

The German "National Hydrogen Strategy"

Prof. Dr. Peter Hennicke Co-Chair of the German-Japanese Energy Transition Council (GJETC)

Tokyo, 14. October 2020

Planning for an uncertain future (1)

->the share of H2 oder H2 based synfuels in final energy in Germany (2050) according to respresentative German climate mitigation scenarios

Composition of final demand in decarbonizing scenarios ; 2018 compared to 2050 (in PJ)

Quelle: Statistik-Daten nach AG Energiebilanzen 2020; Samadi, S., Wuppertal Institute 2020

Planning for an uncertain future (2)

→domestic and imported H2 oder H2 based synfuels in Germany (2050) according to respresentative German climate mitigation scenarios

Demand for domestic or imported hydrogen/synfuels in 2050 (in PJ)

Source: Samadi, S., Wuppertal Institute 2020

German "National Hydrogen Strategy" (1)

Minister of Economic Affairs Peter Altmaier:

"We want Germany to become number 1 in the world when it comes to hydrogen technologies."

- Main facts:
- Green hydrogen: Blue/Turquoise hydrogen for transition phase
- Corona Stimulus Package: 7 bn Euros for German market starting phase,
 2 bn Euros for international partnerships
 (9 bn Euros = 1,100 bnYen)
- Sectors: Industry (steel, chemistry, refinery), Transportation (bus and train, heavy duty trucks, logistics, also passenger cars), Heat (long-term)
- **Two phase scheme**: Develop a **domestic market** until 2023, after 2023 focus on an **European and international dimension**
- The main volume of hydrogen has to be imported (North and Baltic Sea, South Europe, energy partnerships and development collaboration)

Source: Energieagentur.NRW 2020

German "National Hydrogen Strategy" (2)

- Domestic market aims:
- Electrolysis capacity:
 - Until 2030: 5 GW (for 14 TWh/a green H2, at a total demand of 90 to 110 TWh/a, today 55TWh/a)
 - Until 2035: additional 5 GW if feasible, at latest 2040
- Measures (38 in total) Hydrogen Production:
- Seeking to exclude hydrogen from the feed-in-tariff surcharge, use CO2 pricing, revisit the costs induced by the government
- Consider **electrolyser** funding and checking new tendering models
- Examine cooperation strategies between electrolysis operators and power/gas grid operators
- Regulatory basis for the repurposing and expansion of a hydrogen infrastructure will be prepared

Source: Energieagentur.NRW 2020

German "National Hydrogen Strategy" (3)

- Measures Transport:
- Vehicles and refuelling (until 2023, for low emission drive trains):7 bn Euros for passenger, heavy duty vehicles, buses and related refuelling infrastructure
- o Extension H2 refuelling stations for street, rails, waterways
- **NIP** and **"Hyland** Hydrogen regions in Germany" (continuation planned)
- Implementation of **RED II**: 2 GW electrolysis for refineries (goal)
 2% green kerosene by 2030 (consideration)
- Measures Industry:
- Steel/Chemistry: Supporting investments, carbon contracts for difference and demand quota
- Measures International:
- Integration of hydrogen into existing energy partnerships and the establishment of new partnerships with strategic exporting and importing countries

Source: Energieagentur.NRW 2020

Steering the "National Hydrogen Strategy": The Governance Structure

* Elected by the members of the National Hydrogen Council ¹ e.g at Director-General level

Source: BMWi 2020 "The National Hydrogen Strategy"

European Union Hydrogen Strategy (July 2020)

Vice President EU Commission Frans Timmermans:

"In developing and implementing a clean hydrogen value chain, Europe will be a front runner and maintain its leading position in the field of clean technologies."

• Mainfacts:

- **Green Hydrogen**, however, in the short and medium term, other forms of **low carbon hydrogen** are needed
- 1st phase by 2024: At least 6 GW of renewable hydrogen electrolysers in the EU and up to 1 million tonnes of renewable hydrogen
- 2nd phase by 2030: 40 GW of renewable hydrogen electrolysers and the production of up to 10 million tonnes of renewable hydrogen; reaching cost-competitiveness of renewable hydrogen
- **3rd phase by 2030 to 2050**: renewable hydrogen technologies should be mature and deployed on a large scale in all sectors

Source: Energieagentur.NRW 2020

The perspective of industry (e.g. thyssenkrupp) Why is green hydrogen not yet big business?

