

## Development of Recovery and Removal Techniques of Dilute Reactive Nitrogen to Realize Nitrogen Circulating Society

Presenter : Mitsubishi Chemical Corporation

PM : Wakihara Toru Professor of Graduate School of Engineering, the University of Tokyo

Participating institution : The University of Tokyo, National Institute of Advