

電気化学プロセスを主体とする革新的CO₂ 大量資源化システムの開発

発表者:山田 敦士(宇部興産株式会社)

PM:杉山 正和

国立大学法人東京大学先端科学技術研究センター 教授

PJ参画機関:国立大学法人東京大学、国立大学法人大阪大学、

国立研究開発法人理化学研究所、宇部興産株式会社、清水建設株式会社、

千代田化工建設株式会社、古河電気工業株式会社

宇部興產株式会社

事業内容/本PJでの役割

□事業領域/強み

創業時の石炭発掘をルーツとした化学品製造事業を展開 触媒や有機合成をベースとしたユニークな合成技術を保有

化学 売上シェア42% (2,593億円)

- ナイロン原料/樹脂
- 合成ゴム
- 工業薬品
- 機能性材料

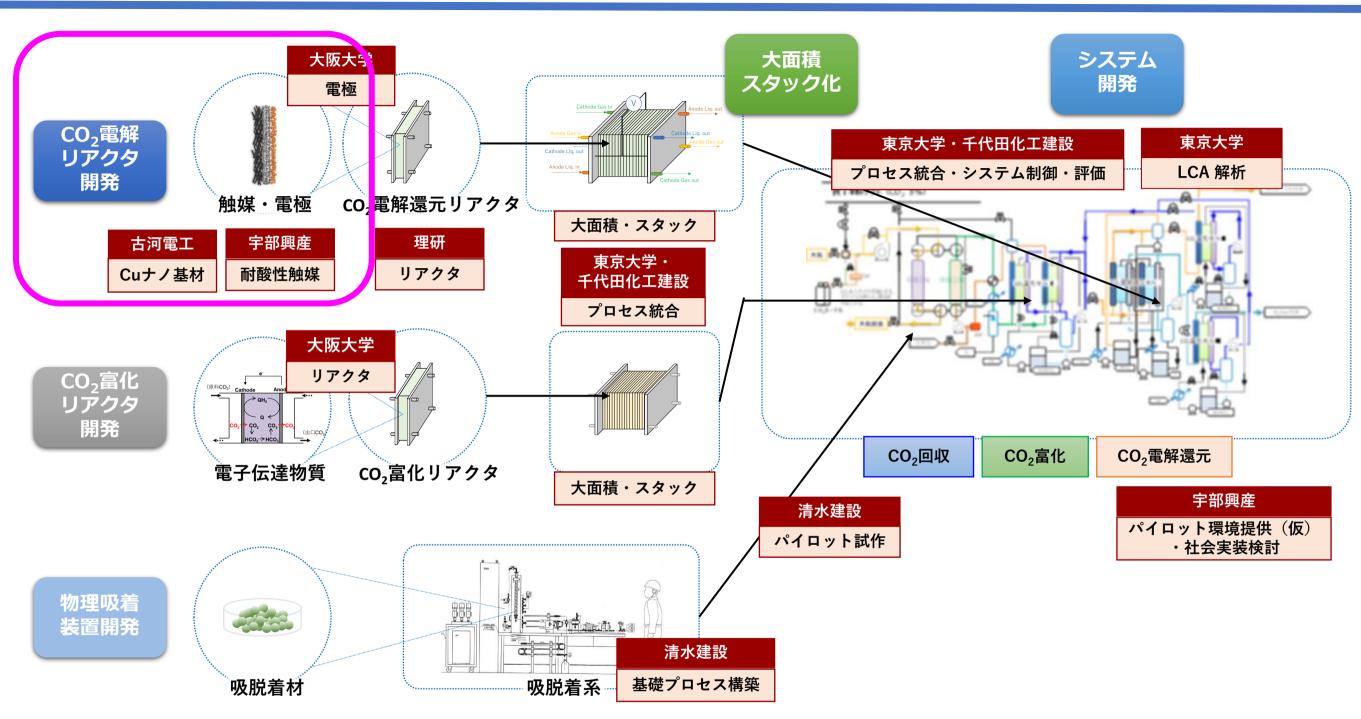
- 電池材料
- ・ファインケミカル
- 自社医薬(創薬)
- 受託製造

建設資材 売上シェア46% (2,828億円)

