2022年1月25日: 主催:人工光合成化学プロセス技術研究組合(ARPChem) 共催:新エネルギー・産業技術総合開発機構(NEDO)

経済産業省未来開拓研究開発制度 二酸化炭素原料化基幹化学品製造プロセス技術開発 (人工光合成プロジェクト)

光触媒を用いる大規模グリーン水素製造技術の 現状と今後の課題

東京大学:特別教授 & 信州大学:特別特任教授

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 · Al-doped SrTiO₃ · SnNb₂O₆

- Ta_3N_5 $Y_2Ti_2O_5S_2$
- Ir. Sb, Al-doped SrTiO₃
 BaTaO₂N
- [4] 光触媒シート & 水分解パネル
 - La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
 - LTCA & BiVO₄
 - Al-doped SrTiO₃
- [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 · Al-doped SrTiO₃ · SnNb₂O₆

- Ta_3N_5 $Y_2Ti_2O_5S_2$
- Ir. Sb, Al-doped SrTiO₃
 BaTaO₂N
- [4] 光触媒シート&水分解パネル
 - La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
 - LTCA & BiVO₄
 - Al-doped SrTiO₃
- [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

光触媒チーム研究体制

三菱ケミカル
 光触媒リアクター開発

安全性試験

- ・富士フイルム
 - 光電極型リアクター開発
- •TOTO

大面積光触媒シート開発

INPEX

市場検討

東大集中研

- ・東大グループ
 光触媒・シート・パネル開発
 光電極開発(タンデム・パラレル)
 光触媒関係分析
 安全性試験
 ・三菱グループ
 - と触媒(Ln₂Ti₂O₅S₂)開発
- 三井グループ 光電極開発(カソード・アノード)
- ・富士フイルムグループ
- •TOTOグループ
 - 光触媒シート用光触媒開発

光雷極およびタンデム型リアクター開発

・INPEXグループ

光電極開発(アノード)

共同実施先

·産総研

- 反応機構・ダイナミクス 助触媒開発 安全性試験
- ・信州大学 _{光触媒・シート開発}
- •東京理科大学 _{光触媒開発}
- 京都大学 ナノ粒子助触媒開発
- ·明治大学

大面積光触媒シート開発

·山口大学

分離膜モジュールとの連結

革新的光触媒の開発ロードマップ

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 · Al-doped SrTiO₃ · SnNb₂O₆

- Ta_3N_5 $Y_2Ti_2O_5S_2$
- Ir. Sb, Al-doped SrTiO₃
 BaTaO₂N
- [4] 光触媒シート & 水分解パネル
 - La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
 - LTCA & BiVO₄
 - Al-doped SrTiO₃
- [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

光触媒および光電気化学的水分解反応

2電極系における水分解時の作動状態

水素発生用光カソード材料の開発:成果のまとめ

光触媒材料	吸収端 波長/nm	表面 修飾材料	電流密度		耐久性		進捗度
			2016年度 中間評価時	2022年度	2016年度 中間評価時	2022年度	評価
Cu(In,Ga)Se ₂	1100	Pt(助触媒) CdS(多層構造)	15 mAcm ⁻² @0.6 V _{RHE}	20 mAcm ⁻² @0.6 V _{RHE}	1日程度	1日程度	Ø
ZnSe : Cu(In,Ga)Se ₂	900	RuO ₂ /CdS	5.5 mAcm ⁻² @0.6 V _{RHE} (Pt)	2.9 mAcm ⁻² (RuO ₂) @0.6 V _{RHE}	数時間 (Pt)	2日程度 (RuO ₂)	0
Cu _{0.8} Ga _{0.8-x} In _x Zn _{0.4} S ₂ (CGIZS)	900	Pt(助触媒) CdS(多層構造)	3.3 mAcm ⁻² @0.6 V _{RHE} (粉末)	4.7 mAcm ⁻² (粉末) 7 mAcm ⁻² (薄膜) @0.6 V _{RHE}	数時間	数時間	0

