SOFC 設備として「600kW 級モジュールの2並列」と容量を決定。CO2分離回収後の水素リッチガスを用い SOFC 設備の試験を行う設備の試設計を完了した。設備の概要は表 3-2-4-1 に示す通り。こ れらの成果は小型 IGFC 実証試験に反映されるものであり、最終目標「IGFC 実証機の 容量を決定し、実証機の試設計を完了する。」ことを達成した。表 3-2-4-2 に本事業 の開発項目の達成状況を示す。

大分類	項目	圧力 (MpaG)	容量 (流量)	概要
	SOFC本体	0.6-2.0	600kW×2	SOFC本体は、複数並列とし拡張性を確認する
	空気圧縮機	2.3	—	高圧化対応のため、別置き圧縮機を設置
SOFCizim	触媒燃焼器	—	—	SOFCからの排燃料処理は、低Noxの触媒燃焼器を設置
	排ガス冷却器	—	—	排ガスはダクトの耐熱の 180℃まで水噴霧にて冷却
	冷却水ポンプ	—	50%×2	冷却水ポンプは予備機無し
冷却水設備	密閉式ラジエータ			排水量低減のため、ブローが不要な密閉式ラジエーター型の熱
	型熱交換機	_	—	交換器を採用
	液窒タンク	1.1	40kL級	SOFCトリップ時に冷却用窒素を供給。停電時を考慮し、制御空
窒素供給	窒素圧縮機	2.3	400m3N/h	気に自らの窒素を使用。タンク圧は 1.1 MPa とし、自圧供給
	空温気化器	—	700m3N/h×2	(0.9Ma)を可能とする。通常供給圧0.9~2.3MPa。
	水素チューブト	10.6	2600m3N級	取刍味の廃害供給時に漂売電用気を促っちに供給
北ま供給	レーラー	19.0	× 4 (最大)	
小糸浜和	減圧供給	2.3	30m3N/h	
	日除・散水設備	—	—	小說備小奶安。
四美刘弐段史	吸着剤試験容器	2.0	90m3N/h	実験室模擬ガスによる吸着特性を実ガスにて確認。吸着状況に
败有刑武职奋	連続ガス分析計	—	—	ついて分析を実施し、吸着状態を把握する。

表 3-2-4-1 実証試験設備 仕様概要

技術課題	目標	成果	達成度
① 高温燃料電池	最新情報を入手し、	事業用燃料電池の開発状況	0
及び I G F C	IGFC の実用化に向けた	と IGFC 実用化に向けた課題	
の技術動向調	課題の整理を行う。	を明らかにした。	
査			
② 商用機のシス	CO2 分離・回収型 IGFC	商用 CO2 分離・回収型 IGFC	\bigcirc
テム検討	について、CO2 分離・回	についてシミュレーション	
	収方法や燃料電池設置	を実施し、最適なプロセスフ	
	位置等を検討し、望ま	ローを選定した。	
	しいプロセスフローを		
	選定する。		
 ③ 実証に向けた 	実証機向け燃料電池の	実証機に適した燃料電池の	\bigcirc
システム評価	種類、発電容量、燃料	仕様、プロセスフローを検討	
	電池への石炭ガス分岐	した。また、被毒成分に対す	
	位置、石炭ガス中の被	る吸着材を選定し、処理方法	
	毒成分の処理方法等を	を決定した。	
	決定する。		
④ 実証機試設計	IGFC 実証システムにつ	実証機の設計条件を明らか	\bigcirc
	いて検討を行い、実証	にし、システム系統、設備構	
	機の容量を決定のう	成、物質収支、設備レイアウ	
	え、試設計を行う。	ト、ユーティリティ等を明ら	
		かにした。	
⑤ 実証試験内容	IGFC 実証機における試	実証すべき試験項目と試験	\bigcirc
の検討	験内容を検討する。	工程を明らかにした。	

表 3-2-4-2 本事業の開発項目・目標および達成状況

◎大きく上回って達成、〇達成、△達成見込み(中間)/一部達成(事後)、×未達

2. 各事業内容の成果について

2.1 高温型燃料電池及び IGFC の技術動向調査

IGFC に適する燃料電池としては、石炭ガス化ガスの特徴から以下の要件が挙げられ、 固体酸化物形燃料電池(SOFC)と溶融炭酸塩形燃料電池(MCFC)が対象となる。

①作動温度が高いこと

②高温高圧排燃料によりガスタービンとの組合せが可能であること ③石炭ガス化ガスの主成分である H2 と C0 を利用できること

燃料電池について、IGFC 実証機に用いることを念頭に、性能や信頼性等の技術的観 点、開発段階及び入手性等について、国内外の燃料電池を対象に文献のレビューを行 うとともに最新情報の調査を行った。また、燃料電池以外の IGFC を構成する要素技 術、具体的には以下の技術についても、開発の動向調査を行った。

- 石炭ガス中の燃料電池被毒成分を除去するクリーンナップ技術
- ・ 石炭ガスを燃料電池に適用する技術
- ・ 燃料電池とガスタービンを連係する技術

IGFCを構成する要素技術を図 3-2-4-1 に示す。

図 3-2-4-1 IGFC を構成する要素技術

2.1.1 固体酸化物型燃料電池 (SOFC) の国内外の動向

SOFC については、基礎的な研究から商用化すべく実証検証さらには商品化済みの段 階まで存在する。比較的開発段階が高いものとして、2013 年に米国 Bloom Energy が モノジェネ型の SOFC を我が国に市場投入し、2017 年に三菱日立パワーシステムズ㈱ (MHPS)の加圧 250kW 級ハイブリッドシステムが上市された。主な燃料電池の開発状 況を表 3-2-4-3 に示す。

名称	5kW級業務用 SOFC (仮)FC─5	15式250kW導入機 (ハイブリッドシステム)	15式 1MW導入機 (ハイブリッドシステム)	FP-100i	ES-5700 Energy Server	(参考) ガスエンジン
メーカー	三浦工業	三菱重工	三菱重工	富士電機	Bloom Energy	A社
外観		9 5	-			
定格出力(kW)	5	250	1350	105	200	400
発電効率(%-LHV)	48	55	55	42	50-60	<mark>39.6</mark>
総合効率(%-LHV)	90	73(温水) 65(蒸気)	76(温水) 68(蒸 気)	62	-	73.8
ユニット寸法/設置面積 (m/m ² (m2/kW))	0.7 × 1.1 × 1.8 ⁄ 0.8 (0.15)	12.0×3.2×3.2⁄40 (0.15)	24.0×5.0×3.2/120 (0.09)	2.2×5.6×3.4/12 (0.11)	9.1×2.6×2.1⁄24 (0.12)	8.2×3.5×3.6/29 (0.08)
運用方法	ベースロード コジェネ対応可	ベースロート゛ コジェネ対応可	ペースロ <mark>ー</mark> ト [®] コジェネ対応可	ベ−スロ−ド コジェネ対応可	ペースロート コジェネ対応不可	DSS運用 コジェネ対応可
備考	SOFC 実証中	SOFC 実証中	SOFC 計画中	PAFC	SOFC 拡張性が高い	-
市場投入予定時期	2020	2017	2018	商用化済	商用化済	

表 3-2-4-3 燃料電池の開発状況

[出典] 経済産業省「水素・燃料電池戦略協議会 WG」

2. 1. 2 Bloom Energy

米国 Bloom Energy は、業務用・産業用規模の SOFC を世界的に販売している。同社は DOE の SOFC 開発に参画せず開発、商業化に成功している。

NASA プロジェクトで採用された SOFC 技術を用いて、2001 年に会社を設立し、2006 年初頭にテネシー大学チャタヌーガに 5kW 実証実験機器を出荷した。テネシー州、カ リフォルニア州、アラスカ州で成功したフィールド試験を踏まえて、2008 年 7 月に最 初の商品(100kW)を出荷した。 (1) セル、モジュールの構造

セルは 10cm×10cm の平板で 25W/枚(図 3-2-4-2)。積層化して 1kW とし、これを 組み合わせて標準モジュール 40kW を構成する(図 3-2-4-3)。モジュール(幅 1m 奥 行 1m 高さ 1m)を複数並べてシステムとしては 200kW もしくは 250kW としている。Bloom Energy はモジュール群と電力変換装置等からなる SOFC システムを「Bloom エナジー サーバ」と称している。仕様については表 3-2-4-4 の通り。

図 3-2-4-2 SOFC セル [出典] http://www.bloomenergy.co.jp/product/solid-oxide/

図 3-2-4-3 SOFC システム(1 つの区切りが 40kW モジュール) [出典] <u>http://www.bloomenergy.co.jp/product/architecture/</u>

主な仕様 (ES5-LABAJA) (ES5-FABAJA) (ES5-JA2AJA) (ES5-EA2AJA) 出力 定格出力 200kW 250kW 電気接続 480V,3相 定格出力 50Hz 60Hz 50Hz 60Hz 入力 都市ガス(年間消費量:28万Nm) 都市ガス(年間消費量:35万Nm) 燃料 供給燃料圧力 0.069~0.095MPa 通常運転時は不要 木 効率 発電効率(LHV net AC) 平均53%(初期值:60%以上) 排出ガス NOx 0.005kg/MWh 未満 SOx ごく微量 本体情報および使用環境 重量 14,655kg 16,277kg 4.8m × 2.6m × 2.1m/ $5.9m \times 2.6m \times 2.1m/$ 燃料電池本体基礎サイズ(配置による) $8.9m \times 1.3m \times 2.1m$ $10.1 \text{m} \times 1.3 \text{m} \times 2.1 \text{m}$ UPM*基礎サイズ 1.1m×2.3m×2.1m 設置面積(配置による) 約58m² 約62m²/66m² -20°C~45°C 標準温度範囲 耐農基準 981Gal(1G) 設置環境 屋外 騒音レベル(定格出力時) 70dBA 未満(1.83mにおいて) 技術基準 技術基準 ANSI/CSA America FC1-2014 その他

表 3-2-4-4 SOFC システム (Bloom エナジーサーバ) 仕様

出力・効率等の確認が可能なウエブサイト(アクセス保護付き)を提供

Bloom Energy Corporationのリモートモニタリングコントロールセンターからの常時遠隔監視・制御

[出典]

http://www.bloomenergy.co.jp/wp-content/themes/bloomenergy/files/ES 5-Datasheet.pdf

(2) 特徴

商品の性能や特徴及びビジネスモデルについて以下に列挙する。

- Bloom Energy 製の SOFC システムはモノジェネ用システム。熱は改質用に使う(コジェネ)。ユーザにとっては電気のみのアウトプット。
- ・ Bloom Energy のビジネスモデルは、燃料電池システムを販売するが、20年間の性能保証を行っている。性能低下が起こると発電モジュールを丸ごと交換する。
- ・ SOFC は一定出力で運転される。つまり、需要家にとっては契約電力量を低減する。
- ・ 250kW システムは発電モジュール6個、燃料処理モジュール1個、インバータ2 個(1個は一般負荷用、もう1個は重要負荷用)で構成される

- ・ 発電モジュールの出力は、通常 42kW×6 台。最大出力は 60kW。1 つ止めても5 台で 250kW が可能であり、最大 300kW も可能。部分負荷も問題ない。
- ・ 作動圧力は常圧、作動温度は800℃。
- ・ 発電効率は初期 60%-LHV (実績 63%)、その後定期的なメンテナンス(注:発電モジュールの交換含む)を施し、20年平均で 53%-LHV。性能低下への対応は、40kW単位のモジュールを交換。交換の際には他の発電モジュールを停止させずに行う。
- ・ 発電モジュールには熱除去として、それぞれブロワとチョッパ用ファンがあり、 排気温度は 60℃。その他排出関係では、ドレンは出ず、水はリサイクルしている。 騒音は 1.8mで 70dB。
- ・ 定期的なメンテナンスは、フィルタを半年に1回交換するのみ。
- 非常用には専用のインバータを有しており、非常の場合のみ負荷追従運転を行う。
 導入実績は重要負荷を持っている需要家。
- ・ 日本での燃料の実績は 13A と LNG。LPG には対応していない。
- ・設置場所は屋外のみ。
- 2. 1. 3 三菱日立パワーシステムズ (MHPS)

三菱重工業は、1983年より SOFC の開発を行っており、円筒横縞型セルと平板型セル (MOLB型: Mono-block Layer Built)の2つの開発に取り組んでいた。その後、将来の大型化を念頭に円筒形セルへの選択と集中を行い、現在は三菱日立パワーシステムズへ承継されている。

(1) 円筒セルスタック

MHPS の円筒セルスタックは、セラミックスをベースとした基体管の外表面に、発電反応を行う素子(燃料極/電解質/空気極の積層体)を複数形成し、インターコネクタで素子間を直列に接続した構造(円筒横縞形セルスタック)である。図 3-2-4-4 にセルスタック及びその構造を示す。

図 3-2-4-4 セルスタック及びその構造

[出典]

https://www.mhps.com/jp/products/sofc/introduction/index.html

(2) SOFC システムの構成

MHPS の SOFC システムについて、その構成概要を図 3-2-4-5 に示す。カートリッジ はセルスタック数百本を束ね、支持部材、燃料・空気の供給/排出、電流の取り出し の機能を持たせたものであり、カートリッジを複数組み合わせたものをサブモジュー ルとし、SOFC モジュールはサブモジュールを圧力容器の中に入れたもの。現在商品化 されている SOFC システムとしては、燃料電池の高温排燃料をマイクロガスタービン で燃焼させ電力を得るハイブリッドシステムとなっている。燃料の改質は内部改質型 である。

上記の様な階層構造を取ることで、据付けやメンテナンスが容易になる。また、 カートリッジあるいはモジュールの数により、電気出力を調整できるため、必要に応 じた電気出力の設計が可能となる。

カートリッジ

サブモジュール

圧力容器

セルスタック

図 3-2-4-5 SOFC システム

[出典]

https://www.mhps.com/jp/randd/technical-review/pdf/index_47j.pdf

(3) モジュールのコンパクト化

モジュールのコンパクト化(高密度化)に向けて、セルスタックの改良、カート リッジの高密度化がなされてきた。

セルスタックについては、長尺化とセル幅の低減により素子数を増加させること により高電圧化を図った。合わせて、セルスタックを細くすることにより、カートリ ッジに充填するセルを高密度化させることで、カートリッジのコンパクト化を図った。

セルスタックの改良の推移について図 3-2-4-6 に、カートリッジの高密度化について図 3-2-4-7 に示す。

図 3-2-4-6 セルスタックの改良

[出典]

https://www.mhps.com/jp/randd/technical-review/pdf/index_47j.pdf

図 3-2-4-7 カートリッジのコンパクト化

[出典]

https://www.meti.go.jp/committee/kenkyukai/energy_environment/jisedai_karyo ku/pdf/003_01_00.pdf

(4) ハイブリッドシステム

SOFC の加圧高温排ガスを有効利用する、燃料電池とマイクロガスタービン(MGT) を複合した加圧型の高効率発電システムである。

ハイブリッドシステムの系統及び外観を図 3-2-4-8 と図 3-2-4-9 に示す。ここで、 燃料系統(図の赤色の線)、空気系統(青色の線)及び排ガス系統(黄色の線)から なる。燃料ガスは脱硫器を通過して硫黄分が取り除かれ、圧縮機で昇圧されてから SOFC に投入される。一方、空気は MGT によって昇圧されてから SOFC に投入される。 SOFC からの排燃料は再循環ブロアによって昇圧された後、一部が SOFC に戻され、残 りが排空気とともに MGT の燃焼器に投入される。燃焼器で燃焼した排ガスは、再生熱 交換器で、SOFC へ送られる空気と熱交換されたのちに大気に放出される。熱利用する 場合には、排熱回収装置を設け、温水や蒸気を製造したのちに大気に放出される。

図 3-2-4-8 ハイブリッドシステム系統図 [出典] <u>https://www.mhps.com/jp/products/sofc/overview/index.html</u>

図 3-2-4-9 ハイブリッドシステム外観 [出典] https://www.mhps.com/jp/news/20180131.html

本ハイブリッドシステムは NEDO 事業「固体酸化物形燃料電池等実用化推進技術開 発」において、2011~2014 年度に東京ガス千住テクノステーションで、10 式セルを 用いた 200kW 級ハイブリッドシステムが試験された。さらにその成果を基に 15 式ハ イブリッドシステム実証機の設計が進められ、2015 年 3 月に九州大学伊都キャンパ スに設置され、SOFC の性能・耐久性・信頼性の向上のための基盤研究に活用された。 2016 年 10 月には累積運転時間 10,000 時間が達成された。なお、作動圧力は 0.2MPa 級である。

(5) ハイブリッドシステムの商用化

2017 年 8 月 9 日に MHPS は、SOFC ハイブリッドシステムの業務・産業用としての 市場投入を開始する旨、発表を行った。その後 2018 年 1 月 31 日には、三菱地所が東 京・丸の内で所有・運営する丸の内ビルディング向けに初めて受注した旨、発表がな されている。本格運転開始は2019年2月の予定である。

2.1.4 溶融炭酸塩形燃料電池(MCFC)の技術動向調査

2.1.4.1 MCFC の技術動向の概要

溶融炭酸塩型燃料電池(Molten Carbonate Fuel Cell、以下 MCFC)は SOFC と同じ 高温型燃料電池に分類されるタイプの燃料電池で、運転時の温度は SOFC よりもやや 低い 600~700℃程度である。内部改質が可能であるため、燃料には天然ガス、バイオ ガスや石炭合成ガスを用いることができる。発電効率は 60%(HHV)を超え、さらに排 熱利用をすることで総合効率 85%以上とすることができる。

燃料電池を設置する際にまず課題となるのはコストであるが、現状では MCFC シス テムのコストのうち約 60%をスタックが占めている。システムコストダウンを目指す ために研究開発が為されたが残された課題は多く、スタック寿命、エネルギー密度、 ガスクリーンアップのコストダウンの研究開発が重要である。

MCFC のコストについて、2015 年現在でシステム価格は 100 万円/kW 以下(工事費込) とされているが、将来展望としては Technology Roadmap Hydrogen and Fuel Cells (IEA) の Technical Annex (2015 年 6 月)の中で、MCFC システムは楽観的に見ても 初期コストが USD2,000/kW を大幅に下回ることは考えにくいと指摘している。

MCFC のセルスタックは発電システムの構成要素として必要な数百 V の電圧を得る ために、セパレータを介して単セルを直接積層して構成し、セルスタックを構成する 各単セルへ均一にガスを供給する構造となっている。さまざまな形状の単セルが開発 されている SOFC とは対照的に、MCFC は運転時に電解質が液体であることから加工形 状に制限があり、現在のところ市販されているのは平板形だけである。なお、(一財) 電力中央研究所において、円筒型 MCFC (特許第 5825524 号)が試作されているが、ま だ実験室レベルである。

セルスタック形式には、別に設置した燃料改質器で燃料を水素リッチなガスに変換 して燃料極に供給するもの(外部改質方式)と、セル内で燃料を改質させるタイプの セルスタック(内部改質方式)がある。

日本における MCFC 研究開発は、ムーンライト計画の一部として国家プロジェクト で始まった。1988 年に溶融炭酸塩型燃料電池技術組合(MCFC 技術組合)と電力業界 が中心となった開発体制が組まれたが、既に解散している。

日本国内の実績としては、2005年の愛知万博でトヨタが MCFC とマイクロガスタービンとを組み合わせた実証試験をおこない、世界最高(当時)の発電効率 55%を実現した。また丸紅が米国の FuelCell Energy 社(以下 FCE 社)から販売権を獲得し、2003年からキリン取手工場に 300kW 級 MCFC を設置するなど市場展開が期待されたが、2010年頃には販売を終了した。

海外では、米国、欧州を中心に燃料電池メーカー、大学等が MCFC 研究開発でしの ぎを削ったが、現在では大半の企業が撤退し、2013 年時点で FCE 社が MCFC の唯一の 商用ディベロッパーとなった。FCE 社は大規模定置型システムを製造するメーカーで あり、最大で 4MW 級の MCFC 発電システムを販売している。

FCE 社は韓国の POSCO Energy 社と製造パートナーシップを結び韓国でも市場展開し ている。Posco Energy 社は FCE 社とライセンス契約を結び、韓国の浦項市に MCFC の スタック部材から商品まで一貫生産するセル生産工場を 2015 年 11 月に完成させた。 また欧州においては、FCE 社は MCFC を開発していた MTU Onsite Energy 社 (2011 年 撤退)から資産を引き継ぎ、ドイツの Fraunhofer IKTS の資本参加を得て、合弁会社 FuelCell Energy Solutions 社を設立 (有限会社、本社 Doresden)。欧州の販路拡大 に貢献している。

2.1.4.2 北米の MCFC 技術動向 - FCE 社 (米国)

FCE 社は MCFC のシステム及びセルの開発・販売を手掛けており、同電池では世界首 位の実績を誇る。また MCFC とガスタービンを組み合わせた発電システムや MCFC の内 部改質を利用し、水素を供給するシステムなど、MCFC を利用したシステムの開発もお こなっている。

FCE 社の MCFC 製品ラインナップは以下の通りで、表 3-2-4-5 と図 3-2-4-10 にそれ らの製品である SureSource TM 製品群の仕様と外観を示す。 MCFC 製品ラインナップ

- SureSource 1500 (1.4MW)
- SureSource 3000 (2.8MW)
- SureSource 4000 (3.7MW)

FCE 社は Connecticut 州の Beacon Falls Energy Project (総発電容量 63.3MW (世 界最大級))を目指していたが、2016 年 10 月に New England 地方の RFP を得られない ことが決定したことで、Pending となっている。