- ・セメント/生コン
- 各種建材
- カルシア/マグネシア
- 石炭貯蔵/販売
- 自家発電/売電

機械 売上12% (787億円)

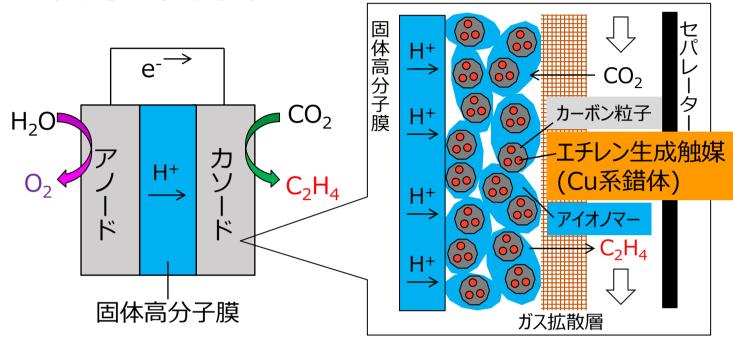
- 成形機(射出成形機/ダイカストマシンなど)
- 産業機械
- 橋梁


※:セグメント間の内部売上があるため、シェアを合計しても100%にはなりません

■本PJでの役割

- > 蓄積された合成技術を活かした高性能電極触媒の開発
- ➤ 触媒製造のスケールアップ

研究開発体制と最終目標


最終目標

- 400 ppmの気体中CO₂濃度に対応し、かつ分散配置が可能な、CO₂回収・有用基礎化学品への還元資源化プロセスを、電気化学を主体に開発する。
- パイロットプラントを構築して、CO₂回収から基礎化学品転換に要する資源やエネルギーも考慮したLCA 評価を行い、地球温暖化対策に有効に資することを確認する。

分担内容/課題

口分担内容

C₂H₄選択性・生産性が高く、 耐酸性の高いカソード触媒の開発

□課題

① エチレン(C₂H₄)選択性・生産性

C₂H₄の選択性(ファラデー効率)と 生産性(電流密度)の高い触媒が必要

② 触媒寿命(耐酸性)

酸によるCu触媒の溶出抑制が必要

 CO_2 電解で生成しうる化合物群 C_2H_4 H_2 CO CH_4 CH_3OH C_2H_5OH etc.

目標

□24年度

●エチレン選択率(ファラデー効率):50%以上

●電流密度: 200mA/cm²以上

●触媒寿命:1,000時間以上

□27年度

●エチレン選択率(ファラデー効率):80%以上

●電流密度: 200mA/cm²以上

●触媒寿命:5,000時間以上

成果

	方針①	方針②
触媒設計	Cu: soft acid, CO ₂ : hard acid (a): soft base, (a): hard base soft baseとhard baseの両方を有する配位子と錯形成した2核Cu錯体を設計	中和により酸性基の Cu の Cu の Cu の Cu の Cu の Cu の Emph により で Cu の Emph に So HNH 3
期待される効果	 soft baseによるCu錯体の安定化により、 耐酸性向上&H₂生成抑制 hard baseでのCO₂吸着により、 CO₂還元活性向上 2核構造によりC-C結合生成を促進し、 エチレン選択性向上 	 Nの配位によるCu錯体固定化 NへのCO₂吸着によるCO₂還元促進 局所的なN官能基と酸の中和により、 Cu錯体への酸接触抑制
進捗・成果	 設計した2核Cu錯体を数種合成し、 キャラクタリゼーションを完了 合成2核Cu錯体を用いてCO₂電解検討中 	 N含有ポリマーを基材としてN導入カーボンブラックを調製 調製担体を用いてCO₂電解検討中 CB +

