P22005

2022 年度実施方針

材料・ナノテクノロジ一部

1. 件 名:

(大項目)次世代ファインセラミックス製造プロセスの基盤構築・応用開発

2. 根拠法

国立研究開発法人新エネルギー・産業技術総合開発機構法第十五条第一号二及び第九 号

- 3.背景及び目的・目標
- 3.1 研究開発の背景・目的
- ①政策的な重要性

Society 5.0(超スマート社会)の実現に向けて、デジタル機器の小型化、高性能化及び高信頼化の要望が高まってきている。一般社団法人 電子情報技術産業協会の「電子情報産業の世界生産見通し 2020」によると、デジタル機器の安定作動を支える日本のファインセラミックス電子部品等は世界市場の約 4 割を占めている。今後市場が拡大するエネルギー・IoT 分野や医療・ヘルスケア分野でのデジタル化においても、海外の技術的な追い上げを許さない高い産業競争力と高い世界シェアを確保していく必要がある。

ファインセラミックスの製造プロセスは、原料粉末を成形し焼成する過程で、微構造等の 形体や混合状態等の質が変化し、それらの形質変化の情報が製品にほとんど残らないた め、リバースエンジニアリングが困難であり、ブラックボックス化されることで強いノウハウ を生み出していた。その一方で、最適なプロセス条件の設計は「経験と勘」や「製造プロセ ス間の人的なすり合わせ」に多く頼ってきた。

本事業では、理論的なアプローチによる革新的なプロセス技術開発の確立を目指し、ファインセラミックスの製造工程で生じるメカニズムを理解するプロセス解析技術の高度化や、計算科学の進歩によるプロセスシミュレータでの設計を可能とする「ファインセラミックスのプロセス・インフォマティクス技術」の確立と産業利用に向けた基盤構築を目指す。

本技術開発は「統合イノベーション戦略 2020(2020 年 7 月閣議決定)」、マテリアル・イノベーション創出のための「マテリアル革新力強化」等の政府戦略の中で重点的に取り組むべき課題として位置付けられている。

②我が国の状況

ファインセラミックス産業は日本で戦略的に創出され、1990年代の経済産業省主導の国

家プロジェクト「通産省ファインセラミックスプロジェクト(1981-1992 年度)」や「経済産業省シナジーセラミックス開発 1994-2003 年度」等にて、産学連携でファインセラミックス技術開発が実施された。近年では、JST A-STEP「セラミックスの高機能化と製造プロセス革新(2016 年~2020 年)」が実施され、アカデミア主体での将来の革新プロセス技術創出に向けたシーズ創出研究が行われた。また、内閣府戦略的イノベーション創造プログラム(SIP: Crossministerial Strategic Innovation Promotion Program)の中では、「高付加価値セラミックス造形技術の開発」(2014 年-2018 年)として、複雑形状のファインセラミックスの3D 積層造形プロセス技術の開発やレーザー焼結技術・難焼結性セラミックスの反応焼結技術の基盤研究等が取り組まれ半導体設備向けの軽量複雑形状ステージ部材や複雑形状のフィルター部材等の試作技術開発が行われた。

我が国でのインフォマティクス技術を用いた材料研究は、材料予測から材料試作・検証を行い、「なにを作るか」にフォーカスした材料設計を加速する研究開発事業が主として行われている。例えば、SIP 革新構造材料プロジェクトでの金属系構造材料開発でのマテリアルズ・インフォマティクス技術や文部科学省 MI2I プロジェクトでの電池・磁石・熱電材料等の革新構造材料や新規機能設計に関わる取り組みが挙げられる。また、経済産業省・国立研究開発法人新エネルギー・産業技術総合研究開発機構(以下「NEDO」という。)が進める「超先端材料超高速開発基盤技術プロジェクト」での取り組みは有機材料のナノスケールから高次構造までのマルチスケール設計や機能設計に関するものである。