Until now – decentral small units only

- most green hydrogen projects are decentral with small (max single MW) electrolysis units
- green hydrogen pilots focused mainly on supply of hydrogen for mobility
- but, mobility will take time to pick up and relevant markets have not been addressed yet
- → small scale electrolyzer equipment without equipment scale effect
- → no feasible business cases available → no scale up of supply chain

Hydrogen cost are still too high!

Source: thyssenkrupp Green Hydrogen 2020

But, We need green hydrogen < 2€/kg

to reduce cost of green hydrogen we need:

- large scale equipment
- high efficiency equipment
- large scale supply chains

GJET

We need central / industrial applications!

The perspective of the industry

Global cost degression of power from PV (and wind)

Driver for Green Hydrogen: Massive Renewable Energy is Coming Onstream - Every Year 150 GW_{el} capacity

Source: thyssenkrupp Green Hydrogen 2020

GJETC: Comparing Germany and Japan Potential partner countries

Country	Shared characteristics	
Canada, US, Australia, China	Likely future blue and green hydrogen producers and technology providers	
Saudi Arabia, Russia	Resource-rich countries with potential of both blue and green hydrogen production	
Peru, Iceland, Ethiopia	Potential supplier of low-cost green hydrogen; no incentive to use hydrogen domestically, enabling green hydrogen export	
Ireland, Chile, UK	Potential supplier of low-cost green hydrogen; a need to enhance energy self-sufficiency, thus likely facing competition between domestic consumption and export of green hydrogen	
Netherlands, UK, Switzerland, France, Germany, Spain, Portugal, Israel, Italy, Belgium, Korea, Japan	Potential demand for low-carbon hydrogen; high- income, high dependence on primary energy imports, and likely future users with technology competence	

Potential green hydrogen producers

Potential blue hydrogen producers

Source: adelphi, Wuppertal Institute, dena, IEEJ 2019

GJETC: green, blue and grey hydrogen Criteria for sustainable and low-carbon hydrogen

Criteria for further development

- Minimum level of GHG emissions reduction
- For green H₂: Electricity demand and additionality of renewables
- For blue H₂: Sustainability of CC(U)S
- Product lify cycle coverage
- Sustainable water usage
- Sustainable land use
- Sustainable social and economic impacts

Existing certification schemes (e.g. EU CertifHy) do not fully cover these criteria

Sustainability criteria E		
Ċ	EU Guarantees of Drigin Scheme by CertifHy	Suggestions for future certification scheme
t	o hydrogen produced by natural gas	At least 60-75% compared to natural gas or conventional hydrogen, depending on use; constant monitoring of technology and market development for respective tightening of thresholds over time
2. Life cycle of the hydrogen C production chain covered	Only production	Production, transport, storage of hydrogen (also of natural gas); for use in fuel cells/transport, also including the use
	Green and blue hydrogen	Green and blue hydrogen meeting the criteria
4. Additionality of renewable electricity generation	-	Criteria and monitoring processes for GoO (details tbd)
5. CCUS for blue H ₂	-	Special sustainability criteria (details tbd)
6. Water demand	-	Additional disclosure of information on water use in GoO
7. Land use	-	Additional disclosure of information on (sustainable) land use in GoO
8. Social impacts	-	Involvement of local actors, additional investment and reduction of poverty (details tbd)

Prof. Peter Hennicke

GJETC: certification scheme for clean hydrogen Adequate criteria for blue and green H₂

a) Potential specific GHG emission threshold level for internationally traded clean H₂

- Blue hydrogen production could be achieved with GHG emissions as low as ca. 20 gCO_{2eq}/MJ_{H2} (Green hydrogen production is assumed to be 0 gCO_{2eq}/MJ_{H2})
- The extra GHG emissions allowed for transport to the border gate should not exceed 10g CO_{2eq}/MJ_{H2}
- => Potential maximum threshold level of specific GHG emissions until border gate of 30g CO_{2eq}/MJ_{H2}

b) Potential well-to-wheel GHG reductions and corresponding specific GHG emissions requirements for clean hydrogen

- Case 1: Uses, in which green or blue hydrogen replaces fossil fuels in the same combustion technology or process.
- Case 2: Using green or blue hydrogen as a feedstock.
- Case 3: Uses in transport or other sectors, in which fuel cells are replacing internal combustion engines or combustion turbines.

Thank you for your attention Please visit our website <u>http://www.gjetc.org/</u>