

Development of Highly Efficient Direct Air Capture (DAC) and Carbon Recycling Technologies

Presenter : Dr. YOGO Katsunori (Research Institute of Innovative Technology for the Earth) PM : Dr. KODAMA Akio, Kanazawa University Implementing organizations : Kanazawa University, Research Institute of Innovative Technology for the Earth

1

R & D items 1. "Development of high-efficiency CO₂ capture technology from the atmosphere"

- Several tons/d-scale of DAC will be demonstrated and establishing practical DAC technology enough for FT synthesis.
- · Low energy/cost DAC system for countermeasure against global warming will be revealed.
- (Target: Achieving high performance DAC system exceeding overseas)

R & D items 2. "Development of CO₂ conversion technology for carbon recycling into valuable resources"

- · Develop a high-efficient FT synthesis converting the recovered CO_2 to a liquid hydrocarbon fuel.
- Control FT synthesis reaction by Extractor-Distributor all-in-one membrane reactor.
- Investigate a suitable process using the membrane reactor with pilot-scale tests.
- (Target: Achieving 80% or more of conversion efficiency)

R & D items 3. "Practicality assessment as a liquid hydrocarbon fuel using LCA method"

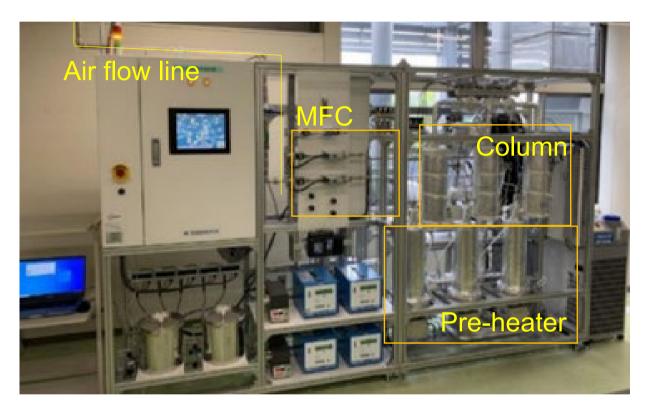
- Final confirmation of the net CO_2 reduction amount produced by the whole of the DAC & FT synthesis system by applying the Life Cycle Assessment.
- \cdot Evaluate the performance of synthesized liquid hydrocarbon fuel by user companies.

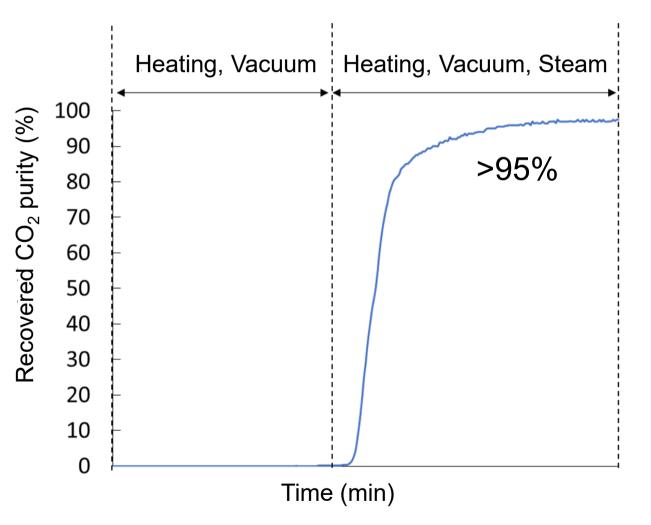
(Target: Identifying issues for practical use)

R & D items

Fiscal year Item	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Development of new solid sorbent materials for DAC (RITE)	Development of new materials Optimization of synthetic process					Improving materials and synthetic process				
Development of effective systems for DAC (KU, RITE, Engineering	Development of DAC process (Indirect heating, rotary TSA)					Improving DAC system				
company)	Sim	ulation for D	AC	Simulation for pilot scale equipment		Optimization of DAC process by simulation				
DAC			opment of system	Develop DAC syst small ber	em with		Improv	ving DAC sy	vstem	
Scale up DAC equipment (Engineering company)						Design of scale equip	pilot- ment of p	brication bilot-scale quipment	Pilot	test
Development of a high- efficient FT synthesis process (RITE)	separat	oment of the ion and hyc ition membr	Irogen	Durabili	ty test		· · · · · · · · · · · · · · · · · · ·		F synthesis o hydrocarboi	
Design and fabrication of scale up equipment (Engineering company)		2 C O	nve	ersi	on	bench/sr	n and ation of mall pilot ment	D	emonstratio	n
Evaluation of e-fuel and LCA for whole system (Automobile company)				Economica analysis of	•	Evaluatio	on of e-fuel engine	with car		cycle sment