このような中、計算科学を利用した、「どう作るか」にフォーカスしたファインセラミックス部品の製造プロセス開発プロジェクトは世界初の取り組みである。本プロジェクトは日本の素材産業のなかで世界シェアが高い電子部品等のファインセラミックス分野の産業競争力強化に繋がるものである。

③世界の取組状況

ファインセラミックスのプロセス研究開発では、米国 National Science Foundation (NSF) の制度で、大企業から中小企業までの産業界の要望に応えた革新的研究開発分野での開発プログラム Industry-University Cooperative Research Centers Program (IUCRC) の一つとして、Center for Dielectrics & Piezo-electrics において、次世代誘電体・圧電体に関する基礎研究開発が進められている。

中国では、2015 年 5 月に中国国務院が公表した「中国製造 2025」で、製造業の研究開発 支出を 10 年で約 2 倍に引き上げる目標が掲げられており、具体的な「国家重点開発計画」の テーマの中で、新型特殊セラミックス材料革新技術や高性能セラミックス高機能性精密製造 技術等の研究開発が行われている。

インフォマティクスを用いた材料研究に関しては、米国では、2011 年 6 月に新たな素材開発インフラの構築を目指すプロジェクトとしてマテリアル・ゲノム・イニシアチブをオバマ政権が打ち出した。本プロジェクトでは、最先端素材の開発から市場導入までに要する時間を半減さ

せることを目標に掲げ、素材開発に用いられる計算機シミュレーションや実験的手法等、 様々なデジタルデータを活用した統合的アプローチにより素材開発基盤の高度化を図ること を目指し、金属、有機化合物、無機化合物等未知の新材料開発を進めてきた。

中国でも中国科学院と中国工学院が連携して中国版マテリアルゲノム計画に着手している。 韓国は 2015 年から 10 年計画で同様のクリエイティブ・マテリアルズ・ディスカバリー・プロ ジェクトに取り組んでいる。

④本事業のねらい

一企業では困難な、ファインセラミックスの一連の工程を対象とした製造プロセス技術と計算科学の融合・連携により、次世代のファインセラミックスのプロセス基盤技術を確立するとともに、企業における実用化を支援する。

具体的には、理論的なアプローチに基づくプロセスメカニズム解析技術やファインセラミックスの原料粒子製造~成形~焼成~加工等のセラミックス部品製造の全工程をカバーするプロセスシミュレータ等の革新的なプロセス開発基盤の構築と企業における開発基盤を活用した製造プロセス開発をナショナルプロジェクトとして行うことで、これまでの「経験と勘」に基づいた製造プロセス開発を変革するとともに競争力の高い素材産業の優位性を確保する。

3.2 研究開発の目標

次世代ファインセラミックスの製造プロセス開発支援を可能とする高度な計算科学、先端プロセス計測技術等を駆使して革新的なプロセス開発基盤を構築する。これらの開発基盤により、ファインセラミックス部品の新規製造プロセスを 20 種以上開発し、このプロセスを使用した新規部品の試作を実施する。

[委託事業]

研究開発項目① 革新的プロセス開発基盤の構築

研究開発項目①-1 製造プロセスの可視化技術及びメカニズム解析技術の開発

各種計測技術、画像処理等を活用してファインセラミックスの各製造プロセスの可視化技術の開発を行う。また蓄積したプロセスデータをもとにプロセス間での状態変化等のメカニズム及び制御因子を明らかにする。

【中間目標(2023年度)】

対象とするプロセスの可視化に必要な装置・システムの開発及び可視化技術の開発を行う。また、可視化技術により得られたプロセスデータを活用する事により、プロセスシミュレータの開発に必要とされるプロセス間の状態変化等のメカニズムを解明するとともに各プロセスの制御因子を明らかにする。これにより、研究開発項目①-5 において目標とするプロセス技術開発に資する。

【最終目標(2026年度)】

中間目標までに開発した可視化技術をもとに、プロセスシミュレータのブラッシュアップのために必要なプロセスデータを取得し、プロセス・インフォマティクス標準プラットフォームに蓄積する。これにより、ファインセラミックスの新規製造プロセス開発(20種以上)に資する。