水素発生用光カソードの選定は、CIGSに決める。 但し、タンデム型では、ソーラーフロンティア製を用いる。

酸素発生用光アノード材料の開発:成果のまとめ

光触媒材料	吸収端波長 /nm	助触媒	最大電流密度		耐久性		准性中部体
			2016年度 中間評価時	2022年度	2016年度 中間評価時	2022年度	進梦度計価
SnNb ₂ O ₆ 粒子転写	520	CoOx	1.5 mAcm ⁻² @0.6V _{RHE}	*	1日程度	*	*
Ta₃N₅薄膜	600	CoPi	6 mAcm ⁻² @1.23V _{RHE}	8.7 mAcm ⁻² @1.23V _{RHE}	1日程度	1日程度	0
Ta₃N₅透明薄膜	600	NiFeO _x	-	7.4 mAcm ^{−2} @1.23V _{RHE}	-	数十分程度	Ø
Ta₃N₅ナノロッド	600	NiFeO _x	-	<mark>10 mAcm^{−2}</mark> @1.23V _{RHE}	-	数十分程度	Ø
BaNbO₂N粒子転写	750	CoO _x CoFeO _x	1.4 mAcm ⁻² @1.23V _{RHE}	5.2 mAcm ⁻² @1.23V _{RHE}	-	数十分程度	0

透明光アノード候補として、 $Ta_3N_5/GaN/Al_2O_3$ に絞り込む。

透明Ta₃N₅/GaNと二直列CISからなるタンデム型PECセル

反応中のタンデム型PECセル

* 2直列CISはソーラーフロンティア社 から 提供

酸素生成用の透明平膜Ta₃N₅光電極の開発

問題点:透明度が低い!

GLAD法を用いた透明Ta₃N₅ナノロッド/Ta₃N₅/GaN/Al₂O₃の作製

GLAD: Glancing Angle Deposition

1. GLAD法により Al₂O₃/GaN/Ta上へTaO_xN_y-NRsを成膜

GLAD process in Ar/N₂/O₂ atmosphere, at P_{total} ~ 0.48 Pa, R.F= 325 W

Al₂O₃/GaN/Ta₃N₅/Ta₃N₅-NRs/FeNiCoOx

GLAD法を用いた透明Ta₃N₅ナノロッドの作製

GaN/Al₂O₃透明基板上にTa₃N₅薄膜及びナノロッド光電極を作製 600 nmよりも長波長側で50%程度の光透過率を維持 タンデム型セルの前面光電極に適用可能!

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 • Al-doped SrTiO₃ • SnNb₂O₆ • Y₂Ti₂O₅S₂ $\cdot Ta_3N_5$ Ir. Sb, Al-doped SrTiO₃ BaTaO₂N [4] 光触媒シート & 水分解パネル La, Rh-doped SrTiO₃ & Mo-doped BiVO₄ LTCA & BiVO₄ Al-doped SrTiO₃ [5] 100 m² スケール水素製造装置 [6] まとめと今後の課題

光触媒および光電気化学的水分解反応

1段階水分解光触媒の原理図

SrTiO3のバンドギャップ位置と光吸収

ペロブスカイト構造

紫外光応答型光触媒

RhCrOx/SrTiO3:AI触媒の調製法と量子収率の変化

見かけの量子収率の波長依存性

内部量子収率100%の光触媒の構造

励起した電子と正孔が100%の 効率で別の面に移動する

何が駆動力なのか?

内部電解のシミュレーションと電荷の移動 (ΔW=0.2 eV)

