

モノづくり日本会議WEBセミナー NEDOプロジェクト成果報告会

2021年3月12日

CNF及び応用製品の排出・暴露評価

国立研究開発法人 産業技術総合研究所エネルギー・環境領域 安全科学研究部門

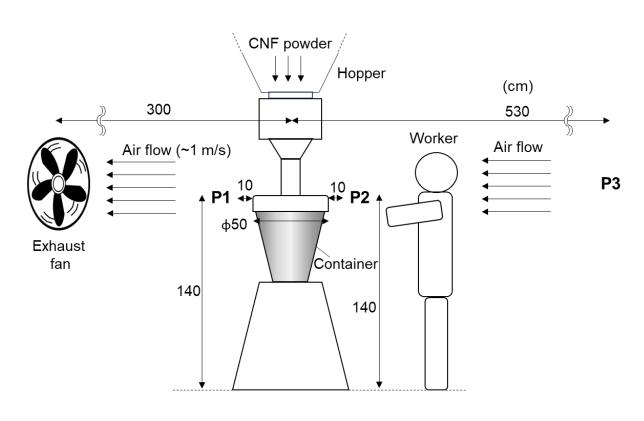
小倉 勇

プロジェクトのテーマ構成

- 1) CNFの分析及び有害性試験手法の開発
 - 1)-1 CNFの検出・定量手法の開発
 - 1)-2 CNFの気管内投与手法の開発
 - 1)-3 CNFの皮膚透過性試験手法の開発
- 2) CNFの排出・暴露評価手法の開発
 - 2)-1 排出CNFの計測手法の確立及び排出・暴露評価事例の集積

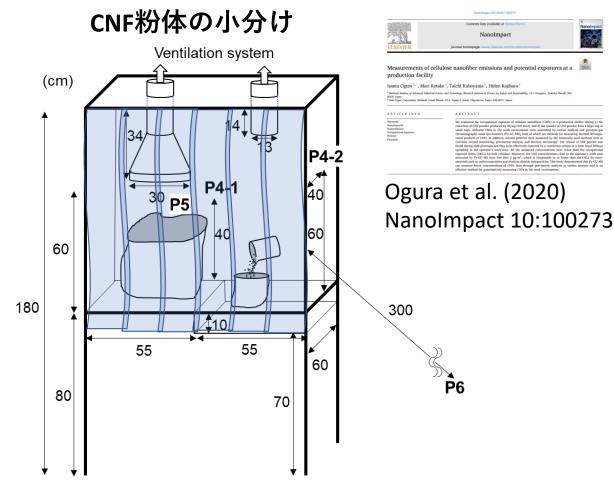
(大王製紙、産総研)

- 2)-2 CNF応用製品に対する暴露シナリオによるケーススタディ (産総研)
- ※ 個別テーマは、CNFを扱う事業者のニーズを踏まえて設定した。



- ●作業環境調査: CNF粉体の製造施設
- ●作業環境調査:CNF複合材の製造施設
- ●模擬排出試験: CNF乾燥粉体の移し替え
- ●模擬排出試験:CNF複合材の切削・摩耗
- ●生分解性試験

CNF粉体の製造施設における排出・暴露評価


CNF粉体の回収

P1:回収コンテナの近傍(風下)

P2:回収コンテナの近傍(風上、作業者が実際に作業する場所)

P3:対照地点(離れた場所)

P4-1、4-2:ドラフト内側

P5:ドラフト前面の外側(作業者が実際に作業する場所)

P6:対照地点(離れた場所)

CNF粉体の製造施設における排出・暴露評価

測定項目

- 1) エアロゾル計測器 光散乱式粒子計数器、凝縮粒子計数器、粉塵計
- 2) フィルター捕集

重量分析 炭素分析 熱分解GC-MS SEM観察

CNF粉体の製造施設における排出・暴露評価

吸入性粉塵*の濃度

*吸入性粉塵:サイクロンにより粗大粒子 をカットして捕集(4 µm粒子が50%カット)

