

Innovative Circular Technologies for Harmful Nitrogen Compounds/ To Solve Planetary Boundary Issues

Theme 2. Recycling nitrogen compounds in wastewater to ammonia resource Theme 2-1. R&D on microbial conversion of nitrogen compounds to ammonia

Presenter : Dr. Tomoyuki Hori (National Institute of Advanced Industrial Science and Technology [AIST]) PM : Dr. KAWAMOTO Tohru , National Institute of Advanced Industrial Science and Technology (AIST) Implementing organizations : National Institute of Advanced Industrial Science and Technology (AIST), The University of Tokyo, Waseda University, Tokyo University of Agriculture and Technology, Kobe University, Osaka University, Yamaguchi University, Kyowa Hakko Bio Co., Ltd., ASTOM Corporation, Toyobo Co., Ltd., FUSO Corporation, Ube Industries, Ltd,

Overview of theme 2

Expected plant image

Theme 2 - 1: Objective and content

We develop the microaerobic process and anaerobic MBR (AnMBR) to covert various nitrogen compounds in wastewater to NH_4^+

Theme 2 - 2: Objective and content

We develop the concentration systems for the converted NH₄⁺ in the theme 2-1 using various separation membranes and high-performance adsorbents

Comparison of microaerobic conversion process from nitrogen compounds to NH₄⁺ and AnMBR capable of efficient treatment under high ammonium concentrations

	Microaerobic conversion process	AnMBR
Organic loading	 Low concentration 	 High concentration
Organics decomposition ability	 Most of organics-C is degraded 	O Residual organics-C is <10%
Nitrogen recovery	 Recovery by nitrification inhibition 	 Complete recovery
Biogas recovery	-	◎ CH₄ recovery
Retrofit	Ourrent infrastructure can be used	\triangle Process renewal is needed
Target wastewater	 Low-concentration industrial and municipal wastewater 	 High-concentration industrial and livestock wastewater

R&D contents and organizations (1)

Microaerobic conversion process from nitrogen compounds to NH₄⁺

- Development of operation management based on microbial community control (AIST)
- Development of operation management based on nitrogen compound dynamics control (TUAT)

<Recommitment> Energy and material balance evaluation and N_2O emission mitigation strategy development (Kyoto Univ.)

• Construction, operation and maintenance of a bench-scale microaerobic conversion process (KHB)

Dr. Hori (AIST)

Prof. Terada (TUAT)

Prof. Fujiwara (Kyoto U) E

R&D contents and organizations (2)

• AnMBR capable of efficient treatment under high ammonium concentrations

- Development of bioaugmentation technology of highly NH_4^+ -tolerant microbial consortia (Osaka Univ.) <Recommitment > Construction of highly NH_4^+ -tolerant microbial consortia (Hiroshima Univ.)
- Establishment of efficient AnMBR operating methods (Kobe Univ.)

Prof. Ike (Osaka U)

Prof. Tajima (Hiroshima U) Prof. Ihara (Kobe U)

Innovative Circular Technologies for Harmful Nitrogen Compounds/ To Solve Planetary Boundary Issues

Theme 2. Recycling nitrogen compounds in wastewater to ammonia resource Theme 2-1. R&D on microbial conversion of nitrogen compounds to ammonia

Presenter : Dr. Tomoyuki Hori (National Institute of Advanced Industrial Science and Technology [AIST]) PM : Dr. KAWAMOTO Tohru , National Institute of Advanced Industrial Science and Technology (AIST) Implementing organizations : National Institute of Advanced Industrial Science and Technology (AIST), The University of Tokyo, Waseda University, Tokyo University of Agriculture and Technology, Kobe University, Osaka University, Yamaguchi University, Kyowa Hakko Bio Co., Ltd., ASTOM Corporation, Toyobo Co., Ltd., FUSO Corporation, Ube Industries, Ltd,

Position in the Project

Target of Theme 2 for FY2029: Pilot-scale demonstration (5 \sim 15 m³/d) of recovery and condensation of ammonium from wastewater

Position of AIST: Development of operation management based on microbial community control

Target of AIST for FY2029: Support for the pilot-scale demonstration by controlling microbial communities

Details and Items of R&D

Contribution to ammonia resource recovery by facilitating conversion of organic N compounds to NH_4^+ , preventing nitrification and recycling excess sludge as NH_4^+ source in industrial wastewater

R&E items

• Development of operation management based on microbial community control

Achievement

 Drastic decrease in nitrifying bacteria and high efficiencies (about 80%) of conversion to NH₄⁺ using a simplified laboratory-scale reactor fed with synthetic wastewater (extended by the results attained under the NEDO New Energy and Environment Program)

Synthetic wastewater as influent

(simulated wastewater from fermentation industry)

- <u>NH₄-N</u> approx. 600 mg-N/L
- <u>Total nitrogen (TN)</u>
 - approx. 800 mg-N/L
- <u>Total organic carbon (TOC)</u> approx. 300 mg-C/L
 - approx. 300 mg-C
- <u>pH</u> approx. 7.5

Operating parameter Monitoring nitrifying bacteria NH_4^+ conversion rate (%) 100 0.6 Relative abundance (%) Nitrosomonadaceae 80 Nitrospiraceae 0.4 60 Drastic decrease in nitrifying bacteria during 40 0.2 Achieving high efficiencies (around sludge acclimatization 20 80%) of conversion to NH₄⁺ 0 0 20 30 40 50 8 11 15 16 18 23 1 4 Operation time (day) Operation time (day)

Toward the effective treatment of actual industrial wastewater

Position in the project

R&D of microaerobic conversion process from nitrogen compounds to NH₄⁺

Target for FY2029

Construction and demonstration of a pilot-scale microaerobic conversion process for ammonium recovery using actual wastewater

R&D items

Development of operation management based on microbial community control

Achievement

•Drastic decrease in nitrifying bacteria and high efficiencies (about 80%) conversion to NH_4^+ using a simplified laboratory-scale reactor fed with synthetic wastewater

