

Research and Development Toward Saving Energy for Direct Air Capture With Available Cold Energy

Presenter : Toho Gas Co., Ltd. PM : Dr. NORINAGA Koyo, Nagoya University Implementing organizations : Nagoya University, Toho Gas Co., Ltd., Tokyo University of Science

TOHO GAS

R & D contents and goals

R & D contents		Outlines	Goals by FY2029	Organization
①Developing basic technology		(omitted)		Nagoya University
②Developing bench plant and pilot plant	Selection of steel type for sublimation tank	(omitted)		Tokyo University of Science
	Developing technology to monitor the soundness of the sublimation tank	 Selecting and evaluating sensors that can be used repeatedly under low- temperature & low-pressure / room temperature & high- pressure 	 Completing development of a system to monitor the soundness of the sublimation tank for the pilot plant 	Toho Gas (re-entrusted to the University of Tokyo)
③Developing a system for society	Assessing economic and environmenta I friendliness	 Building a model for process simulation Assessing energy, exergy and cost Evaluating parameters and optimizing the process 	 Completing design of equipment for commercial use Extracting issues for introducing the system to society 	Toho Gas (re-entrusted to the University of Tokyo and Chukyo University)
	Life cycle assessment of carbon cycle on Cryo-DAC	 Developing an method to assess influences for domestic environment and economy 	 Completing assessment of carbon cycle 	Toho Gas (re-entrusted to Chukyo University)

あしたがすてきに!

Main achievements

114-		
~ ~	тана	GAS
	10110	Unu

R & D contents		Outlines	Goals by FY2029	Organization
①Developing basic technology		(omitted)		Nagoya University
	Selection of steel type for sublimation tank	(omitted)		Tokyo University of Science
②Developing bench plant and pilot plant	Developing technology to monitor the soundness of the sublimation tank	 Selecting and evaluating sensors that can be used repeatedly under low- temperature & low-pressure / room temperature & high- pressure 	 Completing development of a system to monitor the soundness of the sublimation tank for the pilot plant 	Toho Gas (re-entrusted to the University of Tokyo)
	The s			
③Developing a	Assessing economic and environmenta I friendliness	 Building a model for process simulation Assessing energy, exergy and cost Evaluating parameters and optimizing the process 	 Completing design of equipment for commercial use Extracting issues for introducing the system to society 	Toho Gas (re-entrusted to the University of Tokyo and Chukyo University)
society	Life cycle assessment of carbon cycle on Cryo-DAC Cryo- for Cr	 Developing an method to assess influences for domestic environment and economy DAC process has been modeled yo-DAC and the environmental 	 Completing assessment of carbon cycle In addition, energy needed life friendliness has been assessed 	Toho Gas (re-entrusted to Chukyo University)

Developing technology to monitor the soundness of the sublimation tank

Equipment that can evaluate a tensile test in liquid nitrogen has been established.
Performance of candidate sensors, materials and structures has been evaluated at low-temperature under stress.

✓ A glue for strain sensor, Phenol resin type, has been selected.

✓ That a strain sensor works in liquid nitrogen has been confirmed.

Strains of a strain sensor on repeated tensile test (Experimental condition: strain 0.01 x 10 times)

Process simulation

- Cryo-DAC process (process flow diagram and the characteristic of absorbent) has been modeled by a process simulator, Aspen Plus.
 - > The absorption and regeneration system is a general flow.
 - > The sublimation tank where CO_2 turns into dry ice is put after regenerator.
 - The separator is put between the regenerator and the sublimation tank to separate the solvent.

[%]Rich absorbent: absorbent where CO₂ is absorbed %Lean absorbent: regenerated absorbent

Process simulation calculation conditions & results 7 TOHO GAS

- Cryo-DAC process has worked under the regeneration temperature of 25°C.
 CO₂ recovery ratio: 73.1% (Equilibrium assumptions, 75%, has been mostly achieved)
- CO_2 concentration after recovery: 98.5%

Rich absorbent: absorbent where CO_2 is absorbed Lean absorbent: regenerated absorbent

Comparing with preceding DAC

Cryo-DAC has a potential to surpass overseas manufacturer's DAC.
 Cryo-DAC can regenerate at room temperature and do not need input of heat.

%Techno-Economic Assessment for CO2 Capture From Air Using a Conventional Liquid-Based Absorption Process https://www.frontiersin.org/articles/10.3389/fenrg.2020.00092/full

Life cycle assessment on carbon cycle with Cryo-DAC

- As a form of carbon cycle, CO₂ recovered by Cryo-DAC could be use for methanation.
- Environmental friendliness on Cryo-DAC has been assessed.
 - Net CO₂ of about 20% could be recovered when CO₂ emitted due to power input for CO₂ recovery is subtracted.
 - Net CO₂ of about 98% could be achieved if renewable energy increases and a low-pressure-drop absorber, under development, is realized.

The image of carbon cycle with Cryo-DAC and methanation

<R &D outlines>

 Technology to monitor the soundness of the sublimation tank is developing, economic and environmental friendliness is assessing and life cycle assessment of carbon cycle on Cryo-DAC are evaluating.

<Main achievements>

- ①The system that evaluates sensors to monitor the soundness of the sublimation tank at lowtemperature has been developed, and ②Cryo-DAC process has been modeled with a process simulation. In addition, energy needed for Cryo-DAC and the environmental friendliness has been assessed.
- When compared with preceding DAC, Cryo-DAC has a potential to surpass overseas manufacturer's DAC.

<Future outlook>

- Strain sensors will be evaluated to optimize circuit and consider structures and the sensor prototype will be made.
- Process parameters will be evaluated to optimize the process.