水分解光触媒の吸収スペクトル

SnNb₂O₆粉末を用いた単一型可視光水分解

Cr₂O₃/Ru/IrOx/SnNb₂O₆

Cr2O3光電着条件の見直しにより活性とH2/O2生成比の大幅改善

水分解光触媒の吸収スペクトル

Ta₃N₅(Anisovite)の結晶構造

λ≤600 nm; E_g=2.06 eV

KTaO₃ および Ta₃N₅/KTaO₃のSEM像

а KTaO₃ 0.25 h 0.05 h 500 nm 500 nm 500 nm 1 h 500 nm 500 nm 500 nm

15分間 窒化処理したTa₃N₅/KTaO₃のADF-STEM 像

15分間 窒化処理したTa₃N₅/KTaO₃のADF-STEM 像

Ta₃N₅光触媒の合成法

Rh(0.02 wt%)/Ta₃N₅/KTaO₃のADF-STEM & BF-STEM像

Ta₃N₅光触媒の合成法

Rh-CrOx/Ta₃N₅/KTaO₃上での水分解

水分解光触媒の吸収スペクトル

層状ペロブスカイトY₂Ti₂O₅S₂の結晶構造

$Cr_2O_3/Rh/Y_2Ti_2O_5S_2/IrO_2$ 光触媒による水分解

水分解光触媒の吸収スペクトル

Rh,Cr₂O₃,CoOOH/SrTiO₃:Ir,Sb,Alを用いた水分解

lrドープ量 x%	Sbドープ量 y%	光照射条件	水分解 / <i>µ</i> mol h ⁻¹		
			H ₂	O ₂	51H %
0	0	Xe (>300 nm)	729	344	-
0	0	Xe (>440 nm)	1.0	0.6	-
0	0	疑似太陽光	104	50	0.43
0.02	0	Xe (>300 nm)	497	239	-
0.02	0	Xe (>440 nm)	55	27	-
0.02	0	疑似太陽光	76	37	0.31
0.02	0.04	Xe (>300 nm)	599	290	-
0.02	0.04	Xe (>440 nm)	116	56	-
0.02	0.04	疑似太陽光	84	40	0.35
0.02	0.08	Xe (>300 nm)	671	326	
0.02	0.08	Xe (>440 nm)	132	65	-
0.02	0.08	疑似太陽光	85	41	0.35
0.02	0.16	Xe (>300 nm)	390	189	-
0.02	0.16	Xe (>440 nm)	60	28	-
0.02	0.16	疑似太陽光	58	27	0.24
0.03	0.06	Xe (>300 nm)	504	245	-
0.03	0.06	Xe (>440 nm)	103	50	-
0.03	0.06	疑似太陽光	65	30	0.27

光触媒量:0.2 g, 光照射面積:33 cm²(Xeランプ), 16 cm²(疑似太陽光), 反応溶液:水溶液(120 mL), 反応系:閉鎖系

光触媒シート・水分解パネルによる大面積化

光触媒の開発

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 Al-doped SrTiO₃ SnNb₂O₆ • $Y_{2}Ti_{2}O_{5}S_{2}$ • Ta_3N_5 Ir. Sb, Al-doped SrTiO₃ BaTaO₂N [4] 光触媒シート & 水分解パネル La, Rh-doped SrTiO₃ & Mo-doped BiVO₄ LTCA & BiVO₄ Al-doped SrTiO₃ [5] 100 m² スケール水素製造装置 [6] まとめと今後の課題

光触媒および光電気化学的水分解反応

H₂ および O₂ 発生光触媒

$\begin{array}{ccc} SrTiO_3:La,Rh \\ (H_2) \\ (O_2) \end{array} \\ \begin{array}{c} BiVO_4:Mo \\ (O_2) \end{array}$

2段階水分解用光触媒シートの作成法

SEM-EDX による元素分析 (Ru/SrTiO₃:La,Rh/Au/BiVO₄:Mo) 光触媒シート

光触媒シートによる水分解 (SrTiO₃:Rh,La / C / BiVO₄:Mo)

スクリーンプリンティングによる大面積化

25cm角シートのリアクター搭載⇒自然太陽光下での気泡生成確認。

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 Al-doped SrTiO₃ SnNb₂O₆ • $Y_{2}Ti_{2}O_{5}S_{2}$ • Ta_3N_5 Ir. Sb, Al-doped SrTiO₃ BaTaO₂N [4] 光触媒シート & 水分解パネル La, Rh-doped SrTiO₃ & Mo-doped BiVO₄ LTCA & BiVO₄ Al-doped SrTiO₃ [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

LTCA-BiVO₄系の拡散反射スペクトル

 $LTCA: La_5Ti_2Cu_{0.9}Ag_{0.1}O_7S_5$

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 Al-doped SrTiO₃ SnNb₂O₆ • $Y_{2}Ti_{2}O_{5}S_{2}$ • Ta_3N_5 Ir. Sb, Al-doped SrTiO₃ BaTaO₂N [4] 光触媒シート & 水分解パネル La, Rh-doped SrTiO₃ & Mo-doped BiVO₄ LTCA & BiVO₄ Al-doped SrTiO₃ [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