	SureSource 1500	SureSource 3000	SureSource 4000				
Gross Power Output							
Power @ Plant Rating	1,400 kW	2,800 kW	3,700 kW				
Standard Output AC voltage	480 V	13,800 V	13,800 V				
Standard Frequency	60 Hz	60 Hz	60 Hz				
Optional Output AC Voltages	By Request	By Request	12,700 V 4,160 V				
Optional Output Frequency	50 Hz	50 Hz	50 Hz				
Efficiency							
LHV	47 +/- 2 %	47 +/- 2 %	60%				
Available Heat	-	-					
Exhaust Temperature	700 +/- 50 °F	700 +/- 50 °F	325°F				
Exhaust Flow	18,300 lb/h	36,600 lb/h	38,000 lb/h				
Allowable Backpressure	5 iwc	5 iwc	5 inches				
Heat Energy Available for Reco	overy						
(to 250 ^o F)	2,216,000 Btu/h	4,433,000 Btu/h	734,000 Btu/h				
(to 120 °F)	3,730,000 Btu/h	7,460,000 Btu/h	2,000,000 Btu/h				
Additional Hot Water Capabili	Additional Hot Water Capability						
Water up to 120 ^o F	—	—	2,500,000 Btu/h				
Fuel Consumption							
Natural gas (at 930 Btu/ft3)	181 scfm	362 scfm	383 scfm				
Heat rate, LHV	7,260 Btu/kWh	7,260 Btu/kWh	5,785 Btu/kWh				
Water Consumption							
Average	4.5 gpm	9 gpm	0 gpm				
Peak during WTS backflush	15 gpm	30 gpm	< 1 gpm				
Water Discharge							
Average	2.25 gpm	4.5 gpm	—				
Peak during WTS backflush	15 gpm	30 gpm	_				
Pollutant Emissions							
NOx	0.01 lb/MWh	0.01 lb/MWh	0.01 lb/MWh				
S0x	0.0001 lb/MWh	0.0001 lb/MWh	0.0001 lb/MWh				
PM10	0.00002 lb/MWh	0.00002 lb/MWh	0.00002 lb/MWh				
Greenhouse Gas Emissions							
C02	980 lb/MWh	980 lb/MWh	725 lb/MWh				
CO2 (with waste heat recovery)	520-680 lb/MWh	520-680 lb/MWh	550-680 lb/MWh				
Sound Level							
Standard	72 dB(A) at $\overline{10}$ feet	72 dB(A) at $\overline{10}$ feet	72 dB(A) at $\overline{10 \text{ feet}}$				

表 3-2-4-5 Sure Source [™]製品群の仕様 (FCE)

SureSource 1500

SureSource 3000 図 3-2-4-10 FCE 社の燃料電池外観 SureSource 4000

[出典]

SureSource 1500

(https://www.fuelcellenergy.com/wp-content/uploads/2017/02/Product-Spec-Sure

Source-1500.pdf)

SureSource 3000

(https://www.fuelcellenergy.com/wp-content/uploads/2017/02/Product-Spec-Sure Source-3000.pdf)

SureSource 4000

(https://www.fuelcellenergy.com/wp-content/uploads/2017/02/Product-Spec-Sure Source-4000.pdf)

2.1.4.3 アジアの MCFC 技術動向 - POSCO Energy (韓国)

POSC0 Energy 社は POSC0 の子会社であり、1800MW の設備容量を擁する韓国最大の 発電事業者である。POSC0 Energy 社は専門家を多数抱え、40 年にわたりビル管理、 発電所運転の経験を重ねており、蓄積されたノウハウにより、ビジネスリーダーの役 割を担っている。POSC0 Energy 社は 2000 年代初頭から国の補助を受けたプロジェク トにより MCFC の技術進歩を進めてきた。この国プロでは POSC0 Energy 社は KEPC0 と 共同で外部改質型 MCFC を開発し、2010 年には 125kW システムのプロトタイプの開発 に成功した。また、2007 年から POSC0 Energy 社は FCE 社と製造、流通に関して合意 した戦略的ライセンス契約を締結し、単なるアジア窓口ではなくメーカーとして燃料 電池市場に参入した。韓国では 2012 年から RPS 法が施行され、500,000kW 以上の発電 設備を保有する事業者は段階的に目標%だけ対象電源による供給を義務付けられる。 韓国の RPS 法の特徴として、対象電源として太陽電池や風力だけでなく、再エネでは ない燃料電池も対象となっていることが挙げられる。しかも燃料電池には海上風力、 潮力と同じ最高の2.0 という係数が設定され(1kW燃料電池が2kW とカウントされる)、 非常に優遇されている。POSC0 Energy 社は 2015 年 12 月にサービスセンター、テスト ラボ、および生産プラント(年間製造能力 50MW)の燃料電池製造工場を浦項(韓国) に建設した。燃料電池は100kW、300kW、2.5MWの燃料電池製品を供給しており、その 主な仕様を表 3-2-4-6 に示す。

	300kW Fuel Cell Power	2.5MW Fuel Cell Power
	Generation System	Generation System
Fuels used	LNG, Bio Gas, and SNG	
Power output		
Power output	300 kW	2,500 kW
Voltage	480 VAC	13.8 kVAC
Standard frequency	60 Hz	60 Hz
Power generation ef	ficiency	
LHV	$47\% \pm 2\%$	$47\% \pm 2\%$
Pollutant emissions		
NOx	0.4 ppm or less	0.4 ppm or less
S0x	0.01 ppm or less	0.01 ppm or less
СО	10 ppm or less	10 ppm or less
Noise	72 dB(A)(3m)	72 dB(A)(3m)
Exhaust gases		
Conditions	Utilizing hot water and	Utilizing hot water and
	steam	steam
Exhaust	371° C \pm 28° C	358° C \pm 25° C
temperature		
Exhaust flow	2,090 kg/hr	16,866 kg/hr
Exhaust pressure	127 mmH20	127 mmH20
Water consumption		
Water supply	170 liter/hr	2,010 liter/hr
LNG consumption		
LNG	61.9 Nm3/hr	507 Nm3/hr
LHV	9,347 kcal/Nm3	9,347 kcal/Nm3

表 3-2-4-6 POSCO Energy の主な燃料電池製品仕様

[出典] Prepared Future

(http://eng.poscoenergy.com/eng/renew/_ui/down/Fuel_Cell_eng.pdf)

これまで POSCO Energy 社は京畿道、慶尚道、忠清道などに 8.8MW の MCFC 発電所を 供給、また 2011 年には順天、唐津、一山、仁川に 14MW を供給した。生産と設置を加 速させ、2012 年には大邱に 11.2MW を供給、2013 年には世界最大の燃料電池発電所 59MW を華城に供給した。現在、韓国国内に 20 サイト以上、合計 171.8MW の MCFC 発電所がある。

2.1.5 石炭ガス化燃料電池複合発電(IGFC)の技術動向調査

石炭ガス化燃料電池複合発電の確立に当たっては、石炭ガスを燃料電池に供給す る観点より、以下の構成要素について検討を行う必要があることから、開発動向を調 査した。

石炭ガス中の燃料電池被毒成分を除去するクリーンナップ技術

- 石炭ガスを燃料電池用に適用する技術
- 燃料電池とガスタービンを連係する技術

それぞれについて、以下に記すとともに IGFC 実用化へ向けた課題について考察を 行う。

2.1.5.1 石炭ガス中の燃料電池被毒成分を除去するクリーンナップ技術

燃料電池向け石炭ガス精製技術の検討に当たっては、燃料電池に対する被毒成分の 影響の大きさや石炭ガス化中の被毒成分濃度レベルを考慮して除去技術の必要性を 判断することが重要となる。

NED0 事業「ゼロエミッション石炭火力技術開発プロジェクト/ゼロエミッション石炭火力基盤技術開発/燃料電池向け石炭ガスクリーンナップ技術要素研究」(2015 年度~2017 年度)において得られた成果は以下の通り、燃料電池に対する各被毒成分の影響を確認するための石炭ガス化ガス中の主要な6成分の被毒候補成分に対する被毒試験の結果、硫化水素及びセレン化水素が被毒物資であることが特定されている。また被毒成分に対して、それぞれの成分に対する吸着材を特定のうえ吸着容量が把握された。

本項目における出典は次の通り。

NED0「ゼロエミッション石炭火力技術開発プロジェクト/ゼロエミッション石炭 火力基盤技術開発/燃料電池向け石炭ガスクリーンナップ技術要素研究」報告書

(1) セル被毒耐性評価

セレン化水素(H2Se)については、H2Se 1ppm添加後約180時間から、入口素子、出 口素子の電圧が順に低下し、燃料の流れ方向に被毒が進行していることが確認された。 なお、入口素子と出口素子の電圧低下に大きな差はなかった。被毒成分の濃度と電圧 低下幅を評価すると、H2Se濃度が高い程、電圧低下が大きいことから、H2Seの濃度が 高い程、被毒の影響は早く、電圧低下も大きいことが確認された。

一方、H2Se添加停止による回復挙動を比較すると、1ppm条件では+3.3%、0.5ppm条件では+2.7%であり、H2Seの濃度が高い程、吸着量が多い分、脱離する量も多く、電圧回復の幅も大きくなったと考えられる。

図3-2-4-11 H2Se 1ppm 添加時の経時的な電圧変化

図3-2-4-12 H2Se 0.5ppm 添加時の経時的な電圧変化

硫化水素(H2S)については、被毒による明確な電圧降下が確認された。H2S 1ppm 添加後約90時間から入口素子、出口素子電圧が順次低下し、燃料の流れ方向に沿って 被毒が進行していることが確認された。既往の研究から、Niへの吸着により、電圧が 低下した可能性が考えられた。その後、入口および出口素子ともに電圧が安定したこ とから、Sの被毒が平衡状態に達したことが考えられる。電圧変化率は-3.3%となった。
ここで、温度を上げることで吸着したSが脱離するとの報告から、発電温度を900℃から930℃に変更し、電圧の変化を確認した。その結果、温度上昇によりセルの抵抗が減少したため電圧が上昇したものの、その後の変化はなく、Sの脱離による電圧の回復傾向は明確に確認できなかった。しかし、その後900℃に戻したところ、温度操作により電圧が低下した後も電圧が徐々に低下し、温度上昇前の電圧レベルに戻ることを確認した。温度を下げた後、電圧が徐々に低下する挙動は被毒成分添加時の電圧低下と同様の挙動であり、温度を低下させた分、Niへの吸着が進んでいる可能性が考えられる。

また、H2S 0.5ppm添加の場合では、約150時間後から電圧が低下し始めることが観察された。その後、セル電圧および各素子電圧は安定した。H2S添加を停止する直前の電圧変化率は-2.7%となり、1ppm条件と比較すると、電圧の低下が小さいことが確認された。

143

図3-2-4-14 H2S 0.5ppm 添加時の経時的な電圧変化

(2) 燃料電池用ガス精製技術性能評価

吸着容量試験については、最も吸着容量の高い吸着剤の吸着容量を基準とした場合 (吸着容量比)の各吸着剤の吸着容量の相対比を図3-2-4-15 に示す。

水素化物については、AsH3、PH3、H2Seに対しては吸着剤Bが最も吸着容量が大きく、 B2H6に対しては吸着剤Aが最も吸着容量が大きい結果となった。吸着剤Bの特徴として PH3 やH2Seに対して大きな吸着容量を有するものの、AsH3に対しては1/3程度に低下 することが確認された。一方、吸着剤Aと吸着剤CについてはH2Seに対する吸着容量は 大きいものの、AsH3やPH3に対しては吸着容量が小さく、特にPH3に対する吸着剤Cの 吸着容量は著しく小さいことが確認された。

H2Sについては、吸着剤Dと吸着剤Eと比較すると吸着剤Bがやや吸着容量は小さかった。これは、吸着剤Dと吸着剤Eについては吸着剤の運用温度が350℃と高く、H2Sと吸着剤の反応が進みやすいと考えられている。

HC1については、吸着剤Fおよび吸着剤Gともに大きな吸着容量を示したが、吸着剤Gの方が吸着容量は大きかった。これは、吸着剤Gについては吸着剤の温度が450℃と高くHC1と吸着剤との反応が進みやすいと考えられている。

被毒影響評価試験の結果も踏まえると、吸着容量としては、H2Sに対しては吸着剤D が最も優れ、H2Seに対しては吸着剤Bが最も優れることが判明した。

2.1.5.2 燃料電池を石炭ガスに適用する技術

実用化、あるいは開発中の SOFC 燃料電池モジュールは燃料として都市ガス(天然 ガス)を使用しており、都市ガスの主成分であるメタン(CH4)の内部改質反応を考 慮したモジュールの温度設計となっている。CO2分離回収型 IGFC では燃料電池の燃料 が水素リッチガスとなり、改質反応がおこらないため、天然ガスに比べて発電特性や モジュール内の温度分布が変化し、運転制約が生じる可能性が考えられる。

このため、NEDO事業「次世代火力発電等技術開発/次世代火力発電基盤技術開発/ 燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究」(2016 年度~)において、水素リッチガスを燃料として供給した場合のモジュール内部の温 度挙動の確認のために、都市ガス用の250kW級ハイブリッドシステムを用いて水素リ ッチガスによる運転を行うと共に、水素リッチガス利用の対策について検討・試験が 実施されている。

本項目における出典は次の通り。

NED0「次世代火力発電等技術開発/次世代火力発電基盤技術開発/燃料電池石炭 ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究」報告書

(1)水素リッチガス適用および石炭ガス化設備連係に係る運転・制御の検討 ①燃料電池モジュール内熱挙動解析

水素リッチガスを燃料とする場合、メタン改質反応による吸熱が無くなることによ りモジュール内の熱バランスの変化およびセル温度、ガス温度が上昇することが予想 される。そのため、水素リッチガスの混合率や二酸化炭素(CO2)濃度、燃料流量、 再循環流量、空気流量、供給ガス温度などの変化がモジュール内熱バランスおよび温 度へ与える影響を検討するため、流体解析(CFD)を用いた電気-熱流動-化学反応連 成解析を実施された。

① 循環冷却器検討

都市ガス燃料向けに設計された SOFC モジュールに水素リッチガスを適用するに当たり、新規追加する再循環冷却器の仕様検討に加えてマイクロガスタービンや再循環 ブロワ等の補機類への影響も考慮したシステム系統構成が検討された。また、再循環 冷却器の運転・制御方法および温度制御性などの詳細仕様が検討された。

石炭ガス化設備連係に係る運転・制御の検討

石炭ガス化炉・CO2 分離回収設備の運転状態の変化や炭種/ロット切替等により変 化する可能性がある。そこで、ガス性状の変化・変動を常時監視できるように、ガス 分析機器(ガスクロマトグラフおよびガス密度計)の追設が検討された。また、燃料 ガス組成変動に対して、ガス密度計による計測結果から燃料流量を補正するよう運転 パラメータへの反映する方法が検討された。さらに、石炭ガス化設備と SOFC ハイブ リッド機の連係運転にあたり、系統・機器追加等の見直しや運用・制御方法の見直し がなされた。加えて、水素リッチガス連係運転時における保護インターロック方法に ついても検討がなされた。

(2)燃料電池モジュール試験設備の設計・製作・据付

三菱日立パワーシステムズ製の SOFC 220kW 級の燃料電池モジュール(システムと してはマイクロガスタービンを含めて 250kW 級)を用いて水素リッチガスの適用性試 験が実施されている。

図 3-2-4-16 燃料電池モジュール試験設備

(3) 燃料電池カートリッジ試験

セルスタックを数百本束ねた燃料電池モジュールを用いた水素リッチガスの適用 性試験に先行し、燃料電池モジュールの基本構成単位である燃料電池カートリッジを 用いて水素リッチガスを適用した場合の発電特性や温度分布に関する基礎データが 取得された。

燃料入口温度やアノード再循環流量を変化させた場合の挙動およびCO2分離回収型

IGFC の実ガス組成を模擬して窒素(N2)の一部を炭酸ガス(C02)に置き換えた場合 の影響を確認する試験が実施された。図 3-2-4-17 にアノード再循環流量を変化させ た場合の温度分布について示す。アノード再循環流量の増加に伴い、セル上部温度が 低下、セル下部温度が上昇し発電性能が改善する結果が得られた。また、燃料入口温 度を下げることによりセル最高温度が低下し、電流を増加させることができることを 確認した。図 3-2-4-18 に電流一定の条件にて N2 の代わりに C02 を 3%、8%供給した 場合の温度分布を示す。C02 の増加に伴いセル上部温度が低下し、都市ガス運転時の 温度分布に近づく傾向が確認された。

(a) 再循環流量 65Nm3/h
 (b) 再循環流量 90Nm3/h
 (c) 再循環流量 100Nm3/h
 図 3-2-4-17 アノード再循環流量とセル温度分布の関係

(4) 燃料電池モジュール基本特性確認試験

燃料電池モジュールの基本特性を確認するために、設計燃料である都市ガスと同等 の液化天然ガス(LNG)を用いて基本特性確認試験が実施され、運転実績を図 3-2-4-19 に示す。本試験では、水素リッチガス試験に先立って、ベースとなる LNG を燃料とし て運転した場合の起動・停止時のプラント挙動を確認するとともに、定格負荷および 部分負荷での発電特性、温度分布等が確認された。

(5)水素リッチガス切替試験

LNG 運転中に水素リッチガスを供給して徐々にその割合を高め、最終的に水素リッ チガスのみでの運転に切替える試験が実施された。図 3-2-4-20 に水素リッチガスの 混合割合と LNG 運転時の出力を 100%とした場合の出力の関係を示す。試験の結果、水 素リッチガスの混合割合を増加させることにより、メタン改質による吸熱が減少する ため、モジュール内の温度が上昇し、温度管理値を超える傾向になることが確認され た。そのため、モジュール内最高温度が一定となるように出力(電流)を制御した場 合、水素リッチガス運転での出力は LNG 運転時の約 73%になることを確認した。

図 3-2-4-20 水素リッチガス混合割合と出力の関係(@モジュール内最高温度約 910℃)

(6) 水素リッチガス最大負荷試験

水素リッチガス運転に切替後、燃料電池の出力を増加させることを目的に、アノー ド再循環量流量や再循環冷却器を活かして燃料入口温度を調整し、モジュール内の最 高温度が一定とした場合の出力が確認された。試験の結果、アノード再循環流量の増 加や燃料入口温度の低下によりモジュール内の最高温度が低下するため、その分、出力を増加させることができ、LNG 運転時(@モジュール内最高温度 約 930℃)の約 79% まで出力を上昇させることができることが確認された。

(7) 水素リッチガス起動・停止試験

水素リッチガスを用いた場合の起動・停止試験が実施された。LNG 運転時の制御パ ラメータを水素リッチ運転用に調整し、水素リッチガスのみで起動・停止が問題なく 可能であることが確認された。

図 3-2-4-21 水素リッチガス起動・停止実績

以上の結果より、都市ガス(天然ガス)用に設計された SOFC 燃料電池モジュール について、CO2 分離回収型 IGFC としての燃料が水素リッチガスとなる場合において も、周辺機器設計や燃料電池の運転条件の適正化により運転が可能であることが分か った。

2.2 商用機のシステム検討

商用機システムとして、CO2 分離・回収型 IGFC について、燃料電池の位置やガスタ ービン燃焼器温度等についてケーススタディを行い、商用機として最適な CO2 分離・ 回収型の IGFC システムを明らかにする。

2.2.1解析モデル

C02 分離・回収型 IGFC のモデルを構築するため、プラント性能、ヒートバランス 図や熱物質収支が既知である商用機 IGCC 及び C02 分離・回収型 IGCC に燃料電池を組 み込む検討を実施した。具体的なデータは、NEDO 事業「ゼロエミッション石炭火力技 術開発プロジェクト/クリーン・コール・テクノロジー実用化可能性調査/石炭ガス化 複合発電における C02 分離回収システム最適化に関する検討」(2014~2015 年度)よ り引用。

C02 分離回収各ケースのシステム構成並びに各部状態量、熱物質収支及び所内動力

等を確認の上、先ず IGCC 及び CO2 分離・回収型 IGCC の熱効率解析モデルを作成した。 その後、燃料電池を組み込み、燃料電池の排燃料と排空気の熱を回収するため、蒸気 系に燃料電池排燃料熱交換器と排空気熱交換器を組合せ、蒸気系の統合・適正化を行 った。CO2 分離・回収型 IGFC の熱効率解析検討のモデル例を以下に示す。

図 3-2-4-22 CO2 分離・回収型 IGFC の熱効率解析検討モデル例

2.2.2 試算条件

試算条件については以下の通りとした。

- 石炭入熱量を固定。
- ・ CO2 分離・回収装置は、加圧プロセスに適する物理吸収法を選択。
- 燃料電池はガス組成に応じた出力電圧@900℃とした。
- 燃焼器空気系はリサイクルを実施。
- ガスタービンは断熱効率一定として条件毎にサイズを変えた。
- ・ 蒸気は燃料電池の高温排空気からも回収。ガス系の各部収熱量をもとに、給水 流量を最適化して蒸気タービン出力を求めた。
- 燃料電池の入口温度は800℃、出口温度は900℃(出入口ガス温度差100℃)
- アノードおよびカソードリサイクルラインの圧力損失:0.2MPa(アノードおよびカソード予熱器の低温側と高温側で0.1MPaの圧力損失を設定し、燃料電池および配管の圧力損失は0.0MPaとして計算)
- ・ 燃料電池設備における圧力損失分を補うため、最も燃料ガス温度が低くなる CO2
 吸収塔出口にて燃料ガスの昇圧を行うものとした。このことにより吸収塔入口 ガス冷却器の冷却熱量が若干増加するものの影響はごく僅かであるため、ここでは冷却水系の動力増加は無視するものとした。
- 各機器断熱効率

