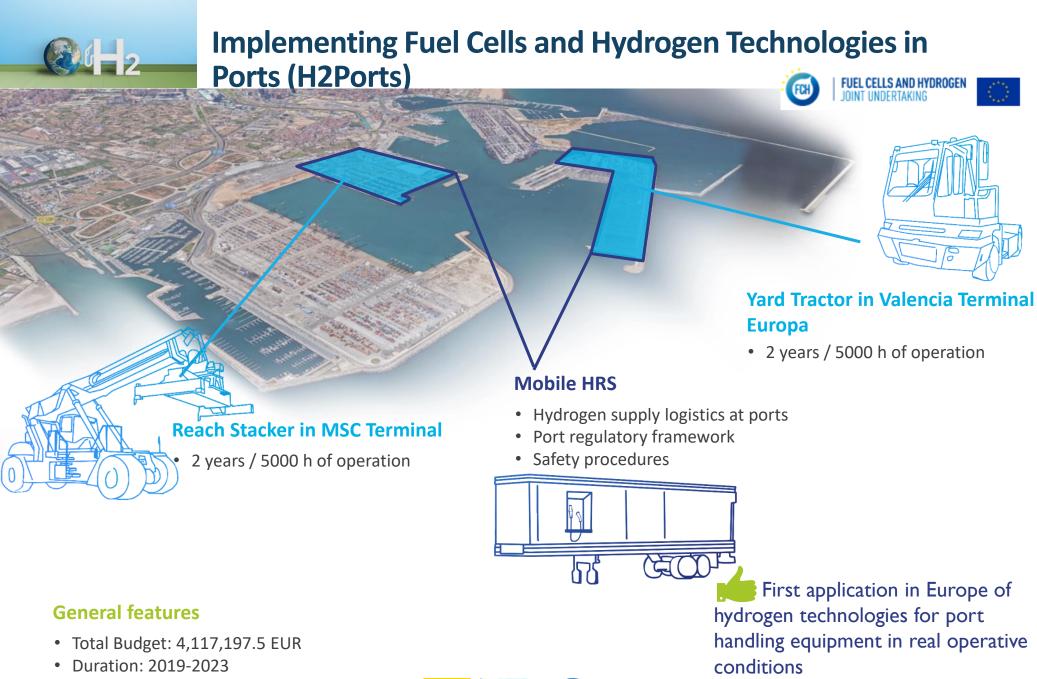
CDTI-NEDO online Joint Workshop on Hydrogen Technology - Green Hydrogen Production & Mobility -

H2PORTS

Implementing Fuel Cells and Hydrogen Technologies in Ports

Cristina Ballester

Process Engineer at Open Innovation Unit
National Hydrogen Centre (CNH2)


This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 826339. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

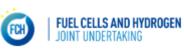
Partners

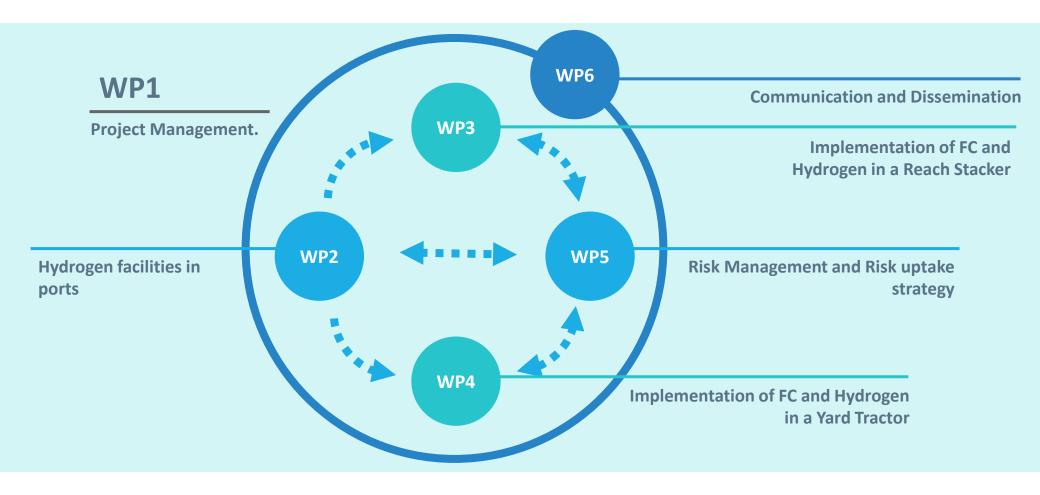
Coordination:

Research institutions

End users

Industry





Project Structure

WP2. Hydrogen supply

Buffer Tank 50 m³; D:2450 L:11510 10-40 bar 180kg

Compressor 50m3/h p_{in} : 10-40 bar p_{out} : 300-450 bar

Mobile Unit

Panel dispenser Up to 3.6 kg/min Tmax 85 °C

High pressure storage

300 bar 153 L 151 Kg

450bar 135L 841 Kg

FCHJU funding € 800,000 approx.

National Hydrogen Centre, Fundación Valenciaport, Valencia Port Authority, MSCTV, Hyster-Yale, Grimaldi, ATENA, Enagás

- Mobile hydrogen refuelling station
- Up to 60 kg of H₂ at 350 bar per day
- Hydrogen flow rate up to 3.6 kg/min
- Storage cascade at 300 and 450
 bar use in order to save energy

WP3. Reach Stacker

FCHJU funding € 1,300,000 approx.

Hyster-Yale Nederland B.V., MSCTV, Port Authority of Valencia, Fundación Valenciaport, National Hydrogen Centre

Expected achievements

- Average CO₂ reduction of 128,000 kg
 per year per vehicle (3000 h & 16 L/h)
- Lower TCO
- Improved productivity

WP4. Terminal Tractor

FCHJU funding € 1,100,000 approx.

ATENA, Grimaldi Group, Ballard, National Hydrogen Centre, Fundacion Valenciaport

Development and deployment a 4x4 Yard Tractor equipped with a Fuel Cells and test it in Valencia Terminal Europa (Grimaldi Group). It involves three tasks:

- Design of the new FCEV YT
- Assembling of new components in the YT
- Testing and Piloting of the FCEV YT in Valencia, Spain

Market uptake strategy and risk management

Objectives

Analysis of the technical and financial feasibility of the use Hydrogen Fuel Cells in ports machinery.

Logistics

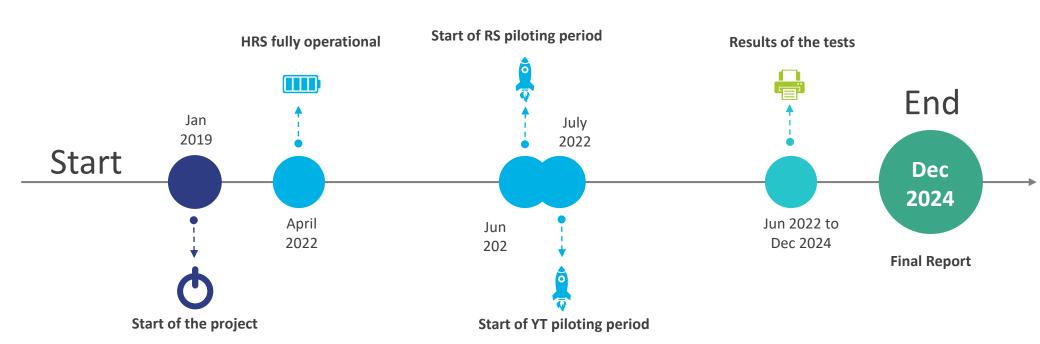
Define the most adequate logistic chain for supplying hydrogen. Estimate potential agregated demand

Regulatory

Analyse all aspects related to safety. Study the permiting process

Market uptake

Assess the financial feasibility. Propose a path for the introduction of FC in the port maritime sector. Define the most probable implementing scenarios.



H2Ports current planning

Ideas for a Japan – Spain collaboration

- ✓ Being Japan a big Island, maritime ports can be a key point for the decarbonisation. H2Ports results can provide useful information to help Japan to its decarbonisation plan
- A mobile HRS can be a great solution for more facilities like big depots or big airports
- ✓ Introducing FC in maritime ports can be the starting point for other sites like railways workshops, airports and so on.

Follow us!

https://h2ports.eu/

- Cristina.Ballester@cnh2.es
- √ https://h2ports.eu/

Funded by:

Partners:

Activar Windows Ve a Configuración para activa

