CDTI-NEDO online Joint Workshop on Hydrogen Technology - Green Hydrogen Production & Mobility -

Development of Solid Oxide Electrolysis Cell System at TOSHIBA

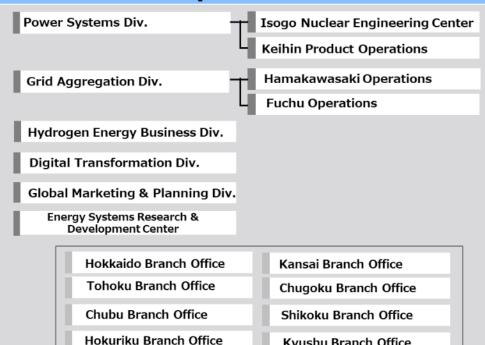
Norikazu Osada
Expert
Toshiba Energy systems & Solutions Corp.

About TOSHIBA

Toshiba Corporation

Toshiba Infrastructure Systems & Solutions Corporation

Toshiba Electronic Devices & Storage Corporation


Toshiba Digital Solutions Corporation

Toshiba Energy Systems & Solutions Corporation

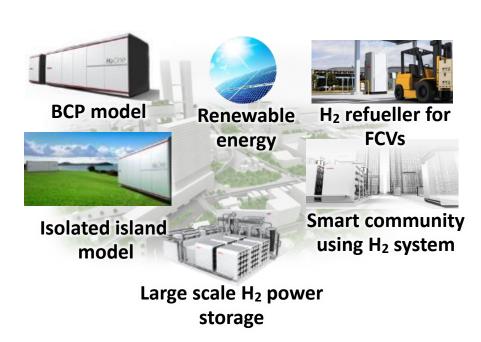
As of June 1, 2021

Takao Konishi President and CEO Toshiba Energy Systems & Solutions Corporation

Kyushu Branch Office

Business Domains of Our Company

Toward the realization of sustainable society



Toshiba's Hydrogen Business Models

Sustainable and Reassuring Society with RE Hydrogen

Local Energy Solution Business using RE and H₂ Power Storage

H₂ Supply Chain Business

Spread of Hydrogen aenergy system: H₂One[™]

Spread of RE Hydrogen & Fuel Cell system

Toshiba's Hydrogen Business Domain

Production

Storage

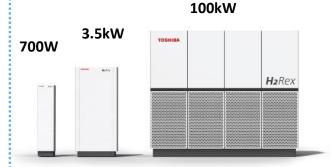
Utilization

Hydrogen EMS Hydrogen Energy Management System

Renewable Energy

Water Electrolysis

Pnoto Voltaic

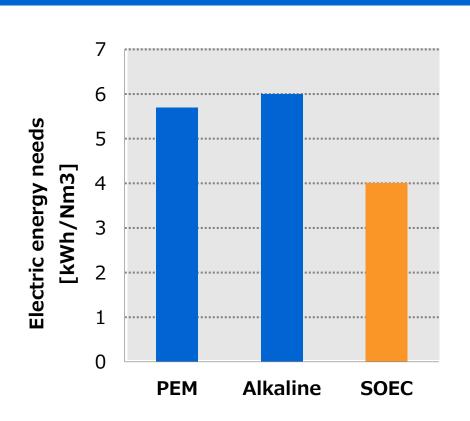

Wind Power

Hydrogen Power Storage System, H2One™

H₂ Supplier

Hydrogen Fuel Cell System, H2Rex[™]

Large Scale Demonstration





Hydrogen Production Method

SOEC* can reduce electric energy needs by 30%

We have comprehensively developed SOEC. (From cell materials to stack/system)

History of SOEC development in TOSHIBA

FY2003 2007 2011 2014 2021

Tubular type Cell/Stack

Planar Type Cell/Stack

FY2003: Started development of SOEC technologies

as one of the H₂ production methods

using waste heat from nuclear energy power plant

FY2007: Started study of renewable energy storage

system using hydrogen (Planar type cell/stack)

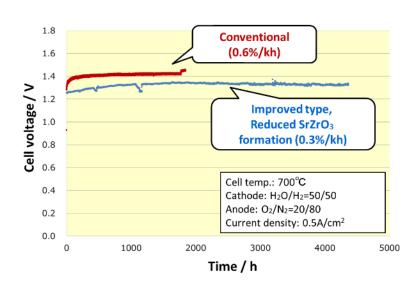
FY2011: Develop Ni-GDC based Hydrogen

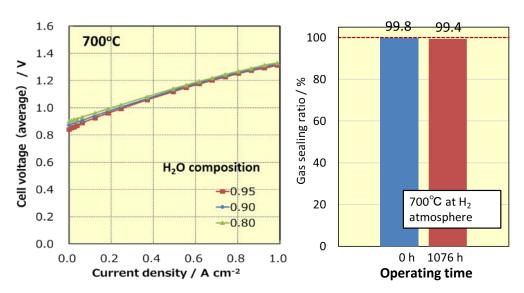
electrode with long-term durability

FY2013: METI Project

FY2014-18: NEDO Project (Phase 1)

FY2019-: NEDO Project (Phase 2)





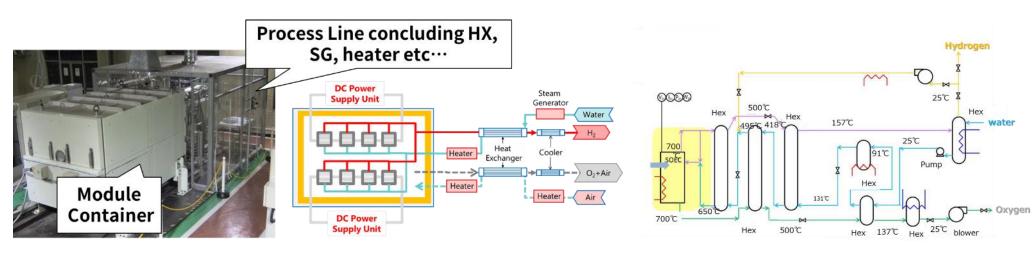
Main challenges and solutions in the SOEC project/case presented

- ✓ To clarify the degradation part and mechanism of SOEC
 - By studying cell materials especially at the anode/interlayer interface, the degradation rate was improved to under 0.3%/kh.
- ✓ Long-term stability for SOEC cell and stack materials
 - The developed stack showed high gas tightness and expected good durability.

Long-term stabilities for SOEC

IV properties and gas tightness for SOEC stack

A part of this work is based on results obtained from Advancement of Hydrogen Technologies and Utilization Project commissioned by the NEDO.



Main challenges and solutions in the SOEC project/case presented

- ✓ High efficiency system design for SOEC
 - In the demonstration with 10kW-class test system, hydrogen production rate of max.5Nm³/h @750°C was achieved
 - The high efficiency of the 200kW-class SOEC hydrogen production system was confirmed by the design study.
 - The system's efficiency under 4 kWh/Nm³ is confirmed in the design study of 50 Nm³/h-class system

10kW-class test system

Schematic diagram of test system

Diagram of 200 kW (50 Nm³/h)-class system

A part of this work is based on results obtained from Advancement of Hydrogen Technologies and Utilization Project commissioned by the NEDO.

Ideas for a Japan – Spain collaboration for SOEC technology

- ✓ Work together to conduct research and development on SOEC
 - Low-cost ceramic manufacturing process
 - Analysis of SOEC system degradation part
 - Development of novel material technologies for SOEC system.
 - Design study of SOEC field test system
 - Field operation of SOEC system (evaluation of property, degradation, economy)