燃料電池電流密度:150mA/cm2

C02 吸収塔出口燃料ガス昇圧機:75% それ以外の昇圧機およびブロワ類:88% 膨張タービン:92% その他機器効率

- その他機器効率 発電機効率/モータ効率:98.5% 軸機械効率:99.0% インバータ効率:95.0%
- 2.2.3 解析ケース

図 3-2-4-23 IGFC 及び CO2 分離・回収型 IGFC のシステムフロー

図 3-2-4-23 に検討するシステムフローの概念図を示す。それに相応するケースス タディのケース区分について表 3-2-4-7 に示す。

- ケース1では、CO2分離・回収を行なわないIGFCシステムを対象に、IGFCシステム 構成を検討する。具体的には、燃料電池へ導入する燃料の割合ごと、燃料電池冷 却のためのカソードリサイクルの有無、ガスタービン(GT)運転温度について、 熱効率解析を行ない、システム構成を検討する。図3-2-4-24にFCへのガス導入率 ならびにカソードリサイクルの影響の概要を示す。
- ・ケース2~4においては、C02分離・回収型IGFCとして、最適なシステム構成を検討 するため、燃料電池の位置、C0シフト反応の種類について検討を行う。

No.	ケース	CO ₂ 分離	・回収	燃料電池位置	GT温度	カソードリサイ クル 動力
1	CO ₂ 分離・回収なし	なし	<i>.</i>	脱硫後	1,500℃級	ベース
2-1	CO ₂ 分離・回収A	Sour シフト	物理吸収	CO ₂ 分離・回収後	1,300℃、1,500℃、 1,700℃級	ベース
2-2	CO ₂ 分離・回収A	Sour シフト	物理吸収	CO ₂ 分離・回収後	No.2-1結果より選定	増加
3	CO ₂ 分離・回収B	Sweet シフト	物理吸収	CO ₂ 分離・回収後	No.2-1結果より選定	ベース
4	CO ₂ 分離・回収C	Sweet シフト	物理吸収	CO ₂ 分離・回収前	No.2-1結果より選定	ベース

表 3-2-4-7 ケーススタディのケース区分

図 3-2-4-24 FC へのガス導入率およびカソードリサイクル概念図

2.2.4 解析結果

(1) プラント全体性能

C02 分離・回収型 IGCC について、ガス系の解析結果から求まった各部集熱量等をも とに蒸気タービン出力の計算し、さらに補機動力を考慮して送電端出力(効率)を算出 した結果を表 3-2-4-8 に示す。商用機として高効率が期待でき、現実性が高いと考え られる 1,500℃級 GT による 90% C02 回収 (Sour シフト&物理吸収)をベースとする。

検討ケーフ	用位	1,300℃級		1,500℃級			1,700℃級				
便的分子入	单位	IGCC単独	IGCC単独	90%回収	90%回収	IGCC単独	90%回収	90%回収			
IGCC単独に対する発電端出力比	%	100	100	95.9	98	100	96.7	97.9			
大気温度	°C				15						
炭種	-				B炭						
COシフト方式	-	-	-	スイート	サワー	-	スイート	サワー			
CO2分離回収プロセス方式	-	-	-	物理吸収	物理吸収	-	物理吸収	物理吸収			
吸収液供給温度	°C	-	-	0	0/0/0	-	0	0/0/0			
CO2分離回収設備入口圧力	MPaG	-	-	3.65	3.65	-	5.71	5.71			
COシフト入口S/CO	mol/mol	-	-	1.7260	1.6000	-	1.4000	1.2000			
シフト触媒入口温度 (NO.1/NO.2/NO.3)	°C	-	-	300/300/200	225/215/210	-	290/290/200	235/225/220			
COシフト変換率	%	-	-	98.0	98.4	-	95.7	94.5			
CO2吸収塔のC回収率	%	-	-	91.6	90.1	-	91.0	90.1			
CO2回収率	%	-	-	90.0	90.0	-	90.0	90.0			
CO2回収純度	%	-	-	98.9	99.2	-	98.7	98.9			
CO2吸収液L/G(+H2S吸収液L/G)	kg/kg	-	-	11.9	9.81+1.38	-	8.1	6.78+1.01			
冷ガス効率	%	82.1	82.8	82.8	82.8	82.8	82.8	82.8			
ガス化炉微粉炭処理量	kg/h	48,633	98,360	107,098	107,169	133,296	147,939	147,408			
IGCC単独に対する石炭処理量比	%	100	100	109	109	100	111	111			
石炭発熱量 (HHV)	kJ/kg	25,566	25,566	25,566	25,566	25,566	25,566	25,566			
発電端出力	kW	165,700	369,200	354,000	361,900	519,900	502,900	508,800			
ガスタービン出力	kW	105,600	228,600	225,900	226,700	318,000	316,500	316,900			
蒸気タービン出力	kW	60,100	140,600	128,100	135,200	201,900	186,400	191,900			
補機動力合計(CO2圧縮設備除く)	kW	25,720	50,590	63,530	64,080	70,940	88,910	89,940			
補機動力合計(CO2圧縮設備含む)	kW	25,720	50,590	103,730	104,180	70,940	144,210	145,140			
送電端出力 (CO2圧縮液化設備除く)	kW	139,980	318,610	290,470	297,820	448,960	413,990	418,860			
送電端出力 (CO2圧縮液化設備含む)	kW	139,980	318,610	250,270	257,720	448,960	358,690	363,660			
発電端効率 (HHV)	%	47.98	52.90	46.54	47.55	54.92	47.87	48.60			
所内率 (CO2圧縮液化設備除く)	%	15.5	13.7	17.9	17.7	13.6	17.7	17.7			
所内率 (CO2圧縮液化設備含む)	%	15.5	13.7	29.3	28.8	13.6	28.7	28.5			
送電端効率 (HHV) (圧縮液化設備除く)	%	40.53	45.61	38.19	39.19	47.43	39.40	40.01			
送電端効率 (HHV) (圧縮液化設備含む)	%	40.53	45.6	32.9	33.9	47.4	34.1	34.7			
CO2排出量(煙突入口)	t/h	113.0	233.6	25.9	27.7	313.2	37.6	38.7			

表 3-2-4-8 プラント全体性能解析結果

(2)燃料電池規模(ガス導入率)

CO2 分離・回収を行わない IGFC における燃料電池へのガス導入率と燃焼器出口温度 ならびに発電端および送電端効率との相関を図 3-4-2-25 に示す。燃料電池規模を大 きくするほど (ガス導入率を上げるほど)、燃料電池の冷却用空気が必要となるため、 GT 燃焼器温度が低下するので、カソードリサイクルを行うこととした。1,500℃級 GT の燃焼器温度を維持できる燃料電池へ燃料ガス導入率は 76%であるが、効率の観点か らは更に燃料ガス導入率を上げることが望ましい。IGFC 実用化に当たっては、GT (規 模、圧縮比、温度等)の最適化が必要であり、これに応じて全体システムが構築され ることになる。

図 3-4-2-25 燃料電池へのガス導入率、熱効率、燃焼出口温度の相関(1,500℃級 GT)

(3) カソードリサイクルの圧損の影響

圧力損失の影響を含めたカソードリサイクルの影響についての解析結果を図 3-2-4-26に示す。圧力損失が増大すると発電端効率が上昇し、送電端効率が低下する。 これはブロワ等の動力が大幅に増加する一方、蒸気系へ回収される熱量が増加するこ とによる。

燃料電池へのガス導入率の増加に伴う送電端熱効率の向上は圧量損失の設定を大きくすることで鈍化するものの、今回設定した 0.4MPa の圧力損失ではガス導入率が100%のケースが最も高効率となった。

因 5 2 4 20 然将电视内 9 上 / 頂入 垣加

(4)システム構成

今回検討したシステムフローを図 3-2-4-27 に同解析結果を表 3-2-4-9 に示す。燃料電池は CO2 分離・回収後、CO シフトは Sour シフト(CO2 分離回収型 A)の送電端効率が最も高く、炭素析出のリスクがないことからも、最も望ましいシステム構成である。

CO2 分離回収型 C の場合、シフト蒸気供給は不要となるが、炭素析出防止のための 水蒸気供給により H2/CO 分圧が低下するため燃料電池電圧が低下する。また、燃料電 池で生成した水蒸気は CO2 分離・回収装置にて凝集分離されるため、GT への入熱量が 低下する。ここでは、炭素析出防止用水蒸気は抽気としたが、燃料系リサイクルによ る水蒸気を活用することで、効率改善の可能性が考えられる。

図 3-2-4-27 CO2 分離・回収型 IGFC システムフロー

表 3-2-4-9 CO2 分離・回収型 IGFC(1,500℃級 GT)、ガス導入率 100%時の プラント解析結果

CO2分離・ 回収型	SOFC出力 [MW]	GT出力 [MW]	ST出力 [MW]	所内動力 [MW]	発電端効率 [%-HHV]	送電端効率 [%-HHV]
А	300	67	96	103	60.8	47.2
В	301	67	87	102	59.7	46.3
С	248	49	89	96	50.8	38.2

(5) コスト評価

C02分離・回収型IGCCとして、A/B/Cについてコスト評価結果を図3-2-4-28に示す。 まず、C02分離回収型Cについては、機器構成がC02分離回収型Bとほぼ同等である が、送電端効率において8%もの差があることから、C02分離回収型Bに大きな優位 があることは明らかである。次に、C02分離回収型AとBとの比較であるが、AとBと の差は燃料電池の差ではなく、C02分離回収までのプロセスの差である。ここで、 「脱硫+C0 Sweetシフト+C02物理回収」と「C0 Sourシフト+C02物理回収」との 比較は既往の研究にて新設プラントを想定する場合は「C0 Sourシフト+C02物理 回収」にコスト優位性があることが知られている。燃料電池を組み込んだ場合も、 AとBでは燃料電池はほぼ同規模であることから、コスト比較においてC02分離回収 型Aに優位性があることは明らかである。

以上から、CO2分離回収型Aが最もコスト優位性があり、順位としてはA>B>C (Aが 最もコスト優位性が高い)の関係となる。

図3-2-4-28 発電コスト比較

[出典]NED0「ゼロエミッション石炭火力技術開発プロジェクト クリーン・コール・ テクノロジー実用化可能性調査 石炭ガス化複合発電におけるCO2分離回収システム 最適化に関する検討」報告書

2.3 実証に向けたシステム評価

CO2 回収型 IGFC の小型実証に向け、適応する燃料電池の選択を主眼にシステム評価 を行った。対象となる燃料電池は技術動向調査の結果を踏まえ、「SOFC」と「MCFC」 を対象とした。

2.3.1 燃料電池の IGFC 適用性について

IGFCの実証試験に求められる主な条件は、石炭ガス化ガスを用いる発電プラントとして大型のガスタービンと連携するために、次の3点が挙げられる。

- ① ガス化炉およびガスタービンを想定した高圧化に対応すること
- ② ある程度規模の大きな発電容量を持った燃料電池ユニットであり、拡張性がある こと
- ③ 石炭ガス化ガス(水素リッチガス)への適応性があること

実証へ向けたシステムの評価ならびに燃料電池の選定においては、SOFC ならびに MCFC に関する技術動向調査の結果から、上記を念頭に検討を行うものとする。

2.3.2 SOFCの IGFC 適応性検討

第1章における SOFC に関する技術動向調査の結果から、上記3条件を満たす可能 性がある調達可能なメーカーとしては MHPS が挙げられ、特に GTFC として現在開発が 進められている「0.6 MPa 600kW※級モジュール」が IGFC 用に最も適している可能 性が高い。

MHPS 製の「0.6 Mpa、600kW 級モジュール」を想定した実証機の構成例を図 3-2-4-29
 に示す。実証機は MHPS 製の 600kW 級モジュール複数台で構成する。
 ※ SOFC 設備容量は都市ガス運転時の発電端予想出力を示す。

MHPS 製の「0.6 MPa、600kW 級モジュール」を想定した場合、IGFC 実証に適用する SOFC モジュールには以下の仕様を求めるものとする。

- (1) SOFC モジュールは、現在、NEDO プロジェクト「GTFC (1000kW 級)のシステム」 で開発された SOFC モジュールとし、モジュール容器の運転圧力は最大 2.0 MPaG の仕様とする。
- (2) 水素リッチガスにて高圧(Max. 2. 0MPaG)下での試験を前提に設備仕様設計を行なう。
- (3) SOFC 設備は水素リッチガスの供給条件下において安定して運転・監視可能な制 御システムを構築する。図 3-2-4-29 に示すように複数台の SOFC モジュールに対 し補機一系統とし、各補機ならびに各流量の制御も複数台の SOFC モジュール分 を一系統にて制御することで拡張性確認を可能とする。
- (4)発電電力の制御は1つのインバータで1つの燃料電池モジュールを制御する。 複数並列化した電力の集電は交流母線に複数のインバータが接続することになり、マスターコントロールで複数のインバータを制御することで拡張性確認を可能とする。

2.3.3 MCFCのIGFC 適用性検討

第1章における MCFC に関する技術動向調査の結果から、ある程度規模の大きな発 電容量を持った MCFC についてその燃料電池の供給者を探すと、日本国内においては 2008年にこれまで開発を行なっていた IHI が開発を凍結し撤退状態になり、MCFC ス タックを製造するメーカーは存在しない。一方海外では、米国 Fuelcell Energy(以後、 FCE)が天然ガスやバイオガスを燃料とした常圧内部改質型 MCFC システムを商品化し ており、韓国 POSCO Energy などのライセンシー企業とともに国の補助の下で米国、 韓国等で順調に普及を進めている。

MCFC を使用した IGFC 実証試験を行う場合、現在商用化されている MCFC 製品を使用 する必要があることから、FCE 製スタック適用の可能性についての検討が必要である。 しかし燃料は天然ガス・バイオガスであり、現時点では石炭ガス対応へ向けた開発の 動きは見られない。そこで、補機類も含め天然ガス用にパッケージングされた現行製 品に対して石炭ガス化ガスを導入する際の成立性確認・課題抽出が必要である。

高圧化への対応においては、現状、販売されている MCFC には加圧運転を想定されているものはない。また、試験レベルでは 1.2MPa まで実証済みであるが、IGFC 実証機で想定されている運転圧力(約 2.5MPa)には及ばない。

以上を踏まえ、MCFC を IGFC 実証機に適用した場合、商用化 MCFC は常圧タイプのみ のため、高圧の石炭ガス化ガスをそのまま導入することはできない。そのため、ガス 導入前に圧力を常圧まで降下させる必要がある。

上述のように MCFC を IGFC に適用するためには、石炭ガス化ガス使用、加圧運転、 Ni 短絡などの課題や、不純物等による性能低下の可能性があるため、実証試験に採用 するためには別途詳細な検討や試験による検証が必要であり、現時点での実証試験へ の適用は難しい。

2.3.4 燃料電池の種類と発電容量の決定

- (1) MCFCのIGFC 適用性検討で得られた調査結果まとめ
 - ・ IGFC に適用する燃料電池はシステム構成の都合上、高圧での発電となるが、現 状、販売されている MCFC には加圧運転を想定されているものはない。
 - ・電極間を電気的に短絡させてしまうニッケル短絡が、MCFCの長時間運転に対す る障壁のひとつとなっている。
 - ・日本国内では, MCFC メーカーが不在である。また、海外の燃料電池システムメ ーカーが、日本などへの海外展開するような情報は見当たらなかった。
 - ・上記課題に対して別途詳細な検討や試験による検証が必要であり、また、入手 性が困難であること等から判断すると、実証試験への採用は現段階では困難で ある。
- (2) SOFC の IGFC 適用性検討で得られた調査結果まとめ
 - 石炭ガス化ガスを CO2 分離回収後の H2 リッチガスは内部改質が無いので、モジュール内の温度管理が必要だが、250kW 機での試験において設計対応を通じて、水素リッチガスの対応が可能であることを確認済み。
 - 高圧化については、0.23MPaは商品化され、0.6MPaまでの開発がなされている。

- 高圧運転は理論的に可能。ただし、高圧化に伴いモジュール内の熱伝達特性の 変化が想定されることから、モジュール内の温度分布には留意必要。
- ・ 上記に対して国内メーカーである MHPS が開発を継続中。
- ・ また、MHPS は事業用 GTFC (天然ガストリプルコンバインド発電)開発を目指しており、本開発は将来的には IGFC につながっていく。

(3) 燃料電池の種類と発電容量について

上述の通り、IGFC 実証機に向けては MCFC は技術課題が多く、入手性の点からも採用が困難と言える。SOFC については、MHPS 製 SOFC モジュールが高圧化への対応ならびに水素リッチガスへの対応の点から有望であり、モジュール規模は現状では 600kW 級モジュールが有力な候補と考えられる。

なお、発電容量としては複数のモジュールを並列化し実証することで、その拡張性 が確認できることから、実証機のコストを最小化するモジュール数を考慮し、実証機 容量は 600kW 級モジュール×2 台と決定することとする。

2.3.5 実証機システム構成

(1) CO2 回収型 IGFC 実証システム構成

IGFC 実証は SOFC を燃料電池として採用することとし、特に大型化・高圧化に優れ る MHPS 製の 600kW 級モジュールを採用する。導入ガスは CO2 回収型 IGFC を想定し、 CO2 分離回収後の水素リッチガスとすることで、ガス中カーボンによる炭素析出リス クが低い条件とする。IGFC においては、本来、燃料電池からの排燃料ガスをマイクロ ガスタービンに導入するが、MHPS の SOFC システムは燃料電池を 2.0MPa での高圧確認 を目的に改造しており、マイクロガスタービン圧縮機が 2.0MPa に対応出来ないこと から、マイクロガスタービンを不設置としており、排燃料ガスは燃焼炉(触媒燃焼器) に送られ燃焼処理される。

SOFC 設備は緊急停止時等において、燃料電池内を還元雰囲気に保ちつつ冷却する必要があるため、周辺設備として窒素供給設備ならびに水素供給設備を持つ。 実証機システムの概略系統を図 3-2-4-30 に示す。

図 3-2-4-30 実証機対応システム構成系統図

同図の赤い領域が新設される部分となり、燃料電池の試験には「商用機のシステム検討」におけるシステム構成の比較検討結果を踏まえ、石炭ガス化ガスはガス精製装置を通り、CO2分離回収装置出口から必要ガスを抜き取ることで、水素リッチガスとして実証機 SOFC へ供給される。

燃料電池モジュールからの排気ガスは触媒燃焼器で未利用燃料と空気を燃やし、燃 焼ガス排ガス冷却器で180℃以下まで冷却後、煙突から大気中へ放出する。

ここで燃料電池に導入される水素リッチガスは別途研究が行われた「石炭ガス中の 燃料電池被毒成分を除去するクリーンナップ技術」を通じて得られた IGCC+CO2 分離 回収による燃料電池に対する被毒成分の挙動から、CO2 分離回収プロセスを Sweet シ フトとすると、燃料電池の前段に燃料電池用のガス精製試験設備の必要性は低いと判 断できる。

(2) 吸着剤試験装置

吸着剤試験装置は、将来的な IGFC 用燃料電池の被毒成分に対する吸着剤特性を明 らかにする目的で設置される。よって、CO2 分離回収プロセスの前(IGCC ガス精製出 ロ)に試験ループを設置して実施することが適当であると判断でき、除去すべき被毒 成分としては、「石炭ガス中の燃料電池被毒成分を除去するクリーンナップ技術」の 結果から、H2S と H2Se が対象に挙げられる。試験用ガスの供給系統構成としては、ガ ス精製装置出口のガスの一部を抽気し、そのガスを吸着剤試験装置へ供給し、評価後 のガスは燃料電池モジュールの後流に設置された触媒燃焼器で燃やされ、SOFC モジュ ール排ガスと同様に排ガス冷却器を通り、煙突から大気へ放出される。 吸着試験装置へ供給されるが組成の一例を表 3-2-4-10 に示す。

	CO2 回収後水素リッチガス	ガス精製設備出口精製ガス
H2 mol%	85.34	27.89
CO mol%	1.44	56.86
CO2 mol%	1.79	3.48
CH4 mol%	1.19	1.19
H2O mol%	0.01	0.42
H2S ppm mol	H2S+COS<0.1	23 吸着剤処理後 <0.1
COS ppm mol		
N2 mol%	9.10	8.86
Ar mol%	1.13	1.11
NH3 ppm mol	0	1
HCN ppm mol	0	0
CH4O ppm mol	0	0

表 3-2-4-10 供給されるガス組成例

2.4 実証機試設計

2.4.1 試設計条件

試設計の条件は以下の通りとする。

(1) 設置場所

国内で高圧水素リッチガスの供給が可能な地点

- (2) SOFC モジュール設備容量
 - 1MW 級(600kW) モジュール×[複数台(2台)](制御弁等は複数モジュールを 独立に制御するモードと複数モジュールを1系として制御するモードの 切替が可能とする)
- (3) 設備構成

1MW 級 (600kW) モジュール×2 並列

なお、ユーティリティ設備等の一部設備は2ユニット共用とする。

- (4) 設備仕様条件
 - ① 水素リッチガスにて高圧(2.0MPaG)下での試験実施を前提に設備仕様設計を行 なう。
 - ② 運転圧力の下限は 0.6MPaG 級までとし、運転圧力変更時には一旦装置を停止の上、自立式圧力調整弁の設定変更、手動弁開度変更や圧力調整用オリフィスを交換し、運転圧力を変更する。
 - ③ 水素リッチガス供給の条件下において、試験運転が実施できる設備とする。

- ④ 水素リッチガスの供給条件下において、SOFC 設備ならびに周辺設備について 安全に起動停止操作を行うことかが出来るものとする。
- ⑤ 緊急停止時(電源断等)において、設備機能を損なうことなく安全に停止する ことが出来ること、また、その後、再起動ならびに継続した発電ができるよう配慮する。
- (5) 排出物

