Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks Presenter: Dr. SUGIYAMA Masakazu (The University of Tokyo) PM: Dr. SUGIYAMA Masakazu, The University of Tokyo Implementing organizations: The University of Tokyo, Osaka University, Institute of Physical and Chemical Research (RIKEN), Ube Industries, Ltd., Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co., Ltd. ## Project organization and goals #### Goals - Development of an integrated system that electrochemically converts CO₂ captured from an atmospheric air to valuable chemical substances - Conducting a life cycle assessment on a pilot-scale plant to evaluate the effectiveness as a measure against global warming # Role of the University of Tokyo #### R&D items Analysis and control of the integrated system Life-cycle assessment (LCA) #### Major results so far - 1) Development of on-line analysis system for CO₂ electrolysis - → Product analysis over days with a time resolution of minutes - 2) Precise potential measurement of a gas-diffusion electrode (GDE) - \rightarrow Precise evaluation of the overpotential for CO₂ electrolysis - 3) LCA for CO₂ footprint on the product C₂H₄ - → Clarification of the blanching point for a carbon-negative process # **Objectives** ## **□**FY 24 Theoretical design of the operation of DAC, electrochemical CO_2 enrichment, and CO_2 electroreduction in series connection is completed. Verify the feasibility of a lab-scale system consisting of an electrochemical CO_2 enrichment device and a CO_2 electroreduction device connected in series. (Target continuous operation time: 1,000 hours, current density: 200 mA/cm², a current utilization efficiency: 50%) LCA evaluation considering a wide range of process conditions. ## **□** FY 27 Prospects for 5,000 hours of continuous operation on a laboratory scale at a current density of 200 mA/cm² and a current utilization efficiency of 80% for the product will be determined. Also, obtain the necessary specifications for the pilot design. LCA evaluation based on the pilot plant design is completed. ## 1) Development of on-line analysis system for CO₂ electrolysis Current: up to 2 A • Electrolyte flow: $0\sim100$ mL/min • CO_2 flow: $0\sim 100$ mL/min • Reaction temperature: $0\sim80^{\circ}$ C **Gas product analysis:** 2 minutes/analysis **▶ 1 ppm~100%** Agilent 490 Micro GC • 2 channels Ch1: Ar, MS5A + Buckflush Ch2: He, Pora Plot Q Detectors: MicroTCD ## Ex) CO₂ reduction using electrodeposited Cu₂O electrode #### **Deposition amount:** Small \rightarrow High initial FE_{C2H4} , poor durability Large → Low initial FE_{C2H4}, better durability Development of electrodes for both initial performance and durability. ➤ Necessity for novel analysis and materials # 3) Integrated system design #### Collaborative work with Chiyada corporation Enrichment Cell 1-1 CO, Capture 1-2 CO, Enrichment (2) CO₂ Electrolysis Separation/purification H₂+CO H₂+CO+CO₂+C₂H₄ Air **(E)** (E) Separati (E) on/purifi **Ethylene** (CO₂)Enrichment cell III cation C_2H_4 Enric<mark>h</mark>ment Cell I (co_2) (co_2) Adsorption / Desorption Switching CO_2 Adsorption Exhaust CO_2 Desorption (co_3) \square Design of a system flow that integrates the elemental processes under development, from CO₂ capture to ethylene production. Electrolyzer ■Material balance and heat balance are examined. H₂O (CO_2) ☐Basic Study of LCA # 3) LCA negativity (CO_2 emissions $< CO_2$ fixation) Integrated assessment of the environmental impact from production to disposal. 6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 動作電圧