	測定場所	重量分析	炭素分析	熱分解GC-MS
		粒子濃度	CNF相当濃度	CNF相当濃度
		[µg/m³]	[μg/m³]	[µg/m³]
CNF粉体 の回収	P1:コンテナ近傍(風下)	<mark>140</mark>	<mark>180</mark>	<mark>180</mark>
	P2:コンテナ近傍(風上)	(8.2)	(9.1)	<0.9
	P3:対照地点	(15)	(7.6)	<0.9
	P4-1: ドラフト内側	<mark>310</mark>	<mark>230</mark>	<mark>270</mark>
	P5:ドラフト外側	(35)	25	<1.7
	P6:対照地点	(30)	(14)	<1.6

<:検出限界未満、括弧の値:定量下限未満

CNF粉体の回収時ではP1:コンテナ近傍(風下)において、CNF粉体の小分け時ではP4-1:ドラフト内側において、濃度は高かったが、作業者のいるP2及びP5の濃度は、対照地点であるP3及びP6と大きく変わらなかった。→通常の粉塵対策が有効

- ●作業環境調査:CNF粉体の製造施設
- ●作業環境調査:CNF複合材の製造施設
- ●模擬排出試験:CNF乾燥粉体の移し替え
- ●模擬排出試験:CNF複合材の切削・摩耗
- ●生分解性試験

CNF複合材の製造施設における排出・暴露評価

CNF複合材の混練 CNF複合材のペレット化 対照地点 フード 約**0.2** m 風速0.1~0.2m/s 約0.3 m $0.24 \times 0.67 \,\mathrm{m}$ 排気 約**0.1** m 風速**2.5**m/s 風速 風速 回転刃 ストランド $0.3 \sim 0.4 \, \text{m/s}$ 0.5 m/s ペレット 原料投入口 ■切断機 混練機 混練出口。 エアロゾル 🦠 約4m エアロゾル 回収 計測器 容器 対照地点

A~Cは測定地点

A1~Cは測定地点

CNF複合材の製造施設における排出・暴露評価

吸入性粉塵*の濃度

*吸入性粉塵:サイクロンにより粗大粒子をカットして捕集(4 µm粒子が50%カット)

いずれの工程においても、 装置近傍と対照地点で大 きな差はなかった。 CNFの有無による違いも 明確でなかった。

		重量分析	炭素分析	熱分解GC-MS
	測定場所	粒子濃度 [µg/m³]	炭素濃度 [µg/m³]	セルロース相 当濃度 [µg/m³]
混練	投入口近傍:A	(7.6)	4.6	3.5
PA6	混練出口近傍:B	(8.3)	4.5	2.4
FAU	対照:C	(4.4)	(3.4)	< 0.7
······· 混練	投入口近傍:A	(9.0)	4.5	3.0
PA6/CNF	混練出口近傍:B	(7.2)	4.0	2.6
PAO/CINF	対照:C	(8.0)	(3.5)	(2.0)
ペレット化	切断機近傍: A1	<2.3	(5.4)	8.0
	切断機近傍: B1	<1.5	(7.0)	(3.2)
PA6	対照:C	<5.7	(4.3)	(2.1)
ペレット化	切断機近傍: A1	<7.4	(5.9)	4.3
	切断機近傍: B1	<7.6	(4.4)	4.2
PA6/CNF	対照:C	(9.0)	(4.9)	9.5

<:検出限界未満、括弧の値:定量下限未満

- ●作業環境調査:CNF粉体の製造施設
- ●作業環境調査:CNF複合材の製造施設
- ●模擬排出試験:CNF乾燥粉体の移し替え
- ●模擬排出試験: CNF複合材の切削・摩耗
- ●生分解性試験

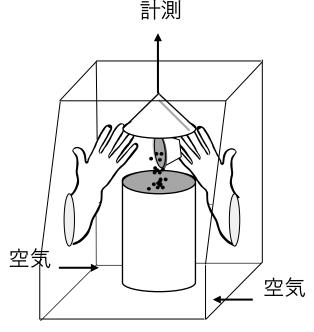
CNF粉体の移し替え試験

概要

CNF乾燥粉体のハンドリングの模擬として、「CNF乾燥粉体の移し替え(粉体の落下、注ぎ込み)」の模擬を実施関連するプロセス:袋詰め、小分け、分取、投入、混合

目的

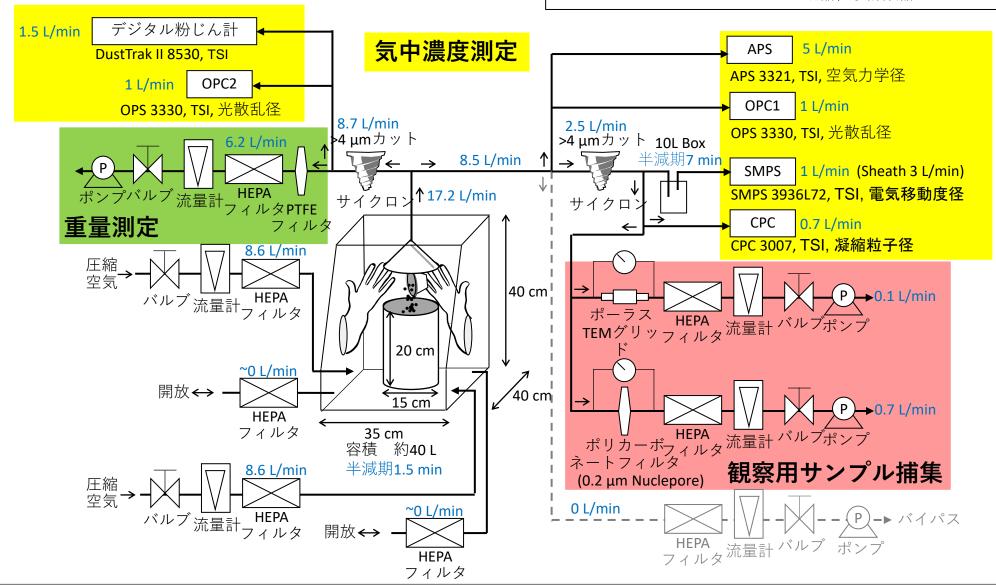
CNFの飛散性(量、サイズ、形態)の把握 CNFのタイプによる飛散性の違いの把握 飛散CNFの計測手法の検討


試験手順

30 or 100 cm³の乾燥粉体を

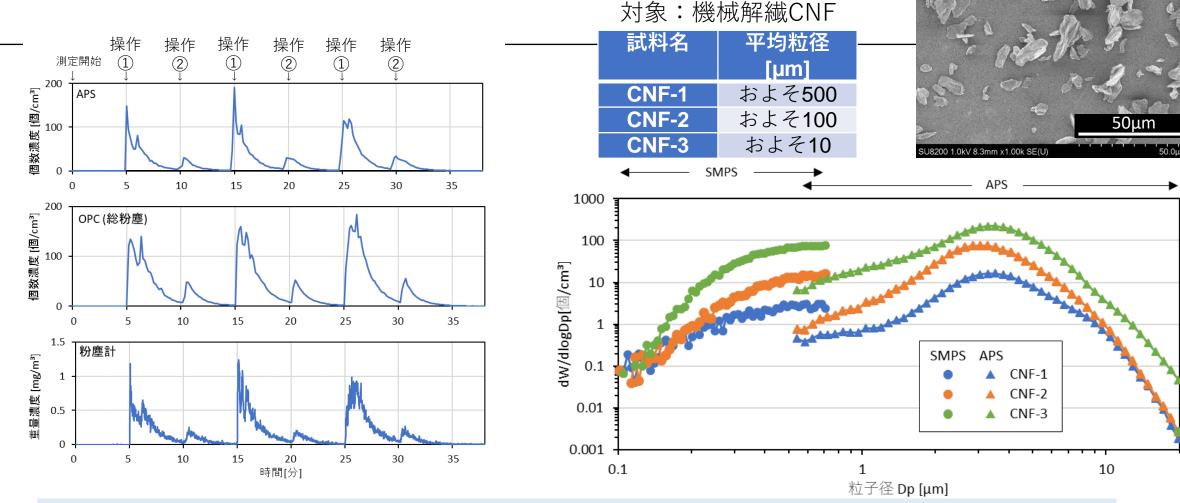
- ①落下 (小→大)
- ②注ぎ込み (大→小)