研究開発項目①-2 製造プロセス支援用計算機システムの開発

ファインセラミックスの製造プロセスにおける一連の複雑な現象が関係した計算を一気通 貫に扱うことのできるシミュレーション技術を開発し、ファインセラミックスのプロセス・インフォマティクスのための標準プラットフォームを構築する。

【中間目標(2023年度)】

成形・乾燥・脱脂・焼成等の各要素及び一連の製造プロセスを一気通貫に扱えるシミュレータを開発する。これにより、研究開発項目①-5において目標とするプロセス技術開発に資する。

【最終目標(2026年度)】

中間目標までに開発したプロセスシミュレータと実験から得られるプロセスデータの蓄積 及びプロセス探索を可能とする「プロセス・インフォマティクス標準プラットフォーム」を構築 する。これにより、ファインセラミックスの新規製造プロセス開発(20種以上)に資する。

研究開発項目(1)-3 次世代製造プロセス技術開発

次世代ファインセラミックスに必要とされる小型・高性能・高信頼性を実現するための製造プロセスを開発する。

【中間目標(2023年度)】

次世代ファインセラミックスに必要とされる製造プロセス技術を開発する。これにより、研究 開発項目①-5 において目標とするプロセス技術開発に資する。

【最終目標(2026年度)】

中間目標までに開発したファインセラミックスの新規製造プロセスのプロセスデータを取得し、プロセス・インフォマティクス標準プラットフォームに蓄積する。これにより、ファインセラミックスの新規製造プロセス開発(20 種以上)に資する。

研究開発項目①-4 高信頼性メカニズム等解析技術の開発

次世代ファインセラミックスの高信頼性を確保するために必要となる計測・評価技術等を開発する。

【中間目標(2023年度)】

欠陥の生成過程や進展過程等の評価に必要な計測・評価技術を開発する。これにより、 研究開発項目①-5 において目標とするプロセス技術開発に資する。

【最終目標(2026年度)】

中間目標までに開発した計測・評価技術により欠陥の生成過程や進展過程等のデータを

取得し、プロセス・インフォマティクスの標準プラットフォームに蓄積する。これにより、ファインセラミックスの新規製造プロセス開発(20種以上)に資する。

研究開発項目①-5 製品適用に向けたプロセス技術の開発

研究開発項目①-1~①-4で開発したプロセス開発基盤を活用し、次世代電子部品、エンジニアリングセラミックス部品等について材料設計・プロセス技術に関する課題を設定し実施する。

【最終目標(2023年度)】

研究開発項目①-1~①-4 で開発したプロセス開発基盤を活用し、製品群毎に必要となるプロセス技術の開発を行う。また、これらのプロセス技術をプロセス開発基盤へ反映する。これにより研究開発項目②におけるプロセス技術開発に資する。

[助成事業(助成率:1/2 又は 2/3)]

研究開発項目② 革新的プロセス開発基盤の応用開発

2023 年度までに開発したプロセス開発基盤をもとに、新規製造プロセス開発のための課題を設定して実施する。

【最終目標(2026 年度)】

2023 年度までに開発したプロセス開発基盤を企業での製品開発に適用し、ファインセラミックスの新規製造プロセスを開発する。また、このプロセスを使用した新規部品の試作を実施する。

4. 実施内容

プロジェクトマネージャー(PM)にNEDO材料・ナノテクノロジー部 高宮 健治を任命して、 プロジェクトの進行全体を企画・管理や、プロジェクトに求められる技術成果及び政策的効果 を最大化させる。

NEDOは、公募によって研究開発実施者を選定する。研究開発実施者は、企業や大学等の研究機関等(以下「団体」という。)のうち、原則として日本国内に研究開発拠点を有するものを対象とし、単独又は複数で研究開発に参加するものとする。