①排気ガス

- ・SOFC 設備に付属して設置される排燃料燃焼器にて SOFC 排燃料と SOFC 排 空気を混合、燃焼させて排出する。
- S0x:0.1ppm N0x:8ppm 煤塵:4mg/m3N(全て 02:16%換算、定格運転中)、温度
 <180℃、流量<15,100m3N/h 但し、煤塵に関しては、供給ガス中にダスト成分、タール分等が含まれないものとする。
- ・NOx に関しては、SOFC 排燃料中に NH3 が含まれることから、現段階では上記の NOx 値を満足するか不明なため、脱硝装置を設置して NOx 値を満足するものとして計画する。必要に応じ排ガス燃焼器の要素試験を実施し、発生 NOx 量を評価することで、脱硝装置の要否を最終判断する。
- ・排ガス分析用仮設座を設置するものとするが、運転に必要ない場合、排ガスの連続計測は実施しない。

(脱硝装置を設置した場合には、脱硝装置の運転に必要な排ガス分析計を設置する)

②SOFC 排燃料

停電時及び制御装置故障、排燃料燃焼器故障時には SOFC 排燃料をグランドフ レアに排出する。

- ③ドレン(通常運転時)
 - ・ドレン発生量を削減するため、冷却水系統を密閉式ラジエター方式とする。
 - ・発生ドレンを排ガス冷却器スプレーとして再利用し、ドレンの系外排出量 を抑制する。(定格負荷の場合、ドレン発生量≤スプレー量となり、無排水 化となる計画) 但し、大気温度変動時や運転条件によっては、ドレン発生 量>スプレー量となる条件も有り得ることから既設排水処理設備へ排水を送 出可能な設備、もしくは排水を産廃処理するために排出可能な設備とする。
 ・排水には油分が含まれないよう配慮する。
- 2.4.2 実証機運転範囲
 - (1) 運転圧力

運転圧力は設備としては、0.6MPa 級~2.0MPa までの運転に対応可能な仕様とし、 気密、耐圧試験に関しては、2.0MPa での試験を想定した試験圧力で実施する。

(2) 燃料利用率、空気利用率

- 定格運転時の燃料利用率、空気利用率は以下
 - システム燃料利用率 :76%程度(供給燃料に対し発電反応で使用する燃料の水 素比率)
 - モジュール燃料利用率:37%程度(供給燃料と再循環燃料を混合したモジュール 入口燃料に対し反応で使用する燃料の水素当量比率)
 - 空気利用率 :20%程度とする。
- ② システム燃料利用率、

システム燃料利用率に関しては、ハイブリッド機では 75~82%程度で運転し ているこのため、定格負荷運転では、この範囲にて運転可能な設備とする。定 格負荷にてシステム燃料利用率を下げた場合、水素リッチガスの供給量の増加 及びそれに伴う供給系統の容量アップ、排ガス処理設備側の容量アップ、排ガス 量の大幅な増加→アセス枠超過となるため、これらが発生しない範囲で対応する。

③ 空気流量

空気流量は発電反応により発生した熱及び燃料の顕熱/化学反応熱(改質吸熱 等)に対し発電部温度が空気冷却により規定温度となる様に設計した。空気利用 率の低下は問題ないが、空気利用率が過度に上昇した場合にはカートリッジ内 で局所的な酸素濃度の低下箇所の発生、発電部の温度が上昇することで、セルス タックが損傷する可能性がある。空気利用率は 30%程度を上限として設定する。 発電部の温度を規定温度以上とするためには、空気利用率が 30%以上となるまで 空気流量を絞る必要がある状態(熱自立が出来ない状態)では、空気流量は絞ら ずに発電室燃焼用燃料を投入することで温度を運転温度に維持する。

- (3) モジュール入口空気温度
 - ①定格負荷時にモジュール入口空気温度を規定温度(380~420℃程度)まで昇温 可能な空気予熱器を設置する(定格負荷時は空気加熱器不使用)。
 - ②空気温度をこれよりも上昇させる必要がある場合には、空気加熱器を使用して 温度を上昇させる。空気加熱器により500℃まで空気を昇温可能な設備とする。
- (4) 再循環流量

①燃料再循環量は再循環ブロワーの回転数により制御する。②再循環流量は、定格負荷時の予想流量の1.2倍程度まで供給可能な仕様とする。

- (5) 燃料-空気差圧
 - ①ハイブリッド機では、燃料-空気間の差圧を低下させることで、燃料-空気間の クロスリーク量を低減し、性能への影響を少なくしている。燃料-空気間の差 圧は発電中±0~2kPa 程度、それ以外は±10kPa 程度になる様に制御する。

② 運転中の差圧は差圧設定の変更により可能とする。 設定値以上の差圧となった場合には、設備保護のために、インターロックに て装置を非常停止する。

2.4.3 SOFC 設備の運用

- (1) 基本方針
 - ①SOFC 設備の運転は、下記の条件が満足されているときにのみ実施する。
 - ・IGCC 設備及び CO2 分離回収設備の起動が完了し、水素リッチガス性状が SOFC にて運用できる状態となっていること(ガス化炉負荷≧規定値かつ CO2 分離 回収装置定常運転中)
 - ・ユーティリティが供給可能であること
 - ②そのため、SOFC 設備の停止は、IGCC 設備及び CO2 分離回収設備の停止を開始 する前に停止を完了することを基本とする。
 - ③SOFC 発電設備運転中に IGCC 設備もしくは CO2 分離回収設備に非常停止が発生 した場合にも SOFC を非常停止可能な様に、ユーティリティ設備仕様に反映す る。
- (2) 運用計画
 - IGCC 設備の運転条件(ガス化炉最低負荷 50%)を考慮した SOFC 設備運用として計 画する。

C02 分離回収設備は原料ガス量 50~100%の範囲で運転する計画であり、変化速度(1~3%/min)及び変化幅(50~100%)を設定入力することにより C02 分離回収設備単独で原料ガス量を変化させるモードと、ガス化炉入力指令と連動して変化させるモードの 2 つの機能を有する。C02 分離回収設備と十分協調をとった SOFC 設備運用で計画する。

但し、設備設計のためには、水素リッチガスのガス組成の変動幅や変動範囲、ガ ス化炉負荷/炭種/CO2 分離回収装置の運転モードのガス組成へ与える影響が明確 化される必要がある。SOFC 設備は、燃料ガス(H2 リッチガス)量を各ユニット毎 に10~100%の範囲で変化させて運転する。また、燃料流量は電流指令と連動して 変化させ、電流指令変化速度1~5%/minを設定することが出来る。燃料流量を単 独で変化させることは出来ず、電流指令に対する燃料流量を変更することにより、 流量設定を変化させる。但し、燃料流量制御を手動(燃料流量設定)とし、燃料流 量設定変化速度を設定することで、燃料流量単体を変化させることは可能となる が、燃料利用率が規定範囲外となった場合には SOFC 設備が非常停止する。

2.4.4 設備保護

非常停止が必要な際は、蒸留設備と連携し自動で非常停止動作を行い、安全な状態 まで移行させるものとする。SOFCのトリップ項目(重故障および軽故障項目)を表

Ne	敬起リフト	重故障	軽故障
10.	言報リクト	トリップ+警報	警報のみ
1	非常停止 PB	0	—
2	制御装置異常	0	0
3	パワーコンディショナ異常	0	0
4	再循環ブロワ異常	0	0
5	補機ユニットバルブ異常	0	\bigcirc
6	SOFC モジュール異常(電圧、温度)	0	\bigcirc
7	燃料利用率異常	0	0
8	モジュール容器内温度異常	0	\bigcirc
9	モジュール入口燃料温度異常	0	0
10	モジュール出口燃料温度異常	0	0
11	モジュール入口空気温度異常	0	0
12	モジュール出口空気温度異常	0	0
13	補機ユニット内温度異常	0	0
14	発電用空気圧縮機異常	0	0
15	燃料元圧異常	0	0
16	圧縮空気元圧異常		\bigcirc
10	(N2によるバックアップ有り)	-	U
17	窒素元圧異常	0	0
18	水素元圧異常	0	0
19	モジュール圧力異常	0	0
20	再循環燃料圧力異常	0	0
21	燃料−空気系統差圧異常	0	0
22	モジュール内可燃性ガス濃度異常	0	\bigcirc
23	補機ユニット内可燃性ガス濃度異常	0	0
24	燃料流量異常	0	0
25	純水流量異常	0	0
26	純水ポンプ異常	0	0
27	UPS 異常	0	0
28	計装空気圧縮機異常		0
29	補機ユニット換気ファン異常	_	\bigcirc
30	排燃料燃焼器異常	0	0
31	排ガス冷却器異常	0	\bigcirc
32	脱硝装置異常	_	\bigcirc
33	排ガス温度異常	0	0
34	冷却水系統異常	0	0
35	ドレン系統異常		
36	停電	0	_

表 3-2-4-11 トリップ項目(重故障および軽故障項目)

2.4.5 実証試験設備の系統設計

表 3-2-4-12 に SOFC 実証設備の仕様一覧を示す。

ID		項目		内容						
1		名称		SOFC 実証設備(600kW 級モジュール×2 系列)						
2		種別		固体酸化物形燃料電池						
3		目標定格出	出力	Later kW						
4	,	入出力電力	1仕様	AC6600V 3 相 60Hz						
6	設置	使	用場所	屋外						
7	環境	気	昌•湿度	−5~40°C 、 0~100%RH						
0			恣重如	固体酸化物形燃料電池						
8			光电印	(円筒横縞形)						
11		本体	雨生	制御装置(MHPS 製)						
12			电入	高圧分電盤、 低圧分電盤 等						
13			司表	パワーコンディショナ						
14				発電用空気圧縮機						
15	2	空	気 <mark>供給</mark>	空気予熱器/空気加熱器						
16				保護用空気ブロワ						
	+# -+	ガ	ス供給	燃料/窒素/水素/改質スプレー						
17			山市街場	再循環冷却器						
18	<u>~1</u> 4	况众不	¥冉111 琅	再循環ブロワ						
19				排空気/排燃料減圧設備(バルブ+サイレンサ)						
20				排燃料冷却器						
21		排り	Jス処理	排燃料燃焼器						
22				排ガス冷却器						
23				脱硝装置						
		計	装空気	計装空気圧縮機						
24		<u>مر + م</u>	-4 181 5	ラジェータ						
25		冷却	水・トレン	冷却水ポンプ /再循環ブロワ冷却水ポンプ						
27		(2	_ツト共用)	ドレン設備(MHPS 所掌機器)						
28	構成			窒素供給設備						
29	(BOP)	-L	ティリティ	水素供給設備						
30		(2	-ツト共用)	ドレン設備(電源開発殿所掌機器)						
31		4	その他	吸着剤試験装置						
32	DT -			電源設備 / 非常用電源設備						
33	既設	設備の流	用/改造	純水設備 / 工業用水設備						
34				グランドフレア						
35										
36		装置保護	幾能	警報装置、自動停止機能						
37		停電対応	态	外部から非常電源を供給し、停止						
38		 元	E格時	自動(ベースロード)						
39	運転	起重	<mark>协停止</mark> 時	自動						
40		非常	常停止時	自動(手動でも可)						
41	41 保守点検			消耗品等は連続運転:3000h 以上の交換インターバル						
42	2 資格·技術者			電気主任技術者						
10	· · · · · · · · · · · · · · · · · · ·			電気事業法						
43		週用法	況	(事業用電気工作物)						

表 3-2-4-12 SOFC 実証設備仕様一覧

(1) SOFC 実証設備

本設備は SOFC モジュール、補機類及びユーティリティ設備から構成される。 SOFC 実証設備は、1MW 級×2 系列とし、それぞれに 600kW 級加圧型 SOFC モジュー ルを設置する。モジュール容器には圧力容器を採用し、運転圧力 2MPaG へ対応し、そ れぞれに安全弁が設置されている。

(2) 空気供給

発電に使用する空気を供給する。

発電用空気圧縮機にて空気を加圧供給し、最大空気流量を供給可能な容量とする。 空気の供給時は、空気予熱器にて SOFC 排空気と熱交換することで、必要な温度まで 空気を加熱する(供給空気温度:380~420℃)。

起動時及び低負荷時には空気供給温度≧排空気温度となるため、空気加熱器を設置 する。空気加熱器は触媒燃焼器方式により、水素リッチガスを燃焼させることにより 空気を加熱する。なお、装置故障等が発生した際に、セルスタックの空気極側の酸化 性雰囲気維持及び サブモジュール冷却のための保護用空気ブロワーが設置される。

(3)ガス供給系統

- ・水素リッチガスの供給条件は CO2 吸収塔後の昇圧圧縮機下流から SOFC に供給する ものとする。最大圧力は 3.97MPaG として設計し、圧縮機下流:常用圧力 3.51MPaG、 温度:0~100℃とする。
- ・発電に使用する水素リッチガスを供給は発電により消費する燃料流量は電流に比例 するため、燃料供給量は電流指令に対する関数として設定する。
- ・起動時等にセルスタック発電部を規定温度以上まで昇温させるため、発電室燃焼による昇温を行う発電室燃焼用水素リッチガス供給系統を設置する。
- ・燃料系統のパージ、水素及び水素リッチガスの希釈のために窒素供給系統を設置す る。
- ・起動・停止時(水素リッチガスを供給出来ない温度域)及び水素リッチガス系統不調時に燃料系統を還元性雰囲気に維持するために、水素供給系統を設置する。

2.4.6 実証試験設備の機器配置計画

実証試験設備の機器配置計画図(案)を図 3-2-4-31 に示す。

図 3-2-4-31 機器の配置計画図

2.4.7 実証機システム運用・試験の課題

(1) SOFC カートリッジの上下金属ヘッダー部温度

メタンを燃料に含む都市ガス(天然ガス)と比較し、石炭ガス化ガス中にはメタン は1%程度しか含まれず、メタン改質による吸熱効果がないため、燃料供給ヘッダー 側のセル温度が燃料排出ヘッダー側よりかなり高温となる。

これまでの試験結果をもとに今回の試設計ではカソードガス利用率を20%とし、定格 負荷運転(セル温度が設計許容温度以下で)を可能としている。しかし、燃料供給へ ッダー側の温度が高くなる温度分布は変わらず、空気利用率、セル供給空気温度を変 えた発電試験は燃料へッダー温度(600℃以下)を監視し、実施する。

(2) 運転圧力を変えた発電性能試験

高圧運転となる商用機のモジュール設計にあたっては、圧力による発電性能データ をもとにセルの運転条件(電流密度、電圧、燃料利用率など)の最適化を検討するこ とになる。その際、圧力を変えた時の電流-電圧特性(セル温度、燃料利用率、空気 利用率などを一定とした)データが必要となる。

空気、燃料の供給温度を変えてセル温度を制御した場合、温度分布までを同じにす ることは難しく、セル性能を表すと考えられるセル平均温度を一定とすることで性能 評価を実施する。

(3) 空気流量、温度を変えた発電性能試験

GT との連係運転、カソードガスリサイクルシステムなどの商用化にあたっては、カ ソードガス空気)の流量変化、温度変化、発電性能がどのように変化するかのデータ を取得し、設計へ反映する必要がある。

空気流量一定、供給温度を変化させる試験では、空気予熱器を通る空気のバイパス 流量を変えることになるが、供給温度が変化することでセル温度、セル出口空気温度 が変化し、空気予熱器高温側の温度が変化する。この変化は低温側の供給温度を変化 させることになり、この循環がしばらく続くことになる。この過程を律速している現 象はセル温度のゆっくりした温度変化だと考えられ、この特性が空気流量を変えた時 にどのように変化するかのデータが得られれば、GTと連係したシステムでの負荷制御 に利用できる。

カソードガスリサイクルは空気供給源の限られた流量をリサイクルすることで流 量を増すことができ、SOFCの容量を増大でき、商用機ではシステム効率の向上策とし て検討されている。

(4) 高圧運転時の放熱損失

圧力上昇によってネルンスト・ポテンシャルが増加することで、セル性能は向上する。また、圧力上昇により性能向上が期待される条件において、運転圧力上昇は、カートリッジ周辺の雰囲気圧力も上昇し、雰囲気ガスの密度差による対流が発生するため、収納容器からの放熱損失が増加する。放熱損失の増加によりセル温度が設定温度よりも下がった場合、SOFCではセル温度が性能に著しい影響を与えることから、この温度低下が圧力上昇による性能向上分を打ち消し、セルの性能低下につながる。

高圧化によるセル性能低下の原因が上記のようなセル温度低下によるものである かどうかを明確にするため、モジュール収納容器からの放熱損失評価が必要となる。 高温、高圧、高電流場での温度計測は難しいが、セルからカートリッジ、容器内断熱 材、容器外表面温度を容器先端、中央、後部の同一断面で計測し、放熱量評価を行い、 セル性能低下の原因を明らかにする。

(5) 燃料再循環率の最適化

試設計ではシステム燃料利用率を76%、燃料系統を再循環することにより、モジュ ール燃料利用率を37%に設定している。メタンを80%以上含有する都市ガスと異な り、H2 リッチガスには1%程度しか含まれず、メタン改質に必要な水蒸気流量はセル の発電反応に伴い発生する水蒸気で十分である。したがって、H2 リッチガスでの再循 環は未利用燃料を入り口燃料に戻し、燃料(H2)流量を多くすることで、発電室内の 燃料出口側での燃料濃度低下が小さな発電運転を実現するとともにカートリッジ内 の温度分布の平準化を目的としている。

しかし、H2 リッチガスでは発電反応で発生した H20 が改質反応に使われないため、 この H20 はそのまま再循環され、セル入り口の H20 濃度は高くなり、結果として H2 成分の濃度が低くなる。H2 成分の濃度低下は起電力の低下となり、燃料(H2)流量の 増加と濃度低下とが相反する効果を生み出すことになり、再循環率についての最適化 が必要になる。

(6) SOFC モジュール並列ユニットの差圧制御

将来の大型商用機における SOFC モジュールの多並列ユニット設計法を検証するた め、試設計では2並列ユニットを模擬した設計とし、実証試験により並列運転を実施 する。特に、セルへ供給される空気-燃料間の差圧については運転圧力 2MPa で差圧 0 ~2KPa の制御を目標としている。2 並列の試験結果から多並列へ展開するためには、 1 つの流量、圧力制御で微妙に異なる特性(流量、温度分布、各部の流路抵抗、発電 性能)を持つ2つのモジュールを運転した際、各流量制御部の圧力データ(差圧も含 め)を基にした試験結果の評価が求められ、高温、高圧、高電流場での限られた計測 点数から可能とするためには事前のコールドテストによる計測位置、内容の検討が必 要となる。

2.5 実証試験

2.5.1 実証試験目標

IGFC 技術動向調査における課題や実証に向けたシステム評価結果を踏まえ、実証試験における目標としては以下が考えられる。

事業用の燃料電池を CO2 分離回収後の水素リッチガスにより運転し、運用性と信頼性 を把握すること。

燃料電池の耐久性として天然ガス並みであること

⇒ 電圧低下率 0.1%/1,000 時間程度

設備信頼性として天然ガス並みの運転時間であること

⇒ 運転時間 3,000 時間程度

複数の燃料電池モジュールの運転より、拡張性の確認すること

C02 分離回収設備と燃料電池の協調運転を確立すること

吸着剤の耐久性把握

CO2 分離回収型 IGFC 商用機(500MW 級)として、送電端効率 47%(HHV)程度の達成見 通しを得ること

大型 IGFC 技術開発にむけた課題を整理すること。

2.5.2 実証試験項目

上記の実証試験目標を検証するための試験項目を表 3-2-4-13 に示す。

	試験項目	試験操作	確認事項
起動·停止	H2 リッチガスのみで	・燃料電池起動モード	・H2 リッチガスのみでの起
方法の確	の通常起動・停止	・燃料電池停止モード	動と停止
認	インターロック停止		・燃料電池保護
			・既設側への影響がないこ
			2
600kW 級	600kW級モジュールで	・段階的負荷変化	・モジュール温度上限に合
モジュー	の H2 リッチガス適用		わせた空気流量制御、電流
ルの高圧	性		制御
H₂ リッチ			・モジュール内温度、電流、
ガス適用			電圧
性	高圧化対応として	・燃料電池への供給圧力を	・モジュール温度上限に合
	2.0MPa までの試験を	2.0MPa までに段階的変化	わせた空気流量制御、電流
	目指す。		制御
			・モジュール内温度、電流、
			電圧
	運転パラメータの適	·燃料入口温度変化	・モジュール温度上限に合
	正化と性能把握	・再循環流量変化	わせた空気流量制御、電流
		・空気入口温度変化	制御
		・燃料利用率変化試験	・モジュール内温度、電流、
			電圧
燃料電池	複数並列したユニッ		・各ユニット毎の燃料、空
ユニット	トへの燃料・空気の流		気制御の確認
の並列運	量制御、電流制御		・各モジュール毎の燃料、
転			空気流量の確認
			・各モジュールのモジュー
			ル内温度、電流、電圧
	複数ユニットの統合		・ユニット毎の燃料流量ア
	運転		ンバランス時の空気制御、
			電流制御の確認
石炭ガス	石炭ガス組成(H ₂ 濃	・CO2 分離回収装置の特性	・H2 濃度に応じた燃料流量
組成に応	度)の変動に応じた燃	を踏まえて、CO2 回収率を	制御の確認
じた制御	料電池制御	調整して、H2 濃度を変動	
		させる	
燃料電池	通常運転の継続性		・累積 3,000 時間以上の運
信頼性			転
石炭ガス	C02分離回収後に吸着		・燃料電池入口ガスの被毒
中の被毒	剤を設置しない石炭		成分分析
成分に対	ガスにおける燃料電		・電圧低下率 0.1%/1,000 時
する燃料	池の耐久性を試験		間程度の確認
電池の耐	C02分離回収前の被毒		・吸着剤入口、出口ガスの
久性評価	成分が多い石炭ガス		被毒成分分析
	を対象に吸着剤性能		・被毒成分破過の有無の確
	評価		認