5分毎に移し替えを繰り返す(①⇔②)×3セット


CNF粉体の移し替え試験

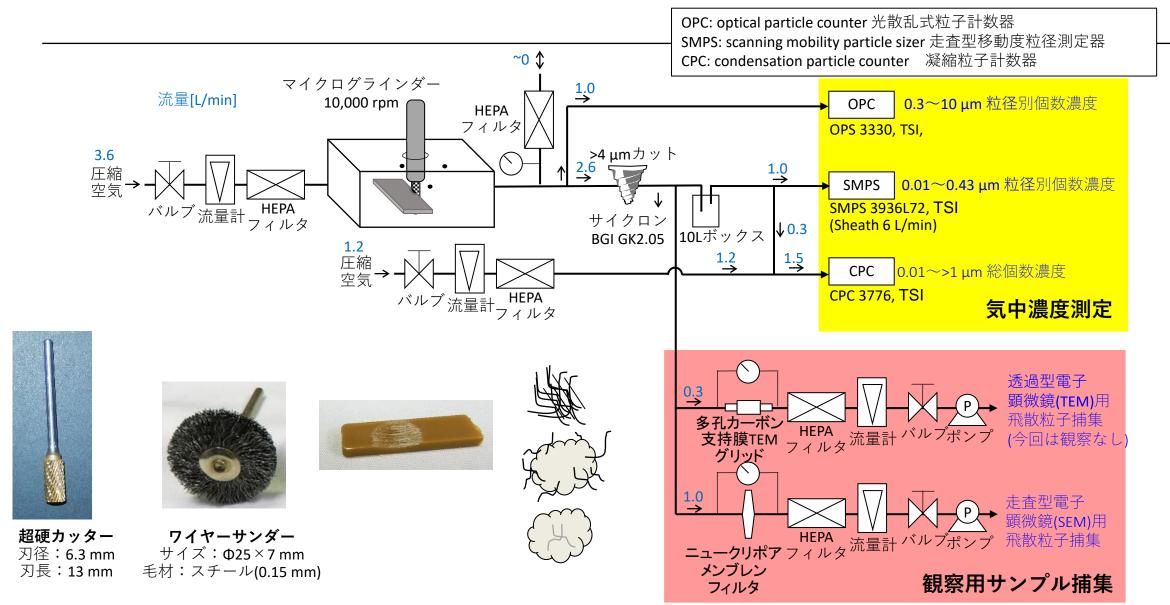
APS: Aerodynamic Particle Sizer 空気力学的粒径分布測定器

