July 7th, 2022 #16 NEDO-ADEME Workshop

NEDO's activities toward expansion of floating offshore wind power generation

New Energy and Industrial Technology Development Organization (NEDO) Shunsuke SAEGUSA Project Coordinator Offshore Wind & Ocean Energy, New Energy Technology Dept.

Table of contents

- 1. About NEDO
- 2. State of Offshore Wind Power in Japan
- 3. NEDO's Floating Offshore Wind Power Development Project
- 4. Future NEDO projects

1. About NEDO

 State of Offshore Wind Power in Japan
 NEDO's Floating Offshore Wind Power Development Project
 Future NEDO projects

1-1 About NEDO

New Energy and Industrial Technology Development Organization

156.8 Billion yen

NEDO aims to address energy and global environmental problems and raise the level of industrial technology through the integrated management of technological development. This ranges from the discovery of technology seeds to the promotion of mid- to long-term projects and support for practical application.

(FY20222 tentative budget) % As only an outline of NEDO's activities is given below, individual budget amounts do not add up to the total.

Areas of focus

- System provision technology
- Energy storage technology, such as batteries
- Technology related to hydrogen production, storage, transport, and use
- Renewable energy technology

XIn addition to the above, the following programs will be funded and conducted as publicly solicited research and development projects.

- Moonshot Research and Development
- Research and Development Project for Enhancement of the Bases for Post-5G Information and Communication Systems
- > Green Innovation Fund Projects
- Program for Developing Important Economic Security Technologies
- Programs for Specified Semiconductor Production-Related Development

1. About NEDO

 State of Offshore Wind Power in Japan
 NEDO's Floating Offshore Wind Power Development Project
 Future NEDO projects

2-1 Vision for Offshore Wind Power Industry (1st) ((NEDO

Significance & challenges in offshore wind power generation

- Offshore wind power generation is expected to be <u>(1)introduced on a large-scale, (2)reduce costs, and have (3) economic</u> ripple effects, and holds the key to making renewable energy a main power source.
- As introduction of wind power gains momentum worldwide, with a focus on Europe, rapid growth is expected in the Asian market in the future, especially in China, Taiwan, and South Korea.
 (Total global capacity is expected to increase from 23GW in 2018 to 562GW in 2040 (24-fold increase))
- Currently, most offshore wind power manufacturers are located overseas, but there are potential suppliers in Japan as well.

Source : Public-Private Council on Enhancement of Industrial Competitiveness for Offshore Wind Power Generation

2-2 Offshore Wind Power Foundations type and Potential(Area) in Japan

7

%1 The sea area is estimated based on the offshore distance of less than 30km, excluding social constraints, and an annual average wind speed of 7m/s or higher.
%2 The position shown in the figure for the floating type is not the applicable range or the optimal water depth.

1. About NEDO

- 2. State of Offshore Wind Power in Japan
- 3. NEDO's Floating Offshore Wind Power Development Project
- 4. Future NEDO projects

3-1 NEDO's Offshore Wind Development Projects

3-2 NEDO's Offshore Wind Development Projects

3-2 Floating offshore wind turbine: Hibiki ~Offshore Wind Power Foundations type ~

11

3-2 Floating offshore wind turbine: Hibiki (Barge Type)

(Project member) Marubeni Corporation <u>Hitachi Zosen Corporation</u> The University of Tokyo GLOCAL INC. Kyuden Mirai Energy Company, Incorporated Cosmo Eco Power Co., Ltd.

