Hydrogen Energy Ministerial Meeting

A challenge towards Zero-carbon STEEL

September 25th, 2019 Kosei Shindo NIPPON STEEL CORPORATION

Introduction

- Over 1.8 billion tons of worldwide steel production population/economic growth ... steel demand increase
- Carbon-reduction ... large amount of CO2 emission
- Steel production from iron ore is still needed in 2100
- Nov. 2014 : JISF Commitment to a Low Carbon Society Phase II 2030 target ... JPN's NDC (medium-term target)
- Nov. 2018 : JISF Long-term vision for climate change mitigation "A challenge towards Zero-carbon STEEL" beyond 2030 ... JPN's long-term strategy Hydrogen ... a vital measure

Pathways towards Zero-carbon STEEL

Pathway 1: Carbon usage and treatment $1/2Fe_2O_3 + 3/4C \rightarrow Fe + 3/4CO_2 \cdots GHG$

Proven Existing Experienced **Exothermic reaction** CCS/CCU is needed

Pathway 2: Carbon avoidance by hydrogen $1/2Fe_2O_3 + 3/2H_2 \rightarrow Fe + 3/2H_2O \cdots water$

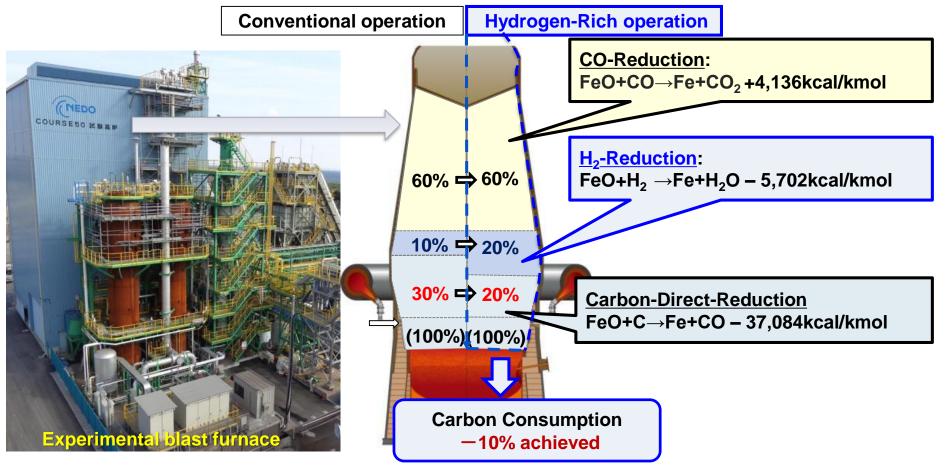
Unproven Unexisting Inexperienced

A huge amount of carbon-free hydrogen supply with rational cost is needed

Endothermic reaction

Roadmap for Zero-carbon STEEL

- ✓ JISF has decided to develop super innovative technologies to realize zerocarbon STEEL.
- ✓ Hydrogen replacing carbon and CO₂ capture are main measures.
- ✓ COURSE50 is the first step to the future.
- ✓ For hydrogen-reduction, massive and stable supply of carbon-free hydrogen with rational cost is essential.


<u>Challenge</u>	s specific in iron & steel sector	2020	2030) 2040) 2050	2100
COURSE50	Raising ratio of H2-reduction in blast furnace using internal H2 (COG) Capturing CO2 from blast furnace gas for storage	R&D	Impl	ementa	tion	
Super COURSE50	Further H2-reduction in blast furnace by adding H2 from outside (assuming massive carbon-free H2 supply becomes available)	Stepping up				
H2-reduction ironmaking	H2-reduction ironmaking without using coal	Steppii		R&D	Implem	entation
				t		
<u>Challenge</u>	s common in social fundamental	2020	2030) 204() 2050	2100
Challenges	s common in social fundamental Technical development of low cost and massive amount of hydrogen production, transfer and storage		2030 &D) 2050 mpleme	

COURSE50: The First Step to the Future

CO₂ Ultimate Reduction in Steelmaking process by innovative technology for cool Earth 50

Ratio of reducing reaction in the experimental blast furnace

In the experimental blast furnace, 10% reduction in carbon consumption has been achieved by hydrogen-rich operation.

Requirements for Hydrogen Supply


у 🚽

<u>Volume</u> for 1/2Fe₂O₃ + 3/2H₂ + 48kJ \rightarrow Fe + 3/2H₂O

reduction + compensation of endothermic reaction... <u>1000 Nm³-H₂/t-hot metal = 1.3 trillion Nm³-H₂/year</u>

for worldwide iron production

<u>Cost</u> equivalent for carbon reduction ironmaking:

A trial calculation : Assuming **\$200/t-coal** and **700kg-coal/t**-hot metal, coal cost is **140\$/t**-hot metal.

55% of thermic value of coal is consumed for reduction (another 45% changes to byproduct gases), and then the cost of reducing agent is **\$77/t-hot metal**.

The equivalent cost of hydrogen (\$77/t-hot metal / 1000Nm³-H₂/t-hot metal) becomes ¢7.7/Nm³-H₂

Conclusions

- **"A challenge towards Zero-carbon STEEL"**Direction towards achieving the long-term goal of the Paris Agreement
- Clear but very tough technical challenges
 Technical issues to overcome in hydrogen-reduction ironmaking
 Huge and stable supply of carbon-free hydrogen with rational cost
- COURSE50 : the first step to realize Zero-carbon STEEL

Challenge super innovative technologies for realizing Zerocarbon STEEL using the technologies gained from COURSE50