OPC: Optical Particle Counter 光散乱式粒子計数器


SMPS: Scanning Mobility Particle Sizer 走査型移動度粒径分布測定器

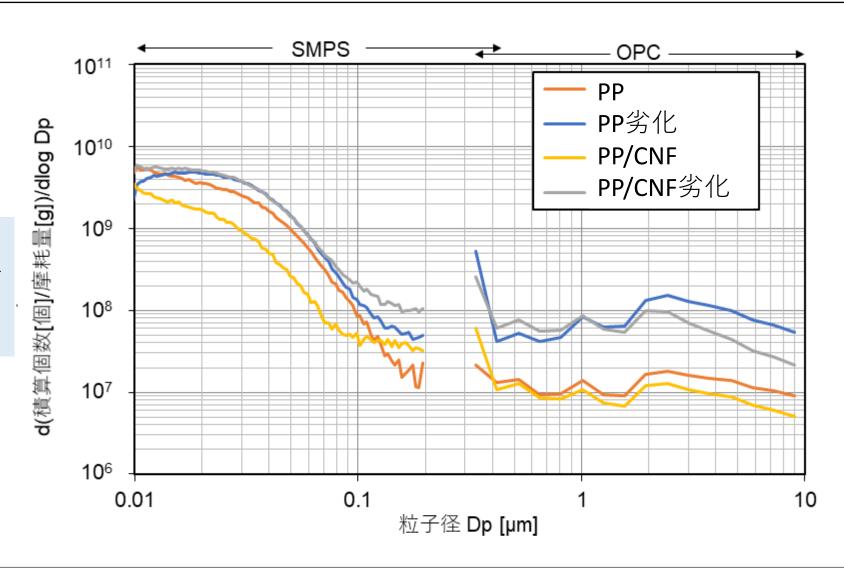
CPC: Condensation Particle Counter 凝縮粒子計数器

CNF粉体の移し替え試験


各種エアロゾル計測器により飛散したCNF粒子が検出できることを確認した。CNF乾燥粉体の移し替えにより飛散した粒子は、およそ0.1~10 µmの大きさの凝集粒子であった。 飛散したCNF乾燥粉体は、棒状のもの、扁平状のものなど、不均一な形をしていた。

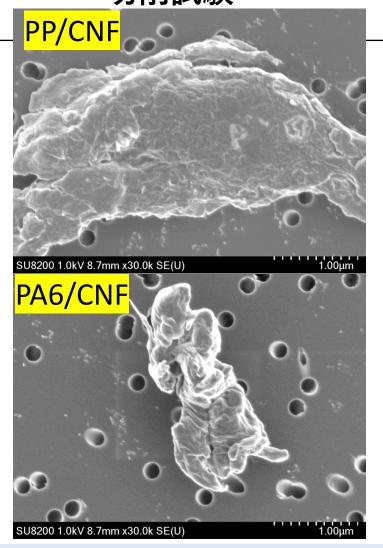
- ●作業環境調査: CNF粉体の製造施設
- ●作業環境調査:CNF複合材の製造施設
- ●模擬排出試験: CNF乾燥粉体の移し替え
- ●模擬排出試験:CNF複合材の切削・摩耗
- ●生分解性試験