研究開発能力を最大限に活用し、効率的かつ効果的に研究開発を推進する観点から、N EDOは研究開発責任者(プロジェクトリーダー: PL)を選定し、各実施者はプロジェクトリーダーの下で研究開発を実施する。

4. 1 2022 年度事業内容

研究開発項目①「革新的プロセス開発基盤の構築」(委託)

次世代ファインセラミックスの製造プロセス開発支援を可能とする高度な計算科学、先端プロセス計測技術等を駆使して革新的なプロセス開発基盤構築を開始する。

研究開発項目②「革新的プロセス開発基盤の応用開発」 なし。

4. 2 2022 年度事業規模

需給勘定 1,590 百万円(委託)

※事業規模については、変動があり得る。

5. 事業の実施方式

研究開発項目①~研究開発項目②に関して、以下の通り公募を行い実施する。

- 5.1 実施体制
- (1)研究開発項目①の実施体制

経済産業省

↓ 運営費交付金

NEDO 委託事業の公募・審査・採択

↓ 委託

委託事業者

(2)研究開発項目②の実施体制

経済産業省

↓ 運営費交付金

NEDO 助成事業の公募・審査・採択

↓助成

助成事業者

5.2 公募

(1)掲載する媒体

NEDOホームページで行う。

(2)公募開始前の事前周知

公募開始前の1ヶ月前にNEDOホームページで行う。本事業は、e-Rad 対象事業であり、 e-Rad 参加の案内も併せて行う。

(3)公募時期

研究開発項目①及び研究開発項目②: 2022年3月以降に行う。

(4)公募期間

原則30日間とする。

(5)公募説明会

必要に応じ、NEDOにおいて、もしくはオンラインで開催をする。

5.3 採択方法

(1)審查方法

e-Rad システムへの応募基本情報の登録は必須とする。

審査は、公募要領に合致する応募を対象に、事前書面審査を行い、必要に応じて外部有 識者による採択審査委員会及び契約・助成審査委員会を経て、採択の可否について決定す る。また、必要に応じて申請者に対してヒアリング等を実施する。

(2)公募締切りから採択決定までの審査等の期間

特段の事情がある場合を除き、公募締切りから原則 45 日以内での採択決定を行う。

(3)採択結果の通知・公表

採択者については、採択通知を行うとともに、原則として、NEDOホームページ等にて公表する。また、不採択者については、不採択理由を明記して不採択通知を行う。

6. その他重要事項

(1)評価の方法

NEDOは、技術評価実施規程に基づき、技術的及び政策的観点から研究開発の意義、目標達成度、成果の技術的意義並びに将来の産業への波及効果等について、プロジェクト評価を実施する。

評価の時期は、中間評価として2023年度、事後評価を2027年度に実施する。

なお、中間評価結果を踏まえ必要に応じて事業の加速・縮小・中止等の見直しを迅速に行う。評価の時期については、当該研究開発に係る技術動向、政策動向や当該研究開発の 進捗状況等に応じて、事業実施を前倒しする等、適宜見直すものとする。

(2)運営・管理

NEDOは、研究開発実施者と緊密に連携し、本事業の目的及び目標に照らして適切な 運営管理を実施する。また、外部有識者で構成する技術推進委員会等を組織し、様々な観 点から定期的に技術的評価を受け、目標達成の見通しを常に把握することに努める。

(3)複数年度契約の実施

原則として、2022~2023年度の複数年度契約を行う。

(4)知財マネジメントに係る運用

委託事業である研究開発項目①は「NEDOプロジェクトにおける知財マネジメント基本方針」を適用する。

(5) データマネジメントに係る運用

委託事業である研究開発項目①は「NEDOプロジェクトにおけるデータマネジメント基本 方針」(委託者指定データを指定しない場合)を適用する。

7. 本年度のスケジュール

2022年 2月中旬 … 公募予告

3月中旬 ……公募開始

4月中旬 · · · · · · 公募締切

5月下旬……契約・助成審査委員会

5月下旬 … 採択決定

8. 実施方針の改定履歴

(1)2022年3月、制定