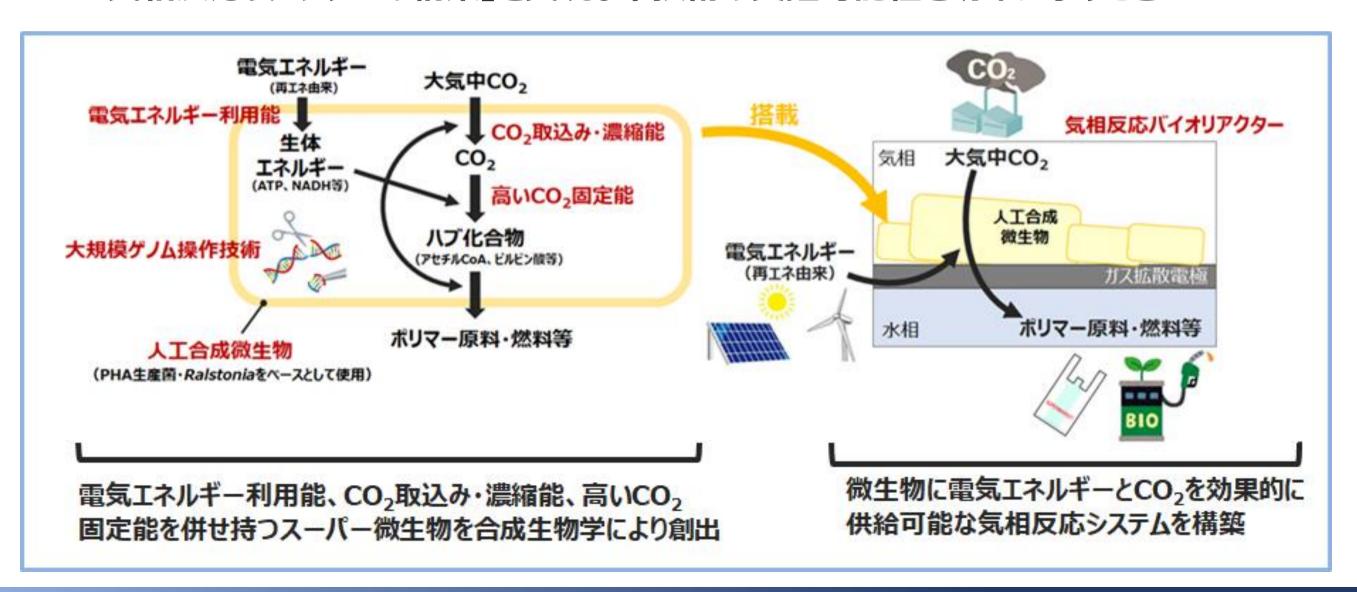


電気エネルギーを利用し大気CO₂を固定する バイオプロセスの研究開発

研究開発期間:2020年度~2022年度

発表者:加藤 創一郎(国立研究開発法人産業技術総合研究所)

PM:加藤 創一郎


国立研究開発法人産業技術総合研究所 生命工学領域 生物プロセス研究部門 主任研究員

PJ参画機関:国立研究開発法人産業技術総合研究所、国立大学法人東京工業大学、

国立大学法人東海国立大学機構名古屋大学

研究開発概要·PJ全体目標

- ■微生物を用いた革新的なネガティブエミッション技術の開発
- ■電気エネルギーを利用し大気中CO2を植物の50 倍以上の効率 (1 m2あたり年間50 kgの大気CO2を吸収)で有用有機物に変換
- ■PJ達成目標(2022年度):「電気利用CO2固定微生物の人工合成」と「気相反応リアクターの構築」を実現し本技術の実証可能性を明確に示すこと

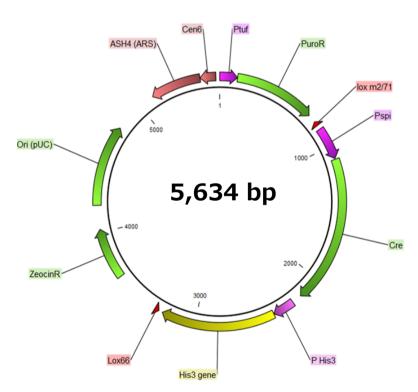
ゲノム操作技術の開発 CO。取込み・濃縮能の付与

発表者:加藤 創一郎(国立研究開発法人産業技術総合研究所)

委託先代表:加藤 創一郎

(国立研究開発法人産業技術総合研究所 生命工学領域 生物プロセス研究部門 主任研究員)