光触媒および光電気化学的水分解反応

光触媒シートによる水分解 (RhCrCoO_x/SrTiO₃:Al + SiO₂)

⁴ AM1.5G, 760 Torr pH=6.8

STH=0.56% at 331 K

光触媒シートの断面像と高分解能電子顕微鏡像

断面図

光触媒シート上での酸水素混合気体の気泡生成 (光学顕微鏡像)

水分解パネル小型試験装置(5 x 5 cm²)

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒

- Al-doped $SrTiO_3$ $SnNb_2O_6$
- Ta_3N_5 $Y_2Ti_2O_5S_2$
- Ir. Sb, Al-doped SrTiO₃
 BaTaO₂N
- [4] 光触媒シート & 水分解パネル
 - La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
 - LTCA & BiVO₄
 - Al-doped SrTiO₃
- [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

最新の試験用水分解パネル

側面図

正面図

光源: UV-LED (365nm)

光触媒シートの加速劣化試験 (疑似太陽光:AM1.5G連続照射)

常圧型ソーラー水素製造装置の模式図

常圧平面型反応器、低圧力損失配管、水素/酸素分離ユニット

Reactant Water Holder

100 m² プロトタイプ光触媒水分解システム

東京大学 柿岡教育研究施設

100 m² プロトタイプ光触媒水分解システム

東京大学 柿岡教育研究施設

2020年9月22日の水分解ガス生成速度変化

100 m² プロトタイプ水分解パネルからの気体生成

2020年9月30日,午前11:30,柿岡研究施設:東京大学

$3.6 \sim 3.7 \text{ L/min (H}_2 + 1/2O_2)$

市販のポリイミド中空糸膜

宇部興産; Membrane dryer Model No.: UMS-B2 (圧縮空気乾燥用カートリッジ)

分離膜カートリッジ

宇部興産 メンブレンドライヤー 型番UMS-B2 (圧縮空気脱湿用のカートリッジの流用)

中空糸モールド端面

中空糸外径 = 0.6 mm 中空糸内径 = 0.3 mm 中空糸長さ = 320 mm 中空糸本数 = 2300本

中空糸構造のため、ボア空間のデッドボ リュームが60~70mlと小さい。 ⇒カートリッジ密閉時の原料ガス混合が 防止しやすい。

柿岡施設内 100m²リアクター発生ガスの酸水素分離データ 2020年10月2日の測定結果

ソーラー水素製造用小型パイロットプラント模式図

チューブ内のH₂, O₂, H₂O 混合気体の爆発実験

1 気圧 (H₂:O₂=2:1), 長さ ≈ 100 m, 外径=12 mm, 内径=10 mm

チューブ内のH₂, O₂, H₂O 混合気体の爆発実験 (スローモーション:280 倍)

1 気圧 (H₂:O₂=2:1), 気体体積 × 8 L, 外径=12 mm, 内径=10 mm 全長 × 100 m, 巻き数 = 84

爆轟!

中空糸ポリイミド分離膜モジュールへの爆轟導入実験

複数回の爆発(爆轟) 実験の後も 分離膜の性能には、 全く異常なし

[1] イントロダクション(ARPChem) [2] 水分解用タンデム型光電気化学セル [3] 水分解用微粒子光触媒 · Al-doped SrTiO₃ · SnNb₂O₆

- Ta_3N_5 $Y_2Ti_2O_5S_2$
- Ir. Sb, Al-doped SrTiO₃
 BaTaO₂N
- [4] 光触媒シート & 水分解パネル
 - La, Rh-doped SrTiO₃ & Mo-doped BiVO₄
 - LTCA & BiVO₄
 - Al-doped SrTiO₃
- [5] 100 m² スケール水素製造装置

[6] まとめと今後の課題

水全分解光触媒の光吸収端とAQY(ARPChem以前)

水全分解光触媒の光吸収端とAQY(ARPChem終了時)

実用レベル(STH≥5%)の水分解光触媒開発の可能性