表 3-2-4-13 試験項目

なお、CO2 分離・回収型 IGFC システムにおける送電端効率 47%程度の見通しについては、今回の実証機は熱効率解析と同じ CO2 分離・回収型 IGFC システムとは異なり、 実証機で検証できる部分としては燃料電池のみである。従って、システム全体の熱効 率解析については、燃料電池で検証した結果を熱効率解析(シミュレーション)により補う必要がある。具体的には、熱効率解析により、石炭ガス化炉・ガス精製装置から供給される燃料電池入口ガス組成に基づき燃料電池の電圧、H2 と C0 の分圧により電流が計算されるが、電圧についてはネルンスト式による開回路電位からモデル化された過電圧を引くことにより出力電圧が求められている。ここで、実証試験で得られた燃料電池の運転電圧は前述の出力電圧に相当するため、燃料電池の運転電圧とシミュレーションによる出力電圧の差異の有無を踏まえて解析する必要がある。

2.5.3 実証試験工程

上記の実証項目を実施するための基本的な実証試験工程を表 3-2-4-14 に示す。

⇒→ 野石口						経過	局時間(ヶ	r月)					
武映坦日	1	2	3	4	5	6	7	8	9	10	11	12	13
起動・停止方法の確認	\rightarrow												
600kW級モジュールの高圧 H2リッチガス適用性													
燃料電池ユニットの並列運 転				>									
石炭ガス組成に応じた制御					\rightarrow								
燃料電池信頼性評価													
石炭ガスに対する燃料電池 の耐久性評価										>			
石炭ガス中被毒成分に対す る吸着剤性能評価										\rightarrow			
内部点検											\rightarrow		
成果とりまとめ													\rightarrow

表 3-2-4-14 実証試験工程

2.6 特許・成果の普及

本事業は他事業として実施中の CO2 分離回収型 IGFC 技術実証に関わる各要素技術 開発の成果を連携させ、具体的な小型 IGFC 実証へ向けた方向性を明らかにするもの であり、成果の普及先が限られるため、対外的な発表等はない。

研究発表・講社	寅	なし	/
文献掲載		なし	/
特許等		なし	/
その他の公表	(プレス発表	き等)	なし

4. 成果の実用化に向けての見通し及び取組について

1. 成果の実用化に向けた戦略

(1)本事業における実用化の定義

本事業は、革新的な高効率発電技術である GTFC、IGFC の基盤技術を開発するもの であり、本事業における実用化とは、成果を基に GTFC、IGFC の各技術開発が実証フ ェーズに移行することである。

従い、実用化の定義は、「事業成果が IGFC 実証事業に活用されること、もしくは、 中小型 GTFC を構成する主要な要素が開発され、発電システム構築の目処がつくこ と」とする。

GTFCにおいては、従来(出力250kW級、運転圧力0.2MPa級)に比べ、中小型GTFC (出力10万kW級、運転圧力1.0~2.0MPa級)により近い容量・圧力条件の小型GTFC (出力1,000kW級、運転圧力0.6MPa級)のガスタービン連係技術を確立し、早期市 場投入を目指す。また、小型GTFC(1,000kW級)の市場投入、及び、中小型GTFC(10 万kW級)の実証を行うためには、セルスタックの量産化、低コスト化が必須であり、 製造工程において量産に必要な技術開発を行う。

IGFCにおいては、IGFCを構成する燃料電池モジュールについて、石炭ガスを燃料 とした場合の運用性や性能を把握する必要があることから、実燃料電池モジュール を用いた石炭ガス燃料の適用性試験を行い、その結果を踏まえて、IGFCの技術確立 に必要な実証機に係るシステム検討を行う必要性がある。その成果を、2019年3月 より開始した CO2 分離・回収型 IGFC 実証事業の設計や運用計画に反映する。

(2) 成果の実用化に向けた戦略

(2)-1. ガスタービン燃料電池複合発電(GTFC)

ガスタービン燃料電池複合発電技術開発 [④3)]

業務・産業用燃料電池の普及については、経済産業省の「水素・燃料電池戦略ロードマップ(2019年3月)」において、以下のとおり定められている。

「セルスタック等の技術開発を進め、2025年頃に55%超(送電端効率、LHV)の発電効率を目指す。また、現状9万時間程度の耐久性については、2025年頃までに13万時間を見通すことを目指す。さらに、その先の次世代の業務・産業用燃料電池として、発電効率65%超(送電端効率、LHV)の実現を目指す。」

ロードマップの実現に向け、2020~2021 年度頃に 1MW 級燃料電池システムの市場 投入を行い、燃料電池の普及に努める。これと並行して燃料電池の量産化体制を構 築し、次フェーズとして中小型 GTFC(10 万 kW 級)の技術確立,技術実証につなげ る。

図 4-1 燃料電池システム市場投入に係るロードマップ(出展:三菱日立パワーシ ステムズ(株))

(2)-2. 石炭ガス化燃料電池複合発電(IGFC)

<u>燃料電池向け石炭ガスクリーンナップ要素技術研究〔④2〕</u> <u>燃料電池石炭ガス適用性研究/燃料電池モジュールの石炭ガス適用性研究〔④</u> <u>4)-(2)〕</u> 燃料電池石炭ガス適用性研究/IGFC システムの検討〔④4)-(1)〕

本事業における成果については、2018 年度から開始された、「石炭ガス化燃料電 池複合発電実証事業」における、第3段階である CO2 分離・回収型 IGFC の実証試験 の設備設計及び試験内容の検討に適時反映・活用することで、実証事業を効率的に進 め、事業の成功につなげる。また、実証事業の成果を本事業の成果と組み合わせるこ とで、IGFC 実用化に向けた有用なデータとする。

175

			201	5年度			2016	6年度			201	7年度			2018	年度			2019	年度			2020)年度	E		202	1年度		20	22年	度
		1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q 2	2Q 30	Q 4Q
【大崎クールジェン第: 酸素吹IGCC実証	1段階】		}	詳	細設調	+∙建	设			>	1		実証記	<mark>t験</mark>			5															
Flate uses of			<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>					<u> </u>	-		_	<u> </u>			_	_
【大崎クールシェン弟』 CO2分離・回収型酸	2 段階) 漆吹IGCC		\$:		\$	詳	: 細設計	+•製	」 作・建	: 設・試	運転				2		ş	>		実証	; 試験	;		}						
実証			}																													
【大崎クールジェン第3	8段階】											•) (計画	策定)	•	•	·		,	: 詳	細設	計・製	・ 作・建	・ 創設・	, 武運動	ī.		<u> </u>	>	実証	試験	
CO2分離・回収型IC	FC実証																			1				1								Ť.
【NFDO委託事業】	+	型化	· //-	フチジ	1-11	式馬金		1			1	: 製作・振 ポフク	付・註	運転	•			ـــــــــــــــــــــــــــــــــــــ		発電試験			高橋実証	; 生能セ E機組	<u>ィ</u> ル 立		: 高性 発) E能セル 電試験			+	4
④3) ガスタービン燃	料電池複合		ſ		Ī						100	7,49-	-ヒン閉	17		1										Γ						
発電技術開発							高圧	化:肩	5圧カ-	- トリッ	じ 試	験	設備改良	į			高店 発電	E化 試験	\$													
【NEDO委託事業】 ④2) 燃料電池向け リーンナップ技術要素	石炭ガスク 研究			設計	・製作 居付		被毒	影響調	平価・リ	及着斉	非平位	賦験																				
	(2) 燃料電池モ							設計	・製作	F∙据ſ	र्ग रा	試運		H	2 ^{リッチ} 試験																	
【NEDO委託事業】 ④4) 燃料電池石 炭ガス適用性研究	ジュール石 炭ガス適用 性研究						Н	2 リッチ 験@	ガス要 MHP	!素試 'S		転					小型炉設計・	P連係 ·工事	 		, and the second se	実が試験			王 月	ジュ- 3体調	止 進]				
[@4)]	(1) IGFCシステ ム検討							技術	調査・	シス テ	- - ム検	討		実証	設備設計																	
⊠ 4-2	基盤技	術	開	発	$f \sigma$.)ス	、ク	- V	> _		-1	νZ	17	大山	奇ノ	ケー		レ	ジョ	г.	ング	第	3.	段	階	\sim	の	反	映	時	期	

2. 成果の実用化の見通し

(1)市場ニーズ

石炭火力、ガス火力は、新興国を中心に今後も需要の伸びが見込まれており、高 効率化の需要は多いと予想される。World Energy Outlook によると、2018 年~2040 年にかけて、世界全体では、石炭火力は 730GW (31.7GW/年)、ガス火力は 1,506GW (65.5GW/年)が新設・リプレースされる見込みである。

図 4-3 世界の発電設備の新設・リプレース見込み (出展: IEA World Energy Outlook 2018) (2) 競合技術に対する優位性

大型の GTFC, IGFC システムに適用可能な大容量かつ高圧対応可能な燃料電池技術は日本が世界に先駆けて開発しているものであり、技術優位性は高い。また、IGFC 技術については大崎クールジェンにて世界初の試みとなる実証事業が開始されている。更に、IGFC 導入の前提となる IGCC 技術については世界に先駆けて日本国内で空気吹 IGCC の商業機が建設されており、酸素吹 IGCC と併せて世界的に先行している状況である。これらの状況に鑑み、GTFC, IGFC については世界的に競合に対し大きく先行しており、日本の国際競争力強化に貢献できるといえる。

(3)技術確立の見通し

「次世代火力発電における技術ロードマップ」に記載の通り、GTFC については中 小型 GTFC を実証すること、IGFC については CO2 分離・回収型 IGFC 実証及び関連す る技術開発の成果を活用することによって、2025 年度頃に技術を確立する見込みで ある。併せて燃料電池の生産技術を強化し低コスト化を進めることで、GTFC, IGFC の 早期市場投入が可能となる。

(4)波及効果

考えられる波及効果を以下に示す。

- ・ 本事業の成果を CO2 分離・回収型 IGFC 実証事業に反映し、IGFC 技術確立に活用 することで、低炭素社会の実現に貢献できる。
- 燃料電池コストを低減することで、業務・産業用燃料電池の普及に貢献できる。
- 本事業で開発する水素リッチガスを用いた燃料電池システムの最適化技術は、将 来の水素社会において、燃料電池の燃料多様化に貢献できる技術である。また、 他事業で実施している水素専焼ガスタービンの開発成果と組み合わせることで、 水素社会における発電の多様化に貢献できる。

Ρ	1	6	0	0	2
Ρ	1	0	0	1	6
Р	9	2	0	0	3

「次世代火力発電等技術開発」基本計画

環境部

- 1. 研究開発の目的・目標・内容
- (1)研究開発の目的
 - ①政策的な重要性

2015年7月に決定された長期エネルギー需給見通しにおいては、3E+S(安全性、 安定供給、経済効率性、環境適合)を同時達成しつつ、バランスの取れた電源構成を実現 していくこととしており、火力発電分野においては、石炭火力発電及びLNG火力発電の 高効率化を図り、環境負荷の低減と両立しながら、有効活用を推進することとしている。 火力発電の高効率化は、再生可能エネルギーの最大限の導入促進、安全性の確認された原 子力発電の活用と合わせ、温室効果ガス削減目標積み上げの基礎となった対策・施策とし て位置づけられている。これを踏まえ、2016年6月に官民協議会で策定した「次世代 火力発電に係る技術ロードマップ」においては、火力発電の高効率化、CO₂削減を実現 するため、次世代の火力発電技術の早期確立を目指すこととしている。

②我が国の状況

我が国の火力発電の熱効率は世界最高水準を保っている。世界で初めて超々臨界圧火力 発電(USC)を商用化し、さらには高効率な空気吹石炭ガス化複合発電(IGCC)が 既に実用化段階であり、酸素吹IGCCにおいても実証フェーズにある。また、効率向上 に大きく寄与するガスタービンにおいて、1600℃級という高温化を世界に先駆けて実 現する等、熾烈な国際競争の中においても、我が国の高効率火力発電システムは、トップ レベルを維持しており、世界をリードしている。しかしながら、燃料資源を他国に大きく 依存する我が国にとっては、限られた資源の有効利用を図ることは至上命題であり、今後 とも、更なる効率化を図っていく必要がある。また、中長期的な視点では、大幅なCO₂ 削減を実現しうるCO₂の回収・貯留・利用(CCUS)の技術の開発・推進も重要なテ ーマであり、国内でのCCS(二酸化炭素の回収・貯留)大規模実証事業や貯留ポテンシ ャル調査等が進められている。

③世界の取組状況

地球温暖化問題の対策として、CO₂排出量の削減が強く求められている中で、米国や 欧州においても国家レベルで巨額の研究開発費を投じ、基礎研究から技術開発、実証研究 等の様々な取組が行われており、日本と同様にIGCCや先進的超々臨界圧火力発電(A -USC)、高効率ガスタービン等の開発が進められている。また、大幅なCO₂削減を 達成するため、CO₂分離・回収を行ったIGCCやCCS-EOR(石油増進回収)の 実証といったプロジェクトも進められている。
長期エネルギー需給見通しの実現に向けて、火力発電の高効率化に関しては、石炭火力 の発電効率を大幅に引き上げる石炭ガス化燃料電池複合発電(IGFC)の実証事業をは じめ、石炭火力、LNG火力の双方につき、新たな火力発電技術の開発等を実施する。ま た、火力発電から発生するCO₂排出量をゼロに近づける切り札となる技術として、火力 発電所から発生する大量のCO₂を効率的に分離・回収・有効利用するための技術開発等 を実施する。これまでの火力発電に係る技術開発は、個別の技術ごとに進められていたが、 石炭火力、LNG火力は共通する要素技術が多く、火力発電全体の技術開発を加速するた めには、個別技術開発を統合し、包括的かつ一体的に推進することが有効である。そこで、 次世代火力発電技術に係る事業を本事業において統合し、関連事業を一元管理し、一体的 に進めることで、開発成果を共有しつつ、技術開発に係るリソースを最適化する。これに より、次世代火力発電技術の開発を加速し、早期の技術確立及び実用化を狙う。

- (2)研究開発の目標
 - アウトプット目標

本事業を通じて、発電効率の大幅向上やCO₂分離・回収後においても高効率を維持す ること及びCO₂有効利用等、CO₂排出の削減に寄与する革新的な次世代火力発電技術の 確立を目指す。

研究開発項目ごとの目標については、別紙にて定める。

②アウトカム目標

本事業の開発成果により、2030年頃にLNG火力においては、将来のガスタービン 燃料電池複合発電(GTFC)商用機として送電端効率63%(高位発熱量基準)を達成 し、さらには、IGFC商用機へと繋げることで、石炭火力として送電端効率55%(高 位発熱量基準)を達成する。また、CCUSの実現に向け、CO₂分離・回収コスト1, 000円台/t-CO₂という大幅な低減を達成する。また、CO₂有効利用の一例として、 天然ガスパイプラインの許容圧力変動による、負荷変動対応能力は、6,000万kWと 推定される。そのうち、1割をCO₂由来のメタンで代替すると、1,300億円を獲得 する。

世界の火力発電市場は、今後、2040年にかけて石炭火力では約520兆円、LNG 火力では約270兆円で、累計790兆円の規模が見込まれる。年平均では約30兆円で あり、このうちのシェア1割、約3兆円の次世代火力技術の市場を獲得する。

③アウトカム目標達成に向けての取組

市場ニーズを見極めつつ、各技術開発プロセスの進捗管理を行い、開発優先度の調整、 開発スケジュールの最適化、技術開発の相互連携を図り、中長期の火力発電技術開発の全 体プロセスの最適化・効率化を図る。そして、技術開発のプロセスにおけるコスト低減の 取組と信頼性の確保により、商用機導入を早期に拡大する。

(3)研究開発の内容

火力発電の効率化及びCO₂分離・回収・有効利用等に関する調査、開発及び実証を実施 する。実施に当たっては、各事業の性質に合わせ、委託事業又は助成事業(NEDO負担1 /3、2/3、1/2)により実施する。 なお、個別研究開発項目の研究開発内容の詳細については、別紙にて記載する。

研究開発項目① 石炭ガス化燃料電池複合発電実証事業 [助成事業]

- 1)酸素吹 I G C C 実証(1/3助成)
- 2) CO₂分離・回収型酸素吹IGCC実証(1/3, 2/3助成)
- 3) CO₂分離・回収型 IGFC実証(1/2助成)
- 研究開発項目② 高効率ガスタービン技術実証事業 [助成事業]
 - 1)1700℃級ガスタービン
 - (2016~2018年度:2/3助成、2019~2020年度:1/2助成)
 2) 高湿分空気利用ガスタービン(AHAT)(2/3助成)

研究開発項目③ 先進超々臨界圧火力発電技術開発 [助成事業(2/3助成)] 研究開発項目④ 次世代火力発電基盤技術開発 [委託事業]

- 1) 次世代ガス化システム技術開発
- 2) 燃料電池向け石炭ガスクリーンナップ技術要素研究
- 3) ガスタービン燃料電池複合発電技術開発
- 4) 燃料電池石炭ガス適用性研究
- 5) CO₂分離型化学燃焼石炭利用技術開発
- 6) 石炭火力の競争力強化技術開発
- 7) CO2有効利用技術開発
- 8)流動床ガス化燃焼を応用した石炭利用技術開発(新規)
- 9)機動性に優れる広負荷帯高効率ガスタービン複合発電の要素研究(新規)
- 研究開発項目⑤ CO2回収型次世代IGCC技術開発 [委託事業]
- 研究開発項目⑥ 次世代火力発電技術推進事業 [委託事業]
- 研究開発項目⑦ 次世代技術の早期実用化に向けた信頼性向上技術開発 [助成事業(1 / 2 助成)]
- 3. 研究開発の実施方式
 - (1)研究開発の実施体制

本事業は、NEDOが単独又は複数の企業、大学等の研究機関(原則、国内に研究開発拠 点を有していること。ただし、国外企業の特別の研究開発能力、研究施設等の活用あるいは 国際標準獲得の観点から国外企業との連携が必要な部分はこの限りではない。)から、原則 公募によって実施者を選定し実施する。ただし、移管事業に関してはこの限りではない。

NEDOは、プロジェクトの進行全体の企画・管理やプロジェクトに求められる技術的成 果及び政策的効果を最大化させるため、必要に応じてプロジェクトマネージャー(以下「P M」という。)を任命する。また、各実施者の研究開発ポテンシャルを最大限に活用し、効 率的かつ効果的に研究開発を推進する観点から、必要に応じて研究開発責任者(プロジェク トリーダー、以下「PL」という。)を指名する。

なお、研究開発項目ごとのPM、PLは以下のとおり。また、研究開発項目④2)、3)、 4)は、推進にあたって、燃料電池に関する情報共有と開発戦略の整合性を図るため、プロ ジェクトチーム(PT)にNEDO新エネルギー部を加える。 PM:NEDO 高橋洋一、PL:大崎クールジェン株式会社 木田一哉 研究開発項目② 高効率ガスタービン技術実証事業

1)1700°C級ガスタービン

PM:NEDO 山中康朗、PL:三菱重工業株式会社 石坂浩一

2) 高湿分空気利用ガスタービン(AHAT)

PM:NEDO 山中康朗、PL:三菱日立パワーシステムズ株式会社 吉田正平 研究開発項目③ 先進超々臨界圧実用化要素火力発電技術開発

PM:NEDO 足立啓、PL:一般社団法人高効率発電システム研究所 福田雅文 研究開発項目④ 次世代火力発電基盤技術開発

1) 次世代ガス化システム技術開発

PM:NEDO 中田博之、PL:一般財団法人電力中央研究所 牧野尚夫

2) 燃料電池向け石炭ガスクリーンナップ要素研究

PM:NEDO 春山博司、PL:電源開発株式会社 早川宏

3) ガスタービン燃料電池複合発電技術開発

PM: NEDO 高橋洋一、PL: 三菱日立パワーシステムズ株式会社 北川雄一郎

4) 燃料電池石炭ガス適用性研究

PM:NEDO 高橋洋一、PL:電源開発株式会社 早川宏

5) CO₂分離型化学燃焼石炭利用技術開発

PM:NEDO 中田博之、PL:一般財団法人石炭エネルギーセンター 原田道昭 6)石炭火力の競争力強化技術開発

PM:NEDO 中元崇、PL:契約毎に設置

7) CO2有効利用技術開発

PM:NEDO 西海直彦、PL:日本大学工学部客員教授 坂西欣也

8) 流動床ガス化燃焼を応用した石炭利用技術開発

PM:NEDO 名久井博之、PL:NEDOにおいて選定

9)機動性に優れる広負荷帯高効率ガスタービン複合発電の要素研究

PM:NEDO 新郷正志、PL:一般財団法人電力中央研究所 渡辺 和徳 研究開発項目⑤ CO2回収型次世代IGCC技術開発

PM:NEDO 青戸冬樹、PL:一般財団法人電力中央研究所 牧野尚夫 研究開発項目(7) 次世代技術の早期実用化に向けた信頼性向上技術開発

PM:NEDO 青戸冬樹、PL:一般社団法人高効率発電システム研究所 福田雅文

(2) 研究開発の運営管理

NEDOは、研究開発全体の管理及び執行に責任を負い、研究開発の進捗のほか、外部環 境の変化等を適切に把握し、必要な措置を講じるものとする。運営管理は、効率的かつ効果 的な方法を取り入れることとし、次に掲げる事項を実施する。