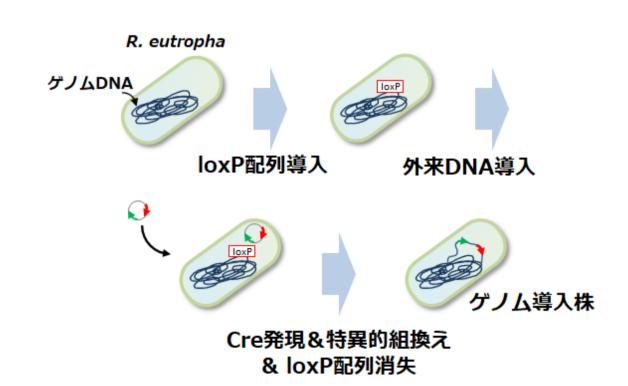
再委託先代表: 蘆田 弘樹


(国立大学法人神戸大学 人間発達環境学研究科 准教授)

ゲノム操作技術の開発(産総研) 1/2

- ■本PJでの目標: Ralstoniaの長鎖DNA導入技術を含むゲノム操作基盤技術の構築
- ■1. Ralstoniaへの長鎖DNA導入技術の開発

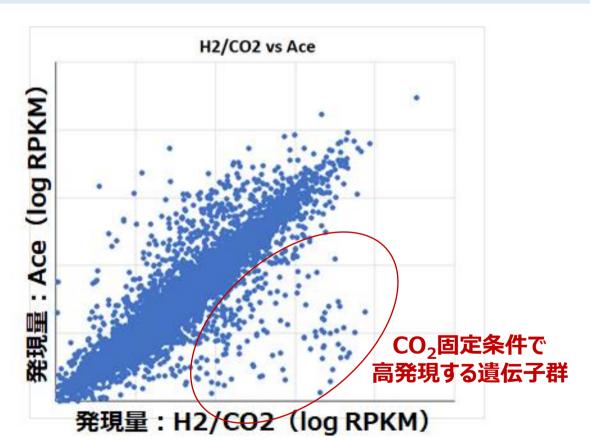
主な成果:


- ・長鎖DNA用の遺伝子ベクターをデザイン
- ・エレクトロポレーション遺伝子導入法の確立

酵母人工染色体YACをベースとした長鎖DNA導入ベクター (数百キロ〜メガbpの長鎖DNAの導入が可能)

実施中・今後の予定:

- ・ゲノムへの遺伝子挿入技術の確立(Cre-Lox法)
- ・長鎖DNAの細胞導入の実現


Cre-Lox法の概略(Ralstoniaでは報告例なし)

ゲノム操作技術の開発(産総研) 2/2

■ 2. プロモーターライブラリの開発

主な成果:

- ・CO₂固定条件での網羅的遺伝子発現解析
- ・CO₂固定条件で使用可能なプロモーターの特定

網羅的遺伝子発現解析結果

(横軸:CO₂固定条件と縦軸:有機物利用条件の比較)

実施中・今後の予定:

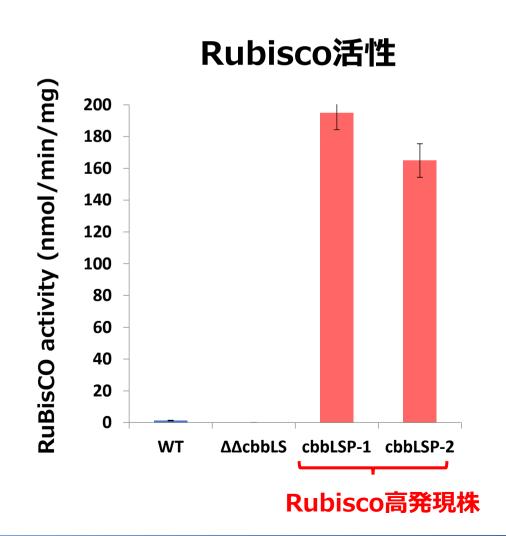
・選別したプロモーターの発現定量、ライブラリ化

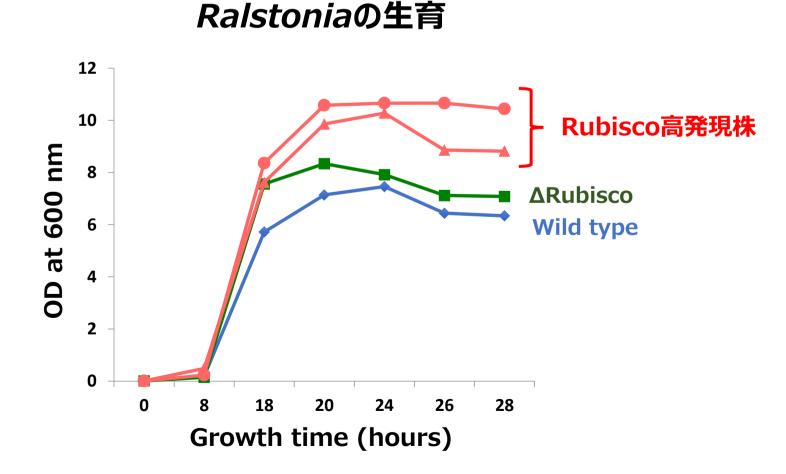
	発現量(RPKM)			Fold change		
	H2/CO2	Ace	Fru	H2/Ace	H2/Fru	
cbb_C2	7581	21	168	368	45	Chr_2のcbb
hox_pla	2138	11	23	189	95	NAD-reducing hydrogenase
selB_C2	647	5	18	125	35	セレンタンパク伸長因子
ttt_C2	362	2	4	159	88	tripartite tricarboxylate transporter substrate binding protein

CO2固定条件で特異的に発現するプロモーター候補の一例

各プロモーターの発現量を確認中

CO₂取込み・濃縮能の付与(神戸大)1/2


- ■本PJでの目標:異種生物のCO2固定酵素・CO2濃縮系を導入し、CO2取込み・濃縮能を付与する
- ■1. Ralstoniaへの内在・外来CO₂固定酵素(Rubisco)の導入

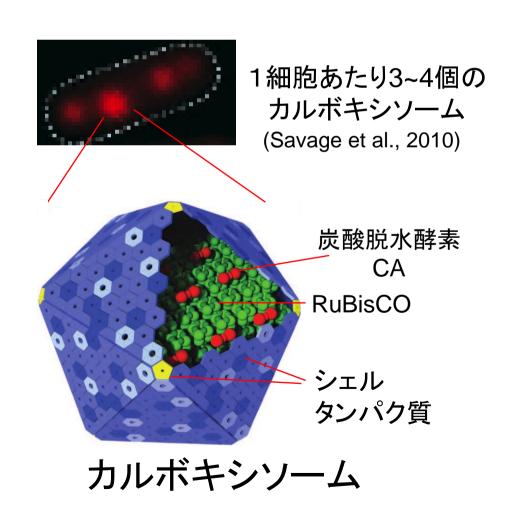

主な成果:

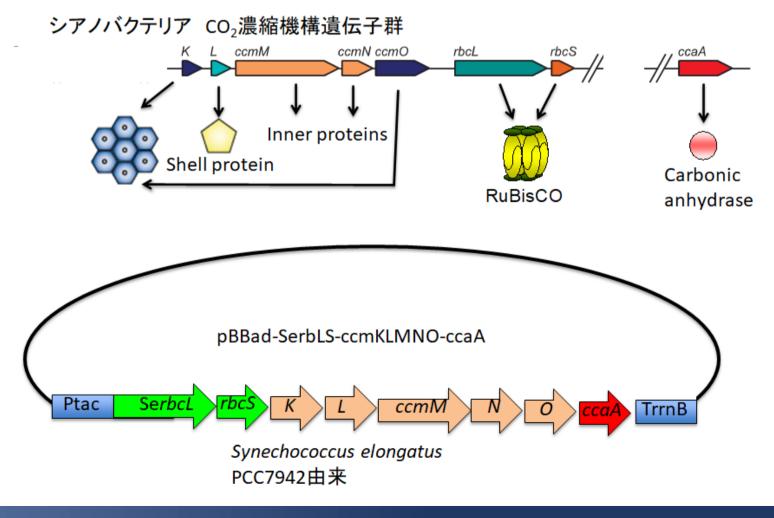
- ・内在・外来Rubiscoの導入・発現に成功
- ・内在Rubiscoの高発現により活性を大幅に向上

進行中・今後の予定:

・CO₂濃縮機構遺伝子との組み合わせによる さらなる活性向上

CO₂取込み・濃縮能の付与(神戸大)2/2


- ■本PJでの目標:異種生物のCO2固定酵素・CO2濃縮系を導入し、CO2取込み・濃縮能を付与する
- ■2. RalstoniaへのCO₂取込み・濃縮機構遺伝子の導入


主な成果:

・シアノバクテリア由来のCO2トランスポーター、カルボキシソーム遺伝子群を取得、導入ベクターを作製

進行中・今後の予定:

・Ralstoniaへの導入、発現、CO₂固定活性の測定