June : Floater manufacturing complete August : Turbine Assembly complete September : Installation complete

2018

2015

2016

2017

Design/Construction/Installation

2014

Feasibility Study

3-3 NEDO's Offshore Wind Development Projects

3-3 Green Innovation Fund /Project to Achieve Lower Costs for Offshore Wind Power

	FY 2021	FY 2022	FY 2023	FY 2024	FY 2025	FY 2026	FY 2027	FY 2028	FY 2029	FY 2030
Theme: Phase1- ① Project for the development of next- generation wind turbine technology	 high-qui wind tu develo genera 	uality mass p irbines pment of ele ition wind tur	moduction tec mental techno bines	hnology for I blogies for ne	arge ext-					
Theme: Phase1- ② Development of low-cost technology for manufacturing and installing floating foundations	 Optimi founda Mass p Hybrid Develo constru 	zation of win tions production of mooring sys pment of low uction techno	d turbine floats tems v-cost ology etc.		>					
Theme: Phase1- ③ Development of offshore wind-related electrical system technology	≻ High-v ≻ Floatin	oltage dynan g offshore si	nic cables ubstations etc.		De wi	emons	stratic integra ne, floati cable,	on Ph ted desi ing struc mooring	ase gn of cture, , etc.	
Theme: Phase1- (4) Project for upgrading offshore wind power operation and maintenance	 Develop and Re Advanc and ma technole Advanc inspecti 	oment of Opera cair Technolog ement of preve intenance usin ogies ement of moni on technology	ation Maintenar ies entative measur g digital toring and etc.	ce es	•					
Theme: Phase2 Demonstration project for floating offshore wind	Pha	ise1: :	34.5 bi	llion y	en i	Phase	2: 85.	0 billic	on yen	

XSUDSIAIZEA

As Phase 1, Elemental technology research and development is being conducted in four areas.

3-3 Theme 1-2 Development of low-cost technology for manufacturing and installing floating foundations

By leveraging Japan's shipbuilding technologies and infrastructure, such as docks, under this project, technologies will be developed to optimize floating bases and mooring systems. Low-cost construction technologies will also be developed to realize the world's first mass production system for floating turbines.

3-4 NEDO's Offshore Wind Development Projects

3-4 Project for Supporting Development of Offshore Wind Farm (NEDO (Establishment of offshore wind resource assessment method)

This project develops technologies to establish a rational observation method for offshore wind conditions in Japan's ocean areas, utilizing remote sensing technology, etc.

【委託先】 Scanning Lidar Scanning Lidar National Institute of Advanced Industrial Science **Dual Measurement** and Technology **Kobe University** NIPPON KAIJI KYOKAI E&E Solutions Inc. Japan Meteorological Corporation Floating Lidar 高度 風速階級別 出現頻度 ワイプル分布 % 鬱10 80m 60m

Scanning Lidar

Floating Lidar

1. About NEDO

- 2. State of Offshore Wind Power in Japan
 - 3. NEDO's Floating Offshore Wind Power Development Project
 - 4. Future NEDO projects

4 Future NEDO projects ~Offshore Wind Power Technology Development Roadmap

- For technologies of <u>research and development</u> and <u>manufacturing/ installation of fixed-bottom type</u> <u>foundation</u>, which has relatively matured, make a short-term intensive effort to develop and aim at <u>early cost</u> <u>reduction</u>.
- Accelerate development of elemental technologies for wind turbines which is essential to build a supply chain, floating type wind power generation for which mid-to-long term expansion is expected and so on, although the maturity level of those technologies is relatively low.

Segment	Short-term (by around 2025)	Mid-to-long term (by around 2030)
Common	 ① Research and Development (Wind measurement, Array optimization) 	
	 Wind turbine (Design, Blade, Nacelle components, Tow 	ver)
Fixed-bottom	③ Fixed-bottom substructure (Monopile, Jacket)	
	④ Installation of Fixed bottom substructure (Transportation & Installation)	e
Floating	⑤ Floating substructure (Floating platform, Mooring system)	
	⑥ Installation of Floating substructure (Transportation & Installation)	
Common	 ⑦ Electrical system (Cable, offshore substation) 	
	⑧ Operation & Maintenance (O&M)	

国立研究開発法人 新エネルギー・産業技術総合開発機構

Source: Public-Private Council on Enhancement of Industrial Competitiveness for Offshore Wind Power Generation 20

国立研究開発法人 新エネルギー・産業技術総合開発機構

New Energy and Industrial Technology Development Organization

Thank you so much for your kind attention. Merci de votre attention.