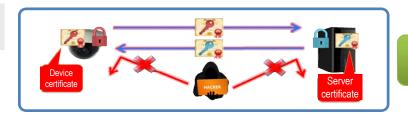
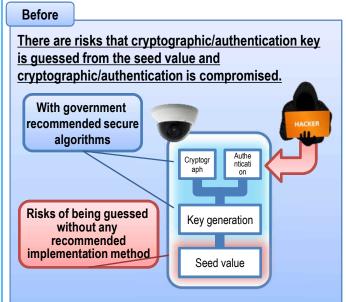

2-3 Total Cyber Security With Defense, Detection, and Measures for Protecting End Points

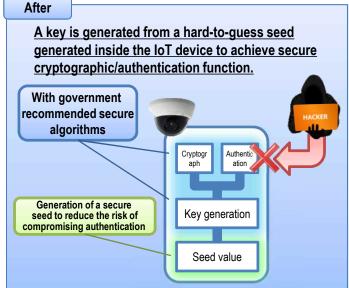


Secure cryptographic/authentication function achieved by generating cryptographic/authentication key from seeds with less risk of being guessed within IoT devices

(1) **Defense** Technology: Cryptography/Authentication

IoT device with vulnerable security are attack targets



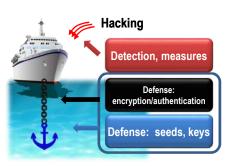


PKI authentication is required between endpoints.

(2) Seed Generation: Generation of Secure Keys From Seeds With Less Predicted Risks

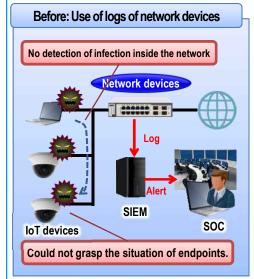
	Conventional issues Before	Effects by introduction After	
See	eds with less fluctuation and secrets of designers have risks that the keys are guessed.	A hard-to-guess seed is generated with the function of an IoT device.	
For	a key generated outside the device, it is difficult to identify the leakage source if leakage curs.	A seed and key are generated inside a device to reduce risks of leakage.	

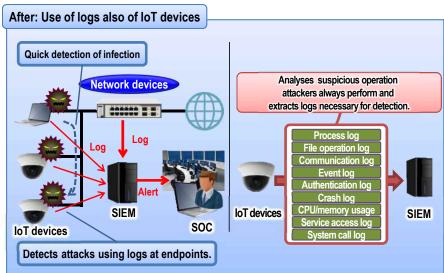
	Noise sources		Advantages	Disadvantages
	Methods	Overview	Advantages	Disauvantages
Conventional methods	Device specific ID and others	Use of MAC address or device identifier	Fast generation speedNo additional cost	 Risk of being guessed from designer's secret
	/dev/random	Use of interruption (blocking type)	Hard to guessNo additional cost	• Slow generation speed with less interruption
	/dev/urandom	Use of interruption (non-blocking type)	Fast generation speedNo additional cost	 Risk of being guessed
	Physical random number generator	Use of dedicated hardware	Fast generation speedHard to guess	 Additional cost for dedicated hardware
Method from R&D results	Fluctuation of HW/SW	Use of fluctuation of oscillator, execution pipeline, branch prediction unit, scheduler, cache, etc.	Fast generation speedHard to guessNo additional cost	•Evaluation of safety required

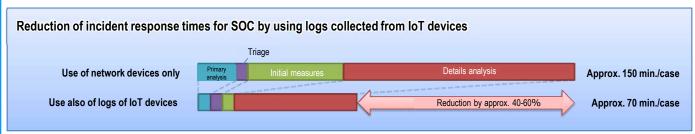

2-3 Total Cyber Security With Defense, Detection, and Measures for Protecting End Points

Early detection of cyberattacks by monitoring the logs of loT devices along with network communications in order to prevent the spread of damage

(1) Required Security


For IoT having long life cycle without human intervention, detection and measures along with defense are important.




	IT security	IoT security	
Measures	Windows Update Isolation of viruses Measures agai		
Detection	Anti-virus software and others	cyberattacks	
Defense	Standard cryptographic communication PKI authentication	Standard cryptographic communication PKI authentication	

(2) Measures Against Cyberattacks: Quick Detection Using the Logs of loTDevices and Measures

Conventional issues Before	Effects by introduction After
Could not detect infection within the network.	Quick detection of infection within the network using logs of IoT devices.
Took long time to analyze data without logs of the IoT devices.	Optimization of the incident response process using logs of IoT devices.
Difficult to make use of data due to the diversity of formats even if logs were output from IoT devices.	Outputting of logs in the same format as IT for using the existing SOC.