①進捗把握·管理

PMは、PLや研究開発実施者と密接に連携し、研究開発の進捗状況を把握する。また、 外部有識者で構成する技術検討委員会を組織し、定期的に技術的評価を受け、目標達成の 見通しを常に把握することに努める。

②技術分野における動向の把握・分析

PMは、プロジェクトで取り組む技術分野について、内外の技術開発動向、政策動向、 市場動向等について調査し、技術の普及方策の分析及び検討を行う。

4. 研究開発の実施期間

本事業の実施期間は、2016年度から2022年度までの7年間とする。なお、研究開 発項目①及び②は2012年度から2015年度、研究開発項目③は2008年度から20 15年度まで経済産業省により実施したが、2016年度からNEDOが実施している。

5. 評価に関する事項

NEDOは、技術的及び政策的観点から、事業の意義及び目標達成度や成果に係る技術的 意義及び将来の産業への波及効果等について、評価を実施する。研究開発項目①~⑤、⑦に ついては、技術評価実施規程に基づき、プロジェクト評価を行う。

評価の時期については、研究開発項目①は、中間評価を2017年度及び2020年度に、 事後評価を2023年度に実施する。研究開発項目②は、中間評価を2018年度、事後評 価を2021年度に実施する。研究開発項目④1)は、研究開発項目⑤と統合の上、評価を 行う。研究開発項目④2)は、事後評価を2019年度に実施する。研究開発項目④3)、 4)は、中間評価を2019年度に、事後評価を2022年度に実施する。研究開発項目④ 6)は、事後評価を2020年度に実施し、5)は中間評価を2017年度に実施し、7) は前倒し事後評価を2020年度に実施し、8)、9)は前倒し事後評価を2021年度に 実施する。研究開発項目⑤は、中間評価を2017年度、前倒し事後評価を2020年度に 実施する。研究開発項目⑤は、その調査内容に応じて研究開発項目①から⑤、⑦の中間評価、 事後評価の際に合わせて評価を実施する。研究開発項目⑦は、中間評価を2019年度、事 後評価を2022年度に実施する。

- 6. その他の重要事項
 - (1) 委託事業成果の取扱い
 - ①成果の普及

得られた事業成果については、NEDO、実施者とも普及に努める。

②標準化等との連携

得られた事業成果については、標準化等との連携を図り、我が国の優れた次世代火力発 電等技術を普及させるために、標準化への提案等を積極的に行う。

③知的財産権の帰属

事業成果に関わる知的財産権については、「国立研究開発法人新エネルギー・産業技術 総合開発機構新エネルギー・産業技術業務方法書」第25条の規定等に基づき、原則とし て、全て委託先に帰属させることとする。

なお、海外動向や国際展開を見据えた知財管理を行うとともに、海外における知財の確 保を積極的に推進する。

④知財マネジメントに係る運用

本プロジェクトのうち、研究開発項目④次世代火力発電基盤技術開発及び研究開発項目

⑥次世代火力発電技術推進事業は、「NEDOプロジェクトにおける知財マネジメント基本方針」を適用する。

⑤データマネジメントに係る運用

本プロジェクトのうち、研究開発項目①石炭ガス化燃料電池複合発電実証事業3)及び 研究開発項目④次世代火力発電基盤技術開発8)、研究開発項目⑥次世代火力発電技術推 進事業は、「NEDOプロジェクトにおけるデータマネジメント基本方針」を適用する。

(2) 基本計画の変更

PMは、当該事業の進捗状況及びその評価結果、社会・経済的状況、国内外の研究開発 動向、政策動向、研究開発費の確保状況等、事業内外の情勢変化を総合的に勘案し、必要 に応じて目標達成に向けた改善策を検討し、達成目標、実施期間、実施体制等、基本計画 を見直す等の対応を行う。

(3) 根拠法

本事業は、国立研究開発法人新エネルギー・産業技術総合開発機構法第十五条第一号ハ、 第三号及び第六号イに基づき実施する。

(4) その他

最新の技術動向や政策上の必要性に鑑み、必要に応じた研究開発項目の追加や見直しを 行うことがある。

- 7. 基本計画の改訂履歴
 - (1) 2016年1月、基本計画制定。
 - (2) 2016年4月、3.研究開発の実施方式(1)研究開発実施体制研究開発項目③、
 ④ 1)と2)、⑤のPMの変更。
 5.評価に関する事項、研究開発項目④ 5)中間評価、事後評価の年度を1年後ろ倒し。
 別紙研究開発項目④ 5)の3.達成目標、中間目標年度と最終目標年度を1年後ろ倒し。

研究開発スケジュールは研究期間を1年延長し、中間評価と事後評価を1年後ろ倒し。

- (3) 2016年9月、5.評価に関する事項、研究開発項目④5)中間評価、事後評価の 年度を1年後ろ倒ししたが、当初計画通りに戻す。
 別紙研究開発項目④5)の3.達成目標、中間目標年度と最終目標年度を1年後ろ倒ししたが、当初計画通りに戻す。
 研究開発スケジュールは研究期間を1年延長し、中間評価と事後評価を1年後ろ倒ししたが、当初計画通りに戻す。
- (4) 2017年2月
 - 1. 研究開発の目的・目標・内容の(2)研究開発の目標並びに(3)研究開発の内容 に、研究開発項目④次世代火力発電基盤技術開発6)石炭火力の競争力強化技術開発、
 - 7) CO₂有効利用技術開発及び研究開発項目⑦次世代技術の早期実用化に向けた信頼性 向上技術開発の内容を追加した。
 - 3. 研究開発の実施方式のPM及びPLを追記・修正した。

5. 評価に関する事項の①及び⑥の実施時期を修正し、並びに④1)、5)の前倒しの 区分を明確化し、④6)、7)、⑦を追加した。

6. その他の重要事項の(1)委託事業成果の取扱い③知的財産権の帰属に知財マネジ メント適用プロジェクト名を追記した。

(5) 2017年5月

3.研究開発の実施体制(1)研究開発実施体制 研究開発項目②の1)と2)及び④の6)のPMの変更。

- (6) 2017年6月
 研究開発項目④の1)3.達成目標に中間目標を設定し、2017年度に中間評価を実施する。
- (7) 2018年2月

1.研究開発の目的・目標・内容の(3)研究開発の内容のうち、研究開発項目①の2)、 3)の助成率を変更した。また、研究開発項目④次世代火力発電基盤技術開発8)流動 床ガス化燃焼を応用した石炭利用技術開発、9)機動性に優れる広付加帯高効率ガスタ ービン複合発電の要素研究の内容を追加した。また、研究開発項目④次世代火力基盤技 術開発1)次世代ガス化システム技術開発を、研究開発項目⑤に統合し、研究開発項目 ⑤の名称を変更した。

- 3. 研究開発の実施方式のPM及びPLを追記・修正した。
- 5. 評価に関する事項の④1)、6)、8)、9)の評価時期を追記・修正した。
- 6. その他の重要事項の(1)委託事業成果の取扱い③知的財産権の帰属に注釈を追記 した。
- (8) 2018年7月

3.研究開発の実施方式(1)研究開発実施体制研究開発項目④2)、8)のPMの変更、 及び、研究開発項目④5)のPLの変更、研究開発項目④6)のPLの記載変更。別紙 研究開発項目⑥1.研究開発の必要性、2.具体的研究内容にかかる記載を一部変更した (バイオマスに係る記載の追記)。

(9) 2018年9月

3.研究開発の実施方式において、研究開発項目①及び研究開発項目④7)、9)のPL の変更、4.研究開発の実施期間の変更、5.評価に関する事項の研究開発項目①の中間 評価時期及び事後評価時期の変更、研究開発項目④2)の評価時期変更、研究開発項目④ 5)の事後評価を削除。6.その他の重要事項のデータマネジメントに係る運用に研究開 発項目①3)を追記。また、別紙研究開発項目①について、期間の延長および、2)C O₂分離・回収型酸素吹IGCC実証の最終目標を詳細な記載に変更。別紙研究開発項目 ④9)について、目標値を補足。研究開発スケジュール表の修正。

(10) 2019年1月

1. 研究開発の目的・目標・内容の(3)研究開発の内容において、研究開発項目②1) の助成率の変更。5. 評価に係る事項において、研究開発項目⑦の中間評価の追加及び事 後評価時期の変更、研究開発項目④8)の前倒し事後評価時期の変更。別紙研究開発項目 ④8)の実施期間の変更。別紙研究開発項目④9)の最終目標を詳細な記載に変更。別紙 研究開発項目⑥の2. 具体的研究内容に燃料多様化に係る記載を追記。別紙研究開発項 目⑦の実施期間の変更及び中間目標の策定、最終目標年度の変更。研究開発スケジュール 表の修正。

(11) 2019年7月

和暦から西暦へ表記修正。3.研究開発の実施方式において、研究開発項目④6)、7)、 9)、⑤及び⑦のPMの変更。5.評価に関する事項において、研究開発項目④3)、4) の中間評価の追加及び研究開発項目④2)、3)、4)の事後評価時期の変更。別紙 研 究開発項目④3)、4)について、実施期間の延長、中間目標の策定及び最終目標の修正。 研究開発項目⑥の文言修正。研究開発スケジュール表の修正。その他誤記修正。 研究開発項目① 「石炭ガス化燃料電池複合発電実証事業」

1. 研究開発の必要性

石炭は、他の化石燃料と比べ、可採年数が約110年と長く、かつ世界各国に幅広く分布す る等、供給安定性が高く、経済性に優れることから、エネルギー自給率が極めて低い我が国に とって重要な一次エネルギー源であり、発電の分野においても石炭火力発電は発電電力量の約 3割を占める重要な電源の一つである。

一方で、石炭は他の化石燃料と比べ、燃焼時の単位発熱量当たりのCO₂排出量が多く、地 球環境面での制約要因が多いという課題を抱えており、石炭火力発電についてもさらなるCO₂排出量の抑制が求められている。

したがって、石炭火力発電の高効率化及びCO2排出量削減の観点から本事業を実施する必要性がある。

2014年4月に閣議決定されたエネルギー基本計画においても、石炭火力発電は、「安定 供給性や経済性に優れた重要なベースロード電源」と評価されている一方、「温室効果ガスの 排出量が多いという課題がある」と指摘され、その課題を解決すべく、次世代高効率石炭火力 発電技術として、石炭ガス化複合発電(IGCC)の開発・実用化を進めるとともに、202 0年頃の二酸化炭素回収貯留(CCS)の実用化を目指した研究開発を行うことが盛り込まれ ている。

その後、エネルギー基本計画を踏まえ、2014年12月にまとめられた「エネルギー関係 技術開発ロードマップ」において、「高効率石炭火力発電」、「二酸化炭素回収・貯留技術」 が国際展開も見据えた形で整理されている。

以上のとおり、石炭火力発電におけるCO2排出量の課題を克服していくことが一層重要と なっており、石炭火力発電の高効率化及びCO2排出量削減を目指す本事業の必要性は大きい。

2. 具体的研究内容

本事業では、石炭火力発電から排出されるCO₂を大幅に削減させるべく、究極の高効率石 炭火力発電技術である石炭ガス化燃料電池複合発電(IGFC)とCO₂分離・回収を組み合 わせた実証試験を行い、革新的低炭素石炭火力発電の実現を目指す。

1)酸素吹IGCC実証(1/3助成)

IGFCの基幹技術である酸素吹IGCCの実証試験設備により、性能(発電効率、環境性能)、運用性(起動停止時間、負荷変化率等)、経済性及び信頼性に係る実証を行う。

2) CO₂分離·回収型酸素吹IGCC実証(1/3, 2/3助成)

酸素吹 I G C C 実証試験設備とC O 2分離・回収設備を組み合わせて、C O 2分離・回収型石 炭火力システムとしての性能、運用性、信頼性及び経済性に係る実証を行う。また、C O 2分 離・回収装置を追設した場合の I G C C 運用性について実証を行う。

3) CO₂分離・回収型IGFC実証(1/2助成)

CO₂分離・回収型酸素吹IGCCシステムと燃料電池を組み合わせ、石炭ガス化ガスの燃料電池への利用可能性を確認し、最適なCO₂分離・回収型IGFCシステムの実証を行う。

2. 達成目標

[実施期間]

- 酸素吹IGCC実証:2012年度~2018年度(うち2012年度~2015年度は経済産業省において実施)
- CO2分離・回収型酸素吹IGCC実証:2016~2020年度
- CO2分離・回収型IGFC実証:2018年度~2022年度

[中間目標(2017年度)]

- 1)酸素吹IGCC実証
- (a)発電効率:40.5%程度(送電端効率、高位発熱量基準)を達成する。
 商用機の1/2~1/3倍の規模で、1300℃級ガスタービンを採用する実証試験設備
 により送電端効率(高位発熱量基準)40.5%を達成すれば、1500℃級ガスタービン
 を採用する商用機(石炭処理量2,000~3,000 t/d)で送電端効率約46%を達
 成する見通しが得られる。
- (b)環境性能:「SOx<8ppm」、「NOx<5ppm」、「ばいじん<3mg/Nm³」
 を達成する(O₂=16%)。
 我が国における最新の微粉炭火力は世界的に見ても最高水準の環境諸元を達成しており、
 酸素吹IGCCを導入する場合には同等の環境諸元を達成することが求められる。
- 2) CO₂分離・回収型酸素吹IGCC実証
 CO₂分離・回収設備の詳細設計を完了する。

[中間目標(2020年度)]

 3) CO₂分離・回収型IGFC実証 CO₂分離・回収型IGFC実証設備の詳細設計を完了する。また、機器製作に着手する。

[最終目標(2018年度)]

- 1)酸素吹IGCC実証
 - (a) プラント制御性運用性:事業用火力発電設備として必要な運転特性及び制御性を確認する。

我が国における微粉炭火力はベースからミドル電源として運用されており、酸素吹 IGC C商用機を導入する場合にも同等の制御性、運用性を確保する。

(b)設備信頼性: 商用機において年間利用率70%以上の見通しを得る。

我が国における微粉炭火力は年間利用率70%以上で運用されており、酸素吹IGCC商 用機を導入する場合にも同等の設備信頼性を確保する。

(c)多炭種適用性: 灰融点の異なる数種類の炭種で適合性を確認する。

酸素吹IGCC商用機には、微粉炭火力に適合し難い灰融点の低い亜瀝青炭から、微粉炭 火力に適合する比較的灰融点の高い瀝青炭までの適用炭種の広さが求められる。商用化に向 け、実用化時期や日本への供給可能性も考慮に入れつつ、性能と経済性を評価する。 (d)経済性:商用機において発電原価が微粉炭火力と同等以下となる見通しを得る。 国内外において酸素吹IGCC商用機の普及を促進するためには、発電原価を微粉炭火力 と同等以下とすることが求められる。また、海外普及を目的としたマイルストーンを検討す る。

[最終目標(2020年度)]

として確認する。

- 2) CO₂分離・回収型酸素吹 I G C C 実証
- (a)基本性能(発電効率):新設商用機において、CO2を90%回収しつつ、発電効率40%(送電端効率、高位発熱量基準)程度の見通しを得る。
 CO2回収時のエネルギーロスによる発電効率の低下という課題に対し、CO2を90%回収(全量ガス処理)しながらも、現状の微粉炭火力と同等レベルの発電効率40%程度の見通しを得る。これを実現するために、実証機プラントにおいて、CO2分離回収にかかるエネルギー原単位「0.90GJ/t-CO2(電気エネルギー換算)」を発電効率に係る性能
- (b)基本性能(回収効率・純度):CO2分離・回収装置における「CO2回収効率>90%」、「回収CO2純度>99%」を達成する。
 革新的低炭素型石炭火力の実現のためにCO2分離・回収装置単体における回収効率は9

0%以上を目標とする。CO₂地中貯留から求められる可能性があるCO₂純度について、湿式物理吸収法を使って定常運転時、体積百分率99%以上を目標とする。

(c) プラント運用性・信頼性: CO₂分離・回収型IGCCシステムの運用手法を確立し、
 信頼性を検証する。

商用機において、CO₂分離・回収型酸素吹IGCCシステムを構築するには、プラントの起動停止や、発電所特有の負荷変動等に対し、IGCC本体に追従したCO₂分離・回収 装置の運用手法を確立し、信頼性を検証する。また、生成ガスの全量をCO₂分離した場合のIGCC運転との相互影響やガスタービン性能についても検証する。

(d)経済性:商用機におけるCO2分離・回収の費用原単位を評価する。

CO₂分離・回収型酸素吹IGCCを普及させるに当たっては、費用原単位評価が必要で あり、CO₂分離・回収装置建設時期や発電所敷地等の制約に応じた評価を実施する。また、 実用化・事業化に向けたマイルストーンを検討する。

(e) IGCCプラント運用性:

CO₂分離・回収装置を追設した場合のIGCC運転への影響を確認し、運用性を検証する。

[最終目標(2022年度)]

3) CO₂分離・回収型IGFC実証

⁵⁰⁰MW級の商業機に適用した場合に、CO2回収率90%の条件で、47%程度の発電効率(送 電端効率、高位発熱量基準)達成の見通しを得る。

研究開発項目② 「高効率ガスタービン技術実証事業」

[実施期間]

- 1700℃級ガスタービン:2012年度~2020年度(うち2012年度~2015年 度は経済産業省において実施)
- 高湿分空気利用ガスタービン(AHAT): 2012年度~2017年度(うち2012年 度~2015年度は経済産業省において実施)
- 1. 研究開発の必要性

2008年3月に閣議決定された「Cool Earth — エネルギー革新技術計画」において、天然ガスタービンの高効率化が環境負荷低減の実現のための重要な技術開発であると位置づけられている。また、2011年8月に制定された「第4期科学技術基本計画」においては、安定的なエネルギー供給と低炭素化の実現のため火力発電の高効率化に資する技術開発は 重点的な取組として位置づけられている。

欧米は巨額の研究開発費を投じており、厳しい国際競争の中で我が国の優位性を維持するため、また電力産業の保守高度化とリプレース需要にあった大容量機の高効率化を目指し、コン バインド効率向上、CO₂排出量削減を達成するため、1700℃級に必要な革新的技術開発 に取り組み、早期に実用化する事が必要である。

また、高湿分空気利用ガスタービン(AHAT)は、ガスタービンサイクルを改良したシス テムであり、比較的早期に実用化が期待できる高効率発電システムで、電力産業の短中期的ニ ーズに対応する中小容量機(10万kW程度)の高効率化(45%(高位発熱量基準)→51% (高位発熱量基準)以上)を目的とした日本オリジナルの技術であり、世界初となるAHAT の実用化は急務である。

これらの政策を実現するために、発電規模に応じた発電熱効率の一層の向上が必要であり、 ガスタービン高温部品の技術向上と発電サイクルの工夫が必要不可欠である。また、環境負荷 の少ない発電システムを開発することは、電力の安定的かつ低廉な供給を確保する上で極めて 重要な対策である。

さらに、石炭ガス化複合発電(IGCC)や石炭ガス化燃料電池複合発電(IGFC)にお ける更なる効率向上には、将来的に1700℃級ガスタービンやAHATシステムの導入が不 可欠である。

- 2. 具体的研究内容
 - 1) 1700°C級ガスタービン

1700℃級ガスタービンにおける性能向上、信頼性向上に関する要素技術開発を実施す る。例として、製造技術・検査技術の開発、超高温高負荷タービンの信頼性向上、過酷環境 下でのデータ取得のための特殊計測技術開発等を実施する。また、1700℃級での実証運 転時における特殊計測の実施、試運転データの評価・分析を行い、商用化の検討を実施する。

2) AHAT

AHATシステムについては、ユーザーニーズとしてミドル運用以上(年間50回以上の 起動・停止)における長期信頼性が求められていることから、既存40MW級総合試験装置 の改造による実証機製作、実証試験による長期信頼性評価を実施する。また、実証機試験結 果を用いて商用機化の検討を実施する。 3. 達成目標

- 1)1700°C級ガスタービン
 - [中間目標(2018年度)]

1700℃級ガスタービンの性能向上、信頼性向上に関する要素技術開発により、商用機 に適用できる見通しを得た上で、設計・製作の仕様を決定する。

[最終目標(2020年度)]

1700℃級ガスタービンの実証試験データの取得、及び評価を実施し、送電端効率57%達成(高位発熱量基準)の見通しを得る。

2) AHAT

[最終目標(2017年度)]

実証機を用いた試験により、長期信頼性の実証として以下を達成する。

・ミドル運用(年間50回以上の起動・停止)の2倍である年間100回以上の起動・
 停止での実証試験を実施し、等価運転時間 10,000時間以上を確保する。
 (等価運転時間とは、起動・停止等の機械装置の寿命を考慮し、同等の連続運転時間とみなせる運転時間)

研究開発項目③ 「先進超々臨界圧火力発電実用化要素技術開発」

[実施期間]2008年度~2016年度(うち2008年度~2015年度は経済産業省において実施)

1. 研究開発の必要性

従来型石炭火力発電の中で最高効率である超々臨界圧火力発電(USC)は蒸気温度の最高 温度は630℃程度が限界と言われてきた。しかしながら、近年の材料技術の進歩により70 0℃以上の蒸気温度を達成できる先進超々臨界圧火力発電実用化要素技術開発(A-USC) の実現可能性が見えてきた。

本事業では2020年以降に増大する経年石炭火力のリプレース及び熱効率向上需要に対応 するため、高い発電効率を実現できるA-USCの開発を行う。

2. 研究開発の具体的内容

(1)システム設計、設計技術

基本設計、配置最適化、経済性の試算

- (2) ボイラ要素技術
 - 700℃級候補材料について、耐久試験により、10万時間の長期信頼性を確保する
- (3) タービン要素技術

大型鋼塊の製造性を確認するとともに10万時間の長期信頼性を確保する

(4) 高温弁要素技術

実缶試験・回転試験に組み込み、信頼性を確認する

(5)実缶試験・回転試験

実缶試験、回転試験により、ボイラ要素及びタービン要素の信頼性の実証を行う。

- 3. 達成目標
 - [最終目標(2016年度)]