Evaluation of New amine Screening of amines for DAC **Oxidative degradation resistance** Previous amines for DAC Commercial New Commercial New H₂N amine amine amine amine polyamine |n Oxidative PEI degradation Synthesis of Screening of amines structure New amine Commercial amine New amine 100 H_2N —(CH₂)n₁—N- $-(CH_2)n_2-NH_2$ Adsorption retention Various amines 80 CO₂ adsorption ate (%) 60 amount 0.02 0.04 0.06 0.08 CO_2 absolute pressure(%) 20 Screening of amine species for DAC 0 Key point: Adsorption capacity, Thermal stability, Fresh Degraded Oxidative degradation resistance

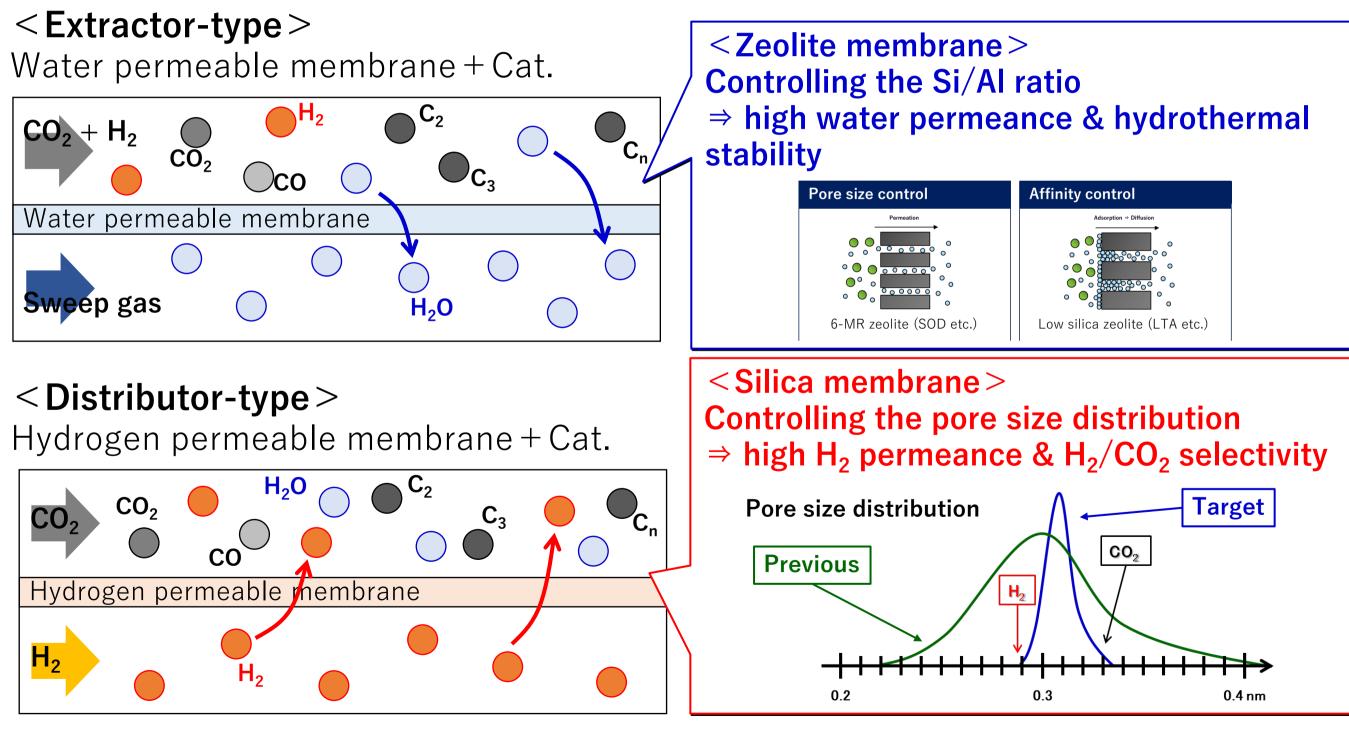

Oxidative degradation resistance : New amine>>Commercial amine


Steam regeneration

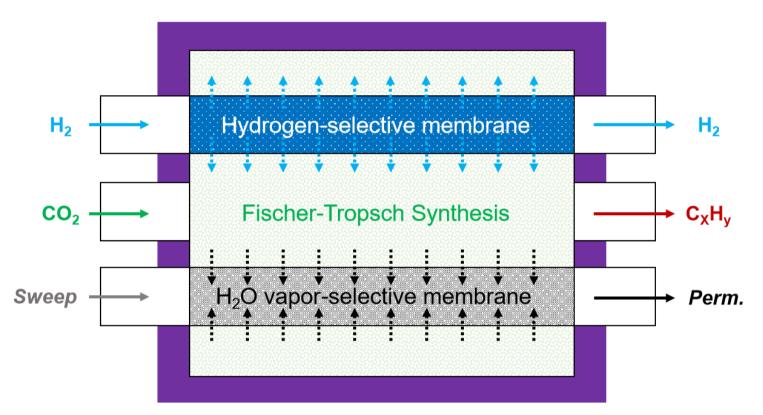
Lab-scale equipment

Adsorption test	Desorption test				
Air flow rate	Heating, Vacuum	Heating, Vacuum, Steam ◄			
Pressure					
Temperature					
Steam					
	Time				

CO₂ desorption test using Lab-scale equipment



- CO_2 can be recovered with high purity.
- We also plan to build a small benchscale equipment to a scale-up study.


Development of CO₂ conversion technology for carbon recycling into valuable resources

Highly efficient CO₂ conversion using membrane reactor

Development of CO₂ conversion technology for carbon recycling into valuable resources

Simulation model (membrane reactor for FT synthesis)>

<Simulation results> x 1.5Membrane reactor: CO₂ conv. = 94%
Packed bed reactor: CO₂ conv. = 65%
Pressure: 1.7 MPa, Temperature: 250°C

$$CO + 3H_2 \xrightarrow{R_1} CH_4 + H_2O$$
 (1)

$$2\operatorname{CO} + 4\operatorname{H}_2 \xrightarrow{R_2} \operatorname{C}_2\operatorname{H}_4 + 2\operatorname{H}_2\operatorname{O}$$

$$2 \operatorname{CO} + 5 \operatorname{H}_2 \xrightarrow{R_3} \operatorname{C}_2 \operatorname{H}_6 + 2 \operatorname{H}_2 \operatorname{O}$$
(3)

$$3 \operatorname{CO} + 7 \operatorname{H}_2 \xrightarrow{R_4} \operatorname{C}_3 \operatorname{H}_8 + 3 \operatorname{H}_2 \operatorname{O}$$
(4)

$$4 \,\mathrm{CO} + 9 \,\mathrm{H}_2 \xrightarrow{R_5} \mathrm{n-C}_4 \mathrm{H}_{10} + 4 \mathrm{H}_2 \mathrm{O}$$
 (5)

$$4 \,\mathrm{CO} + 9 \,\mathrm{H}_2 \xrightarrow{R_6} \mathrm{i-C}_4 \mathrm{H}_{10} + 4\mathrm{H}_2 \mathrm{O}$$
 (6)

$$6.05 \text{ CO} + 12.23 \text{ H}_2 \xrightarrow{R_7} \text{C}_{6.05} \text{ H}_{12.36} (\text{C}_5^+) + 6.05 \text{ H}_2 \text{O}$$
(7)

$$CO + H_2O \stackrel{R_8}{\Leftrightarrow} CO_2 + H_2$$
 (8)

Reaction rate equation (Fe-HZSM-5)* $R_{i} = k_{i} \exp\left(\frac{-E_{i}}{RT}\right) P_{CO}^{m} P_{H_{2}}^{n}$

*Marvast et al., Chem. Eng. Technol., 2005, 28, 1, 78-86.

Membrane reactor for FT synthesis showed higher CO₂ conversion.