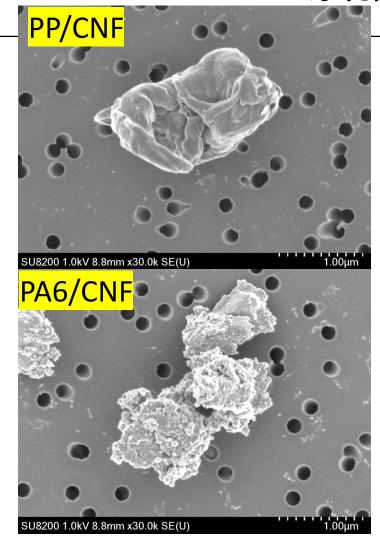
CNF複合材の切削・摩耗試験

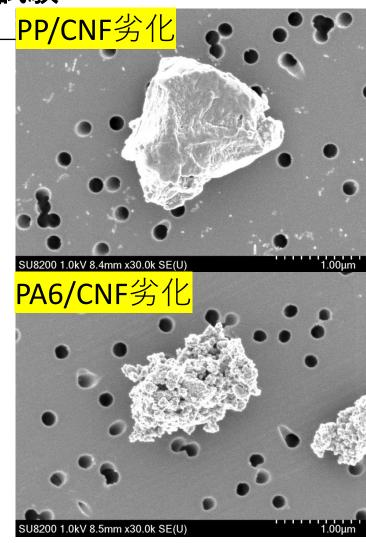


CNF複合材の切削・摩耗試験

エアロゾル計測器


CNF複合材の切削や摩耗時の飛散粒子の粒径分布の形は、CNF含有の有無でほとんど変わらなかった。




→ 産総研CNF複合材の切削・摩耗時の飛散粒子

切削試験

摩耗試験

飛散粒子の形態観察では、CNFと思われる繊維状の粒子は観察されず、飛散粒子の はとんどは、樹脂そのものの塊、または樹脂とCNFの混合物の塊と考えられた。

- ●作業環境調査:CNF粉体の製造施設
- ●作業環境調査:CNF複合材の製造施設
- ●模擬排出試験:CNF乾燥粉体の移し替え
- ●模擬排出試験:CNF複合材の切削・摩耗
- ●生分解性試験

各種CNFの生分解性試験

OECD301C法/28日試験

試料	結果
TEMPO酸化CNF	易生分解性(60%以上)
リン酸エステル化CNF	易生分解性(60%以上)
機械解繊CNF	易生分解性(60%以上)
アセチル化CNF* (アセチル化度:0.69)	易生分解性(60%以上)

*京都プロセスにより製造されるリグノCNF複合材の原材料 (プラスチック補強材:表面にリグニンを残したCNF)

- 4種のCNFは良分解性を示した。
- CNFは、一般環境に放出された後、速やかに生分解することが示唆された。

アセチル化CNFの海水中生分解性試験

OECD306改法、60日試験

アセチル化CNFは、プラスチック補強材として使用されるため、 海水中での生分解が重要

試料	生分解度	
アセチル化CNF(DS:0.40)	易生分解性(60%以上)	
アセチル化 CNF (DS :0.84)	易生分解性(60%以上)	

アセチル化度 (DS) を変えた2試料ともに「海洋での生分解性のポテンシャルあり」と結論

CNF及びその応用製品の排出・暴露評価事例集

2020年3月26日 産総研安全科学研究部門WEBサイトより無償公開

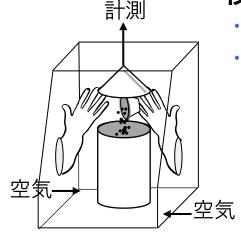
https://www.aist-riss.jp/assessment/45276/

付録Ⅲ

CNF及び関連材料をとりまく国際規制状況

事例研究へのご協力のお願い

CNFの排出・暴露でご心配なことはございませんか?


作業環境計測

- ・CNFの飛散や漏れはあるか?
- ・排出・暴露管理は適切か?
- どのように計測をすればよいか?

模擬試験

- ・飛散CNFの発生量、サイズ、形態?
- ・複合材の加工や使用時にCNFの脱離 や排出は起こりうるか?

- ・飛散CNFの発生量やサイズが分かることで、 適切な排出・暴露管理対策(マスク、フィ ルター、局所排気、排気処理…)の選択が 可能になる。また、飛散しにくいCNFの開 発につながる。
- ・飛散CNFの形態を知ることで、他の材料との比較ができる。
- ・有効な計測手法が分かることで、現場の 管理が可能になる。
- ・評価結果を公表することで、安全性をアピールできる。

切削、摩耗、 破砕

作業環境計測の実施や模擬試験のサンプル(乾燥粉体、複合材料、その他)の提供にご協力いただける企業を募集しております。また、現場で困っていることなどをお聞かせいただければ幸いです。

連絡先: 産総研 小倉 i-ogura@aist.go.jp

謝辞

ご清聴ありがとうございました

本発表は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託事業「非可食性植物由来化学品製造プロセス技術開発/CNF安全性評価手法の開発」(P13006)によるものです。本研究の関係者に深く感謝申し上げます。