蒸気温度を700℃へ高めるための要素技術開発を実施し、2020年以降において商用プ ラントでの送電端熱効率46%(高位発熱量基準)達成の技術的見通しを得る。 研究開発項目④ 「次世代火力発電基盤技術開発」

1) 次世代ガス化システム技術開発

- [実施期間]2015年度~2018年度(うち2015年度はNEDOゼロエミッション石炭火力技術開発プロジェクトにて実施)
- 1. 研究開発の必要性

エネルギー基本計画(2014年4月閣議決定)においては、石炭火力発電は重要なベース ロード電源として位置づけられているが、温室効果ガスの大気中への排出をさらに抑えるため、 石炭ガス化複合発電(IGCC)等の次世代高効率石炭火力発電技術等の開発及び実用化を推 進することとされている。中長期的には、さらなる高効率化に向けて、現在開発中のIGCC を効率でしのぐ次世代高効率石炭火力発電技術等の開発を実施する必要がある。

2. 具体的研究内容

次世代高効率石炭ガス化発電システムについて、冷ガス効率及び送電端効率の向上並びに実

用化に向けた技術開発を実施する。

酸素吹石炭ガス化においては、ガス化炉にガス化剤として酸素を供給して石炭を部分燃焼させ、石炭を熱分解しているが、投入された石炭が一部燃焼して消費されること、酸素製造装置等の所内動力の増加により送電端効率が低下することが効率向上のための課題となっている。

そこで、熱分解の一部を、ガスタービン排熱を利用して作る水蒸気を用いた石炭ガス化反応 に置き換えることにより、冷ガス効率の向上を図るとともに、酸素供給量の低減を図り、送電 端効率の向上を目指す。

これまでのシミュレーションによる検討結果では、①噴流床型IGCCガス化炉への高温の 水蒸気の注入による冷ガス効率及び送電端効率の向上、②エネルギー効率の高い酸素製造技術 を組み込んだIGCCシステムの構築による更なる送電端効率の向上、の可能性があることが 分かった。そこで、これらの可能性を検証及び評価するため、以下の項目を実施する。

(1) 水蒸気添加による冷ガス効率向上効果の検証

噴流床型ガス化炉への高温の水蒸気の注入による冷ガス効率の向上について、小型ガス化 炉での検証を行う。

(2) エネルギー効率の高い酸素製造装置の適用性評価

エネルギー効率の高い酸素製造装置の適用性を評価する。

(3) IGCCシステム検討

エネルギー効率の高い酸素製造装置を組み込んだ IGCCの最適化システム試設計及び 経済性検討を行う。

冷ガス効率の向上及び試設計を踏まえて、送電端効率を精査する。

[中間目標(2017年度)]

既存のIGCC(1500℃級GTで送電端効率46~48%)を凌ぐ高効率石炭ガス化発 電システムの見通しを得るため、小型ガス化炉による水蒸気添加ガス化試験方法を確立する。 [最終目標(2018年度)]

既存のIGCC(1500℃級GTで送電端効率46~48%)を凌駕する高効率石炭ガス 化発電システムの見通しを得る。

2018年度以降については研究開発項目⑤CO₂回収型クローズドIGCC技術開発と統 合して、新名称 研究開発項目⑤CO₂回収型次世代IGCC技術開発とする。

^{3.} 達成目標

2) 燃料電池向け石炭ガスクリーンナップ技術要素研究

[実施期間]2015年度~2017年度(うち2015年度はNEDOゼロエミッション石炭火力技術開発プロジェクトにて実施)

1. 研究開発の必要性

石炭ガス化燃料電池複合発電(IGFC)は石炭をガス化させ、燃料電池、ガスタービン、 蒸気タービンの3種の発電形態を組み合わせてトリプル複合発電を行うもので、究極の高効率 発電技術として、実現が望まれている。

クールアースエネルギー革新技術開発ロードマップにおいても2025年頃の高効率石炭火 力発電技術として55%の送電端効率を目指すIGFCが位置づけられている。

IGFCにおいては、燃料である石炭ガス化ガスに多種類の微量成分が含まれており、この 微量成分の一部が燃料電池の劣化を招き、長期信頼性を損なう可能性があることが懸念されて いる。

そのため、IGFCの実現に向けては、石炭ガス化ガス中の微量成分の燃料電池への影響を 把握するとともに、燃料電池の被毒成分に対するガス精製技術を確立することが必要である。

2. 具体的研究内容

燃料電池用ガス精製技術と燃料電池を組み合わせ、石炭ガス化ガスの模擬ガス試験により燃料電池の被毒耐性を確認する。また、特定された被毒成分に対して、成分を許容レベルまで除 去するガス精製技術を検討し、模擬ガスによる性能評価を行う。

3. 達成目標

[最終目標(2017年度)]

- ・模擬ガス試験により燃料電池の被毒耐性を評価する。
- ・模擬ガス試験により燃料電池用ガス精製技術性能を評価し、ガス精製技術を確立する。

3) ガスタービン燃料電池複合発電技術開発[実施期間]2016年度~2021年度

1. 研究開発の必要性

2015年7月に経済産業省における「次世代火力発電の早期実現に向けた協議会」により 策定された「次世代火力発電に係る技術ロードマップ」において、ガスタービン燃料電池複合 発電(GTFC)については、小型GTFC(1,000kW級)の商用化、量産化を進め、 SOFCのコスト低減を図り、中小型GTFC(10万kW級)の実証事業を経て、発電効率 63%程度、CO₂排出原単位:280g-CO₂/kWh程度を達成し、2025年頃に技術 を確立することが示されている。また、量産後は従来機並の発電単価を実現することとされて いる。

さらには、同ロードマップにおいて、IGFCの技術を確立するためには、GTFCの開発 成果を活用していくことが示されており、次世代火力発電技術の早期確立に向けて、本事業の 必要性は高い。

2. 具体的研究内容

小型GTFC(1,000kW級)の商用化及び量産化を進め、SOFCのコスト低減を図 る。さらに、中小型GTFC(10万kW)の要素技術を開発し、2022年度から開始する 中小型GTFCの技術実証に活用する。

3. 達成目標

[中間目標(2019年度)]

中小型GTFC(10万kW)の要素技術を開発する。

- ・高圧SOFCモジュールを開発する。
- ・ガスタービンとの連係技術を確立する(燃焼器、燃料/空気差圧制御系、排燃料・排空気・ 空気抽気)。

[最終目標(2021年度)]

- 中小型GTFC(10万kW)の要素技術を確立する。
 - ・燃料電池の高性能化による中小型GTFCシステムの最適化を行う。

4) 燃料電池石炭ガス適用性研究[実施期間]2016年度~2021年度

1. 研究開発の必要性

石炭ガス化燃料電池複合発電(IGFC)は、石炭をガス化し、燃料電池、ガスタービン、 蒸気タービンの3種類の発電形態を組み合わせてトリプル複合発電を行うもので、究極の高効 率石炭火力発電技術として、その実現が望まれている。

「次世代火力発電に係る技術ロードマップ」において、IGFCの開発方針として、202 5年度頃技術確立、発電効率55%及び量産後従来機並の発電単価の実現を目指すことが示さ れた。

IGFCを構成する高温型燃料電池については、現在、天然ガスを燃料とした燃料電池の開発が進んでいるが、石炭ガスを燃料とした場合の適用性についての検証及びシステムの検討を 行う必要性がある。

燃料を石炭ガスとした場合に、燃料電池の劣化を引き起こすガス中被毒成分濃度の確認と被 毒成分の除去技術についての研究は、すでに着手されている。

IGFCを構成する燃料電池モジュールについて、石炭ガスを燃料とした場合の運用性や性能を把握する必要があることから、実燃料電池モジュールを用いた石炭ガス燃料の適用性試験を行い、その結果を踏まえて、IGFCの技術確立に必要な実証機に係るシステム検討を行う必要性がある。

2. 具体的研究内容

IGFCシステムの検討

国内外における高温型燃料電池及びIGFCの技術開発動向をレビューすることにより、最 新情報を入手し、IGFCの実用化に向けた課題の整理を行う。商用機システムとして、CO₂ 分離・回収を行わないIGFCとCO₂分離・回収型IGFCについて、ケーススタディを行い、 送電端効率とコストの試算を行う。IGFCの実用化に向けた課題、商用化システムの検討結 果及び(2)の成果を踏まえて、IGFC実証システムについて検討を行い、実証機の容量を 決定のうえ、試設計を行う。

(2) 燃料電池モジュールの石炭ガス適用性研究

石炭ガス燃料の適用性試験に供する高温型燃料電池モジュールについては、天然ガス燃料で 既に実用化されている燃料電池モジュールとする。本試験に係る設計、製作、据付け等を行い、 まず、天然ガスを燃料とした試運転を行う。次いで、天然ガスをH2リッチガスに改質した燃料 を用い、燃料電池モジュールの運用性、性能等を把握するとともに、天然ガス燃料の場合との 比較から課題を抽出する。さらに、石炭ガス化の実ガスを燃料として、燃料電池の被毒成分を ガス精製によりクリーンナップしたうえで燃料電池モジュールに供給し、その運用性、性能等 を把握するとともに、石炭ガス適用時の課題を抽出する。さらに、これまで実績のない石炭ガ スによる運転を行うことから、燃料電池セル及びモジュール内部構造への影響を把握するため、 装置の解体調査を行い、石炭ガス適用時の課題を抽出する。 3. 達成目標

(1) IGFCシステムの検討

[最終目標(2019年度)]

IGFC実証機の容量を決定し、実証機の試設計を完了する。

(2) 燃料電池モジュールの石炭ガス適用性研究

[中間目標(2019年度)]

H₂リッチガスを燃料とした場合の燃料電池モジュールの基本性能を確認するとともに、発 電性能を最適化するための運用性を確立する。また、石炭ガスを燃料とした場合の燃料電池 モジュールの基本性能を確認する。

[最終目標(2021年度)]

石炭ガスを燃料とした場合の燃料電池モジュールの運用性と性能を把握し、課題を抽出する。

5) CO₂分離型化学燃焼石炭利用技術開発

[実施期間]2015年度~2017年度(うち2015年度はNEDOゼロエミッション石炭火力技術開発プロジェクトにて実施)

1. 研究開発の必要性

エネルギー基本計画(2014年4月閣議決定)においては、石炭火力発電は重要なベース ロード電源として位置づけられているが、温室効果ガスの大気中への排出をさらに抑えるため、 環境負荷の一層の低減に配慮した石炭火力発電の導入を進めることとされている。

現在、石炭の燃焼排ガス又は石炭ガス化プラントの石炭ガス化ガスからのCO₂の分離・回 収技術の開発が進められているが、CO₂分離・回収工程において多くのエネルギー損失が発 生することが課題となっている。これを解決するため、エネルギー損失のない高効率でありな がら、CO₂の分離・回収が可能な化学燃焼石炭利用技術について、実用化に向けた開発を実 施する。

2. 具体的研究内容

従来、石炭の燃焼時の排気ガス又は石炭ガス化プラントの石炭ガス化ガスからのCO₂分離・回収に当たっては、この過程における多くのエネルギー損失が課題となっているが、CO₂分離型化学燃焼石炭利用技術においては、酸素キャリアとなる金属を媒体とする石炭の燃焼 反応と金属の酸化反応を二つの反応器で別個に発生させることにより、CO₂の分離・回収装 置及び空気分離装置が不要となり、エネルギー損失のないCO₂の分離・回収が可能である。

さらに、CO₂分離型化学燃焼石炭火力発電は、流動床燃焼技術を用いることから多様な燃料(低品位炭、バイオマス等)が活用でき、IGCCやA-USCが大規模プラントであるのに対して、中小規模プラント(10~50万kW)におけるCO₂の分離・回収に適しているといった特長がある。

しかしながら、実用化に向けては、酸素キャリアのコスト抑制及び反応塔の小型化に向けた 酸素キャリアの反応性の向上という課題がある。

そこで、有望な酸素キャリアの評価と選定並びにプラント構築を目的として、以下の項目を 実施する。

(1)酸素キャリアの評価と選定

酸素キャリアの反応性、耐久性及び流動性等について要素試験にて評価を行い、コストを 踏まえて選定する。

(2) プラント試設計及び経済性検討

酸素キャリアの反応性からプロセス解析を行うとともに酸素キャリアの流動や循環を検 討し、プラント試設計を行う。この結果をもとに経済性検討を行う。

(3) ベンチ試験装置によるプロセス検証

酸素キャリアの反応性、耐久性及び流動性等並びに流動や循環を含むプラントの成立性を 検証するため、ベンチ試験装置を製作し、試験・評価を行う。

3. 達成目標

[中間目標(2017年度)]

分離・回収コスト1,000円台/t-CO₂を見通せるキャリアを選定する。

[最終目標(2020年度)]

分離・回収コスト1,000円台/t-CO2を見通せるCO2分離型化学燃焼石炭火力発電システムを提示する。

2017年度の中間評価で、中間目標は達成したものの「データ解釈の精密化と実用的な 設計提案の立案についてより深く検討する」ことが求められたことから、研究開発体制を見 直す必要があると考えた。従って2017年度で本研究を中止し、研究開発の内容を見直し、 ラボ試験を行いデータを蓄積し精度向上を図ると共に、実用的な設計立案に向け、実機設計 技術の確立を目指した要素研究を「研究開発項目④8)流動床ガス化燃焼技術を応用した石 炭利用技術開発」で実施する。

6) 石炭火力の競争力強化技術開発[実施期間]2017年度~2019年度

1. 研究開発の必要性

日本の石炭火力発電所は、長年の技術開発の成果により、高い発電効率や排出ガス対策で、 世界的に最高レベルの技術を有している。しかしながら、日本の技術を採用したプラント価格 は、他の国のプラントに比べて高価であるため、国際市場に於いて必ずしも高い競争力を有し ておらず、海外での導入事例も限られているのが現状である。日本の石炭火力発電所が受注に 至った地域では、厳しい技術要件が定められており、日本の高効率発電技術が入札時に評価さ れている一方、他国性の石炭火力発電所を導入した諸外国のユーザーの多くが、稼働率の低下 をはじめとしたオペレーション上の様々な課題を抱えている。

そこで、日本の高効率発電技術と共にユーザーニーズに的確にマッチングした日本の高いO &M品質を長期保守契約(LTSA)で提供するビジネスモデルを構築することで、結果とし て日本の石炭火力発電所の競争力が向上すると考えられることから、LTSAを実現するため に必要な技術開発を実施する。

2. 具体的研究内容

LTSAを実現するために必要な各種モニタリング・センシング・解析等の要素技術を特定、 開発し、発電所における技術実証に活用する。

3. 達成目標

[最終目標(2019年度)]

LTSAを実現するために必要な各種モニタリング・センシング・解析等の要素技術を確立 する。

7) CO₂有効利用技術開発[実施期間]2017年度~2019年度

1. 研究開発の必要性

供給安定性及び経済性に優れた天然資源である石炭を利用した火力発電は、将来的にも、国 内の発電供給量の26%を担う重要な電源である。

しかし、これら石炭火力発電では CO_2 排出量が比較的多く、将来的に CO_2 分離回収有効利用: Carbon Capture and Utilization (CCU)が検討されている。現時点では CO_2 の大規模処理が困難であるものの、有価物の製造等により利益を創出する可能性がある。

2030年度以降を見据え、将来の有望なCCU技術の確立を目指して、我が国の優れたC CT (Clean Coal Technology)等に、更なる産業競争力を賦与する事が 可能なCCU技術について、実用化に向けた開発を実施する。

2. 具体的研究内容

短~中期において大規模且つ高濃度のCO₂(99%以上)を、エネルギーとして工業的に活 用可能な技術開発を実施する。一例として、メタネーション技術については石炭火力発電所等 から回収した高濃度CO₂の適用性を評価する。

3. 達成目標

[最終目標(2019年度)]

事業終了時に本事業として実施するCO₂有効利用技術の適用性を確認する。一例としては、 将来的に天然ガス代替では0.9 円~1.4 円/MJ (LHV)を見通す経済性を評価する。

8)流動床ガス化燃焼を応用した石炭利用技術開発[実施期間]2019年度~2021年度

1. 研究開発の必要性

エネルギー基本計画(2014年4月閣議決定)においては、石炭火力発電は重要なベース ロード電源として位置づけられているが、温室効果ガスの大気中への排出をさらに抑えるため、 環境負荷の一層の低減に配慮した石炭火力発電の導入を進めることとされている。

石炭火力からのCO₂排出抑制技術としては、CO₂の分離・回収技術があるが、エネルギー 損失が大きいことから、発電システムとしてCO₂を分離・回収できる流動床ガス化燃焼を適 用した技術が有望視されている。

本技術の適用先としては、枯渇油田の増加に伴いCO₂-EOR市場が拡大傾向にあること から、その市場への導入を目指し、実機火力発電設備設計技術の確立に向けた技術開発を実施 する。

2. 具体的研究内容

流動床ガス化燃焼技術は、流動床技術をベースとして、空気燃焼塔、揮発分(可燃性ガス) 反応塔、石炭反応塔(ガス化)で構成され、流動材(酸素キャリア)を媒介として空気燃焼塔 で流動材を酸化し、酸化された流動材を揮発分反応塔、石炭反応塔に供給し、酸化された流動 材の酸素を用いて石炭をガス化し、発生した可燃性ガスを燃焼させるシステムで、窒素が揮発 分反応塔や石炭反応塔に同伴されないことから、石炭は燃焼後、CO₂、水蒸気、ばいじんと なる。煤塵を集塵機で捕集し、ガス温度を下げることで水蒸気を凝縮するとCO₂ガスのみが 分離回収できる。

本技術は流動床を用いていることから多様な燃料(低品位炭、バイオマス等)に活用でき、 中小規模(100MW級)の発電に適用できる。また、別置きのCO₂分離・回収装置や空気分 離装置が不要であることから、エネルギー損失がないCO₂の分離・回収が可能となる。

これまでの試験で、有望な流動材(酸素キャリア)の選定に見通しが得られていることから、 実機設計技術の確立を目指し、以下の課題を実施する。

(1) 煤発生抑制技術開発

ガス化炭化水素からの煤発生に対して、ガス化触媒(C a O)による生成抑制を検証する。 (2) プラント設計に向けた検討

実機運転を想定した起動、停止、負荷変化時の運転・制御性の検討、排ガスや廃棄流動材 (酸素キャリア)の環境影響評価、並びに長時間運転時の課題検討を実施する。

3. 達成目標

[最終目標(2020年度)]

分離・回収コスト1,000円台/t-CO2を見通せる火力発電設備の設計技術確立

9)機動性に優れる広負荷帯高効率ガスタービン複合発電の要素研究[実施期間]2018年度~2021年度

1. 研究開発の必要性

我が国では、2050年に温室効果ガス80%削減の目標が掲げられており、その達成に 向けた手段の一つとして、再生可能エネルギー電源(以下、再エネ電源)の増加が見込まれ ている。2015年7月に公表された、長期エネルギー需給見通しにおいて示された203 0年度の電源構成比では、太陽光発電が7%の発電電力量を占めることになる。太陽光発電 の利用率を平均の13%とすると、約6400万kWの設備容量を必要とし、これは国内事業 用の全発電設備容量の1/4程度に相当する。一方で、普及の拡大が予測される太陽光発電 や風力発電の出力は天候に大きく影響を受けるため、電力の安定供給を考えた場合、系統安 定化が必要不可欠である。

火力機は、大量に導入される再エネ電源に対応して、需給調整や周波数調整など重要な役 割を果たしている。例えば、太陽光発電の日中に生じる急激な天候変動等による大幅な出力 変動に対応するには、ガスタービン複合発電(以下、GTCC)を用いることが有望な手段 の一つであるが、現状の性能では起動時間が長い、出力変化速度が遅い、最低出力が高い等 の課題がある。

そこで本研究開発では、再生可能エネルギー電源の大量導入時の電力安定供給とCO₂排 出量削減の両立を狙い、既存の火力発電設備へのレトロフィットやリプレース向けに定格時 の効率を維持したうえで、機動力と再エネ出力不調時のバックアップ電源の両機能を具備し た、機動性に優れる広負荷帯高効率GTCCを開発するため、中核機器であるガスタービン (以下、GT)の負荷変動対応に係る要素技術を開発し、実機に組み込める目処を得ること を目的にする。

2. 具体的研究内容

急速起動・出力変動時のGTCCの安定運転の実現に向け、GTの数値解析技術、材料技術、燃焼技術、制御技術、冷却・シール技術などの要素技術開発を行う。具体的には、試験設備を用いて、燃焼器の急速起動・燃焼負荷変動・ターンダウン等の試験、軽量化したタービンロータの設計と翼の試作、クリアランスや冷却・シール空気の能動制御機構の設計等を行い、実証に進める目処を得る。

並行して、発電事業者にとって重要となる設備信頼性の確保に向けて、合理的な設備保守 技術の開発研究に取り組むとともに、実機レトロフィットによる機器実証の準備を行う。

1. 衣 光行研究で設定されたほ子ししとしての日標住能							
	起動時間 (ホットスタート)	出力変化速度	1/2負荷における定格からの 効率低下(相対値)	最低出力(一軸式)			
開発目標	10分	20 %/分	10 %	10 %			
(参考) 現状性能	60分	5 %/分	15 %	45% 程度			

表 先行研究で設定されたGTCCとしての目標性能

3. 達成目標

[最終目標(2021年度)]

