

Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

Presenter: NAKANISHI Shuji (Osaka University)

PM: Dr. SUGIYAMA Masakazu, The University of Tokyo

Implementing organizations: The University of Tokyo, Osaka University, Institute of Physical and Chemical

Research (RIKEN), Ube Industries, Ltd., Shimizu Corporation,

Chiyoda Corporation, Furukawa Electric Co., Ltd.

Project organization and goals

Goals

- Development of an integrated system that electrochemically converts CO₂ captured from an atmospheric air to valuable chemical substances
- Conducting a life cycle assessment on a pilot-scale plant to evaluate the effectiveness as a measure against global warming

Research subjects and goals

Research subject 1-2

Development of the electrochemical reactor for CO₂ enrichment

 $CO_2/O_2 \rightarrow CO_2$ $CO_2/C_2H_4 \rightarrow CO_2$

The goal in 2024

Operation of the integrated system of physical DAC, electrochemical CO₂ enrichment, and CO₂ electrolysis reactors.

Research subject 2-2-B

Development of the reactor for CO₂ electrolysis

 $CO_2 \rightarrow C_2H_4$

The goal in 2024

 $2.5 \text{ V} \cdot 200 \text{ mA/cm}^2$ Faradaic efficiency for C_2H_4 : 50%

The goal in 2027

2.5 V, 200 mA/cm², Faradaic efficiency for C_2H_4 : 80%, 1000 h in the integrated system.

Achievement 1

□ Ultra-high-rate electrolysis of CO₂ to C2+ compounds

Achievement 2

□ Selective enrichment and separation of CO₂