・先行研究で設定した目標性能(上表)を実現する目処を得るために、実規模の燃焼器を設

計・試作し、単缶実圧燃焼試験により、無負荷から定格まで5分で到達すること、最低負荷 条件においても安定燃焼が可能であることを確認する。

- ・急速起動、出力変化速度向上、最低負荷引き下げ、部分負荷時の効率低下抑制を含む、G TCCシステムとしての運転制御技術とGT後流(HRSG-蒸気タービン側)の成立性・ 性能評価、急速起動に寄与する動翼・ロータの軽量化については、実プラントの設計に反映 できる目処を得る。
- ・合理的な設備運用保守を行うために、従来の考え方からの違いを整理する。
- ・対象GTCCと他の調整力電源(揚水発電、蓄電池など)の経済性を比較評価し、事業として成立するための課題を整理する。
- ・既存設備のレトロフィットによる実証研究計画を立案し、実証試験の仕様を明らかにする。

研究開発項目⑤ 「CO2回収型次世代IGCC技術開発」

[実施期間]2015年度~2020年度(うち2015年度はNEDOゼロエミッション石炭火 力技術開発プロジェクトにて実施)

1. 研究開発の必要性

エネルギー基本計画(2014年4月閣議決定)においては、石炭火力発電は重要なベース ロード電源として位置づけられているが、温室効果ガスの大気中への排出をさらに抑えるため、 石炭ガス化複合発電(IGCC)等の次世代高効率石炭火力発電技術等の開発及び実用化を推 進することとされている。石炭は他の化石燃料と比べ利用時の二酸化炭素排出量が大きく、地 球環境問題での制約要因が多いという課題を抱えており、石炭火力発電についても更なる二酸 化炭素排出量の抑制が求められている。 今後CO₂排出量抑制のためには、さらなる高効率化 に向けて、現在開発中のIGCCを効率でしのぐ次世代高効率石炭火力発電技術等の開発に加 え、CCSによる低炭素化を図っていく必要がある。

しかしながら、CCSは多大な付加的なエネルギーが必要であり、効率の低下や発電コスト の上昇を招く。そのためエネルギー資源を海外に依存する我が国では、資源の有効利用と発電 コストの抑制のため、このエネルギーロスを可能な限り低減する必要がある。

2. 具体的研究内容

本技術開発においてはCO2回収型クローズドIGCCの開発、水蒸気を添加した次世代ガ ス化システム及び両技術の相乗効果確認を実施する。とりわけ相乗効果については、既存の I GCCへ両要素技術の適用性についても効果を検証する。クローズドIGCCシステムは、排 ガスCO2を一部系統内にリサイクルすることにより、CO2回収型石炭ガス化発電システムの 効率を大幅に向上することのできる、世界でも例のない次世代IGCCシステムである。本シ ステムは高効率に加え、СО2の100%回収が可能であるため、СО2を排出しないゼロエミ ッション石炭火力の実現が期待できる。また、次世代ガス化システムは、冷ガス効率及び送電 端効率の向上並びに実用化に向けた技術開発に向けて、酸素吹石炭ガス化においては、ガス化 炉にガス化剤として酸素を供給して石炭を部分燃焼させ、石炭を熱分解しているが、投入され た石炭が一部燃焼して消費されること、酸素製造装置等の所内動力の増加により送電端効率が 低下することが効率向上のための課題となっていることから、熱分解の一部を、ガスタービン 排熱を利用して作る水蒸気を用いた石炭ガス化反応に置き換えることにより、冷ガス効率の向 上を図るとともに、酸素供給量の低減を図り、送電端効率の向上を目指す。CO2回収型クロ ーズドIGCCの実現に向けては、2008年度から2014年度まで実施した「CO2回収 型次世代IGCC技術開発」において、石炭投入量3t/dの小型ガス化炉を活用し、送電端 効率42%(高位発熱量基準)以上を達成可能とする基盤技術を開発してきた。

本事業では、この基盤技術開発の成果を活用し、実機により近い大型のサイズのガス化炉に おいて検証を行い、システム実現に向け、基盤技術をより確実な技術として発展させるととも に、他のCO2分離・回収技術と比較した本システムの経済的優位性を確認することを狙いと する。

具体的には、石炭投入量50 t / d 規模のガス化炉を用いた、O₂/CO₂ガス化技術の実証 や乾式ガス精製システムの実証といった高効率発電を可能とする各要素技術を開発する。また、 セミクローズドGTについては、燃焼試験とCFD解析を通し、実スケールの燃焼器の特性評 価を行う。 次世代ガス化システムのこれまでのシミュレーションによる検討結果では、①噴流床型 IG CCガス化炉への高温の水蒸気の注入による冷ガス効率及び送電端効率の向上、②エネルギー 効率の高い酸素製造技術を組み込んだ IGCCシステムの構築による更なる送電端効率の向上、 の可能性があることが分かった。そこで、これらの可能性を検証及び評価するため、以下の項 目を実施する。

(1) 水蒸気添加による冷ガス効率向上効果の検証

噴流床型ガス化炉への高温の水蒸気の注入による冷ガス効率の向上について、小型ガス化炉 での検証を行う。

(2) エネルギー効率の高い酸素製造装置の適用性評価

エネルギー効率の高い酸素製造装置の適用性を評価する。

(3) IGCCシステム検討

エネルギー効率の高い酸素製造装置を組み込んだ I G C C の最適化システム試設計及び経済 性検討を行う。

冷ガス効率の向上及び試設計を踏まえて、送電端効率を精査する。

また、両技術の相乗効果確認及び既存のIGCCへ適用した場合の効果を検証する。

3. 達成目標

[中間目標(2017年度)]

CO2回収型クローズドIGCCについては、送電端効率42%(高位発熱量基準)を見通 すための要素技術確立の目途を得る。

次世代ガス化システムについては、既存のIGCC(1500℃級GTで送電端効率46~ 48%)を凌ぐ高効率石炭ガス化発電システムの見通しを得るため、小型ガス化炉による水蒸 気添加ガス化試験方法を確立する。

[最終目標(2020年度)]

CO₂回収型クローズドIGCCについては、2019年度までに送電端効率42%(高位 発熱量基準)を見通すための要素技術を確立する。

次世代ガス化システムについては、2018年度までに既存のIGCC(1500℃級GT で送電端効率46~48%)を凌駕する高効率石炭ガス化発電システムの見通しを得る。 両技術の相乗効果として、2020年度までにCO₂回収型クローズドIGCCの目標効率から更 に0.5ポイント程度の向上の見通しを得る。 研究開発項目⑥ 「次世代火力発電技術推進事業」 [実施期間]2016年度~2021年度

1. 研究開発の必要性

長期エネルギー需給見通しにおける基本方針は、3E+S(安全性、安定供給、経済効率性、 環境適合)を同時達成しつつ、バランスの取れた電源構成を実現することである。2030年 以降、中長期的に火力発電から排出されるCO₂を一層削減するには、次世代技術の普及によ る更なる高効率化や再生可能エネルギーの利用拡大、そして、CO₂の回収、貯留・利用の推 進が重要である。また、日本の優れた火力発電技術を海外に展開していくことにより、地球規 模での温暖化問題の解決を推進していく必要がある。

2. 具体的研究内容

最新の技術動向や社会情勢、社会ニーズに合わせ、国内外の火力発電技術分野における最新 技術の普及可能性及び技術開発動向等の調査や新規技術開発シーズ発掘のための、CCT関連 やCCS関連の調査を実施する。また、IEA/CCC(Clean Coal Centre)、 IEA/FBC(Fuldized Bed Combustion)、GCCSI(Glo bal CCS Institute)等に参画し、技術情報交換・各種技術情報収集を行う とともに、国内関係者への情報提供を行う。また、今後の国際市場における日本の火力発電所 受注に向けて、高い競争力を発揮できる戦略及びビジネスモデルを構築する。さらに、低コス ト高効率次世代火力発電システム実現に向けた検討や次世代火力発電における燃料多様化(バ イオマス、アンモニア等)のための調査および先導研究を進める。

3. 達成目標

[最終目標(2021年度)]

火力発電技術分野において、CO2排出量低減、環境負荷低減及び国際競争力の強化を図る ために必要となる基礎的情報や、最新情報の収集・解析及び将来における次世代火力の技術開 発や導入可能性について、関連技術の適応性、課題等の調査を行う。また、海外との協力を通 して、我が国の優れたCCTの導入に向けた取組を行う。 研究開発項目⑦ 「次世代技術の早期実用化に向けた信頼性向上技術開発」 [実施期間]2017年度~2021年度

1. 研究開発の必要性

従来型石炭火力発電の中で最高効率である超々臨界圧火力発電(USC)は蒸気温度の最高 温度は630℃程度が限界と言われてきた。700℃以上の高温蒸気へ適用されるボイラ・タ ービン適用材料開発については、長期高温環境下での使用を想定したクリープ試験を実施する 等、更なる信頼性の向上が必要である。本事業では2020年以降に増大する経年石炭火力の リプレース及び熱効率向上需要に対応するため、高温材料信頼性向上及び保守技術開発を行う。

- 2. 研究開発の具体的内容
 - (1) 高温材料信頼性向上試験

信頼性向上のため、クリープ疲労試験、異種材料溶接部健全性評価、材料データベースの 拡充、表面処理技術開発等を実施する。

(2)保守技術開発

タービンロータ超音波探傷試験(UT検査)等の精度向上、高効率化、適用箇所の拡大を 目的とした非破壊検査技術開発を実施する。

3. 達成目標

[中間目標(2019年度)]

長時間クリープ疲労試験、材料データベースの拡充については、各種データの取得を行い、 2021年度末までの試験計画を策定する。

表面処理技術開発等の高温材料信頼性向上及びタービンロータ超音波探傷試験(UT検査) 精度向上等の保守技術については、技術確立の見通しを得る。

[最終目標(2021年度)]

事業終了時において送電端熱効率46%(高位発熱量基準)達成可能な商用プラントへ適用 する長時間クリープ疲労試験、材料データベースの拡充、表面処理技術開発等の高温材料信頼 性向上及びタービンロータ超音波探傷試験(UT検査)精度向上等の保守技術を確立する。

4. その他重要事項

本事業については、他の事業との連携を図りながら、ユーザー及び外部有識者等の意見を適切に反映し、着実な運営を図る。情報発信及び知財化についても、技術の流出防止と適宜知財 化を適切に助成先へ指導する。

研究開発スケジュール

	年度(西暦)	8	9	10	0 11	12	1:	3 14	15	16	17	18	2019	2020	2021	2022	2023
											\diamond			\diamond			•
研究石炭	開発項目① ガス化燃料電池複合発電実					*1				IG	酸素 iCC実調	i吹 証					
証事 1) 配	業 該素吹IGCC実証(1/3助成)					L	-										
2)C 実証	O ₂ 分離•回収型酸素吹IGCC (2/3、1/3助成)													c実証			
3)C ⁄2	O ₂ 分離・回収型IGFC実証(1 助成)																
													1	CO ₂ 分離・回収:	型IGFC実証		
研究	開発項目②											\diamond			•		
高効 1)1	率ガスタービン技術実証事業 700℃級ガスタービン(1/2					*1	L				1	■ 「「「「」」	の設計・製作・試	運転			
助成 2)高	〕 「湿分空気利用ガスタービン					Ļ	Γ-										
(A⊢	IAT)(2/3助成)					*1				AH. 実	AT III	•					
	88.45 D		_	-		L					F	<u> </u>					
研究 先進	開発項目③ 超々臨界圧実用化要素火力	*1	 1	L						Ť							
光电 (2∠	投術開発 (3助成)	Ĺ	[Γ	A	-08	SC-	美証]								
研究 次世	開発項目④ 代火力発雷基盤技術開発																
								-			\diamond						
	1)次世代ガス化システム技 衛闘発(季託)								*	基金	篮技術						
										B	開発	20	18年度以降	は研究開発項	員目(5)へ統合		
	2) 燃料電池向け石炭ガスク												•				
	リーンナップ技術要素研究 (委託)								2	基技	盤 術						
				-				-					\diamond				
	3)ガスタービン燃料電池複 合発電技術開発(委託)										1	\$	基盤技術	荆発		-	
					_			_		_	<u> </u>	<u> </u>					
	4)燃料電池石炭ガス適用性										<u> </u>		▲盤技術	開発		•	
	研究(委託)																
											\diamond						
	5)CO2分離型化学燃焼石灰 利用技術開発(委託)								*	基金	釜技術 引発	20	18年度以降	は新規公募(こて研究開発	項目④8)で	実施
				-	_			_		-	<u> </u>	<u> </u>		•			
	6)石炭火力の競争力強化技											基盤技	術開発	· ·			
	術開発(委託)																
	7)CO2有効利用技術開発 (委託)												術開発				
								_			<u> </u>						
	8)流動床ガス化燃焼を応用 した石炭利用技術開発(季																
	記) 託)													基盤技術開発			
	の)機動鉄に厚ねてきながサ														•		
	9)												基盤	技術開発			
	シ女ポリ九(安乱)															<u> </u>	
研究	開発項目⑤										\diamond			•			
CO2 (季	回収型次世代IGCC技術開発								*		00-5) 5) (12) 20(**		*****			
\ Z I									2 L		CO ₂	コ収型〉	火世代IGCC技行	机用充			
研究	開発項目⑥																
次世 託)	代火力発電技術推進事業(委																
研究	開発項目⑦	-	-	-		-		-				-	\diamond			•	
次世 た信	代技術の早期実用化に向け 頼性向上技術開発(1/2助												信頼性向上	:技術開発			
成)												3	1	1		ĺ	

※1 経済産業省にて実施したプロジェクトで2016年度からNEDOへ移管 ※2 NEDOゼロエミッション石炭火力技術開発プロジェクトにて実施 添付資料 2

【特許】

④3) ガスタービン燃料電池複合発電技術開発

番号	出願者	出願番号	国内 外国 PCT	出願日	状態	名称
1	三菱日立パワー	特願	国内	2017/2/17	公開	燃料電池モジュール、これを備えた複
	システムズ (株)	2017-028091			禾請求	合発電システム及び燃料電池モジュ
						ールの温度調整方法
2	三菱日立パワー	特願	国内	2017/2/21	公開	燃料電池および複合発電システムな
	システムズ (株)	2017-030053			未請求	らびにその運転方法
3	三菱日立パワー	特願	国内	2017/2/24	公開	燃料電池モジュール及び燃料電池モ
	システムズ (株)	2017-033582			未請求	ジュールを備えた複合発電システム
						並びにサブモジュールの組み立て方
						法
4	三菱日立パワー	特願	国内	2019/2/15	公開	燃料電池サブモジュール、燃料電池モ
	システムズ (株)	2019-025837			未請求	ジュール及び複合発電システム並び
						にサブモジュールの組み立て方法
5	三菱日立パワー	特願	国内	2019/2/25	未公開	燃料電池モジュール及び発電システ
	システムズ(株)	2019-032120			未請求	Д
6	三菱日立パワー	特願	国内	2019/2/25	未公開	燃料電池モジュール、発電システム及
	システムズ(株)	2019-032125			未請求	び燃料電池モジュールの運転方法

【論文】

a.国内投稿

④3) ガスタービン燃料電池複合発電技術開発

番	発表者	タイトル	発表誌名	査	発表年月
号				読	
1	岸沢 浩	SOFC 燃料電池コージェネレーションについ	Engine Review, Vol. 9	有	2018/12
		て	No. 1, 2019		
2	樋渡 研一	固体酸化物形燃料電池ハイブリットシステ	ペテロテック, Vol.41	無	2018/12
		ムの開発と実用化	No.9, 2018		

b.海外投稿

無し

【外部発表】

(a)学会発表・講演

④3) ガスタービン燃料電池複合発電技術開発

番号	発表者	所属	タイトル	会議名	発表年月
1	岩田 光由	三菱日立パワーシス テムズ(㈱燃料電池事 業室	業務産業用燃料電池システム の MHPS の取り組み	平成 29 年度 福岡水素 エネルギー人材育成センター技 術者育成セミナー	2017/9/4
2	富田和男	三菱日立パワーシス テムズ(㈱燃料電池事 業室	MHPS における SOFC 複合発電シス テムの開発状況と今後の展開	ファインセラミックス関連団体連 絡協議会	2017/10/26
3	高島正	三菱日立パワーシス テムズ(㈱燃料電池事 業室	SOFC-MGT ハイブリッドシステムの市場 導入に向けた取り組み	第 6 回電力エネルギー未来 技術シンポジウム	2017/11/13
4	富田和男	三菱日立パワーシス テムズ(㈱燃料電池事 業室	業務用・産業用固体酸化物形燃 料電池 SOFC-MGT ハイブ・リット・システ ムの市場導入に向けた取り組み	地球環境関西フォーラ ム 第12回地球温暖化 対策シンポジウム	2017/11/24
5	樋渡 研一	三菱日立パワーシス テムズ(㈱燃料電池事 業室	SOFC 複合発電システム開発状 況と今後の展開	火力原子力発電技術協 会 中部支部講演会	2017/12/15
6	樋渡 研一	│ 三菱日立パワーシス テムズ(㈱燃料電池事 業室	固体酸化物形燃料電池ハイブ リットシステムの開発と実用 化	石油学会 第61回年会	2018/5/22

7	小林 由則	三菱日立パワーシス テムズ(㈱燃料電池事 業室	定置用燃料電池システムの技 術動向と今後の展開	平成 30 年度 福岡水素 エネルギー人材育成センター技 術者育成セミナー	2018/11/5
8	小林 由則	三菱日立パワーシス テムズ(㈱燃料電池事 業室	燃料電池複合発電による低炭 素社会への貢献	スマートエネルギー Week2019 次世代火力 発電 EXP0	2019/2/28

④2)燃料電池向け石炭ガスクリーンナップ技術要素研究

番号	発表者	所属	タイトル	会議名	発表年月
1	芳賀 剛	電源開発(株) 若松研究所石炭ガス 利用システム研究G	J-POWER における IGFC 開発に 向けた取り組みについて	第4回 SOFC 技術セミナ ー	2017/10/17
2	早川 宏	電源開発(株) 若松研究所	低炭素社会に向けた J-POWER 若松研究所の取組み	第 55 回石炭科学会議	2018/10/29
3	須藤 哲郎	電源開発(株) 若松研究所石炭ガス 利用システム研究G	燃料電池用石炭ガスクリーン ナップ技術要素研究	第 27 回 SOFC 研究発表 会	2018/12/13

④4)燃料電池石炭ガス適用性研究

(2) 燃料電池モジュールの石炭ガス適用性研究

番 号	発表者	所属	タイトル	会議名	発表年月
1	芳賀 剛	電源開発(株) 若松研究所石炭ガス 利用システム研究G	J-POWER における IGFC 開発に 向けた取り組みについて	第4回 SOFC 技術セミナ 一	2017/10/17
2	早川 宏	電源開発(株) 若松研究所	低炭素社会に向けた J-POWER 若松研究所の取組み	第 55 回石炭科学会議	2018/10/29
3	鈴木 慎一 郎	電源開発(株) 若松研究所石炭ガス 利用システム研究G	燃料電池モジュールの石炭ガ ス適用性研究	第 27 回 SOFC 研究発表 会	2018/12/13
4	作野 慎一	電源開発(株) 若松研究所石炭ガス 利用システム研究G	燃料電池モジュールの石炭ガ ス適用性に関する研究	第 26 回燃料電池シンポ ジウム	2019/5/23

(b)新聞・雑誌等への掲載

④3)ガスタービン燃料電池複合発電技術開発

番号	掲載内容	掲載媒体	発表年月
1	固体酸化物形燃料電池(SOFC)ハイブリッドシステムとマイクロガスタービン(MGT) との組み合わせにより業務・産業用に市場投入	プレスリリース 三菱日立パワーシステムズ (株)HP 掲載	2017/8/9
2	固体酸化物形燃料電池(SOFC)とマイクロガスタービン(MGT)のハイブリッドシス テム 業務・産業用分散型電源として初受注・着工	プレスリリース 三菱 日 立 パワー シス テム ズ (株) HP 掲載	2018/1/31
3	業務・産業用として製品化した固体酸化物形燃料電池(SOFC)とマ イクロガスタービン(MGT)の組み合わせによる加圧型複合発電シ ステム(ハイブリッドシステム)について、シリーズの名称を 「MEGAMIE」に決定	プレスリリース 三菱 日 立 パワー シス テム ズ (株) IIP 掲載	2018/11/8
4	固体酸化物形燃料電池(SOFC)とマイクロガスタービン(MGT)のハ イブリッドシステム「MEGAMIE」を安藤ハザマ向けに受注	プレスリリース 三菱 日 立 パワー シス テム ズ (株) HP 掲載	2019/4/25
5	日本特殊陶業と三菱日立パワーシステムズ、燃料電池セルスタッ クの製造・販売を行う合弁会社の設立・共同運営に関する契約を 締結	プレスリリース 三菱 日 立 パワー シス テム ズ (株) IP 掲載	2019/7/5

(c)その他

展示会

④3)ガスタービン燃料電池複合発電技術開発

番 号	展示内容	展示会名		展示年月
1	SOFC-MGT ハイブリットシステム	スマートエネルギーWeek2018 力発電 EXPO	次世代火	2018/2/28~3/2
2	SOFC-MGT ハイブリットシステム	スマートエネルギーWeek2019 力発電 EXPO	次世代火	2019/2/27~3/1

表彰

④3) ガスタービン燃料電池複合発電技術開発

番号	受賞者	表彰名	受賞題目	表彰機関	受賞年度
1	三菱日立パワ ーシステムズ (株)	石油学会 学会賞 [工業的なもの]	固体酸化物形燃料電池(SOFC) ハイブリッドシステムの開発と実用化	(公社)石油学会	2017 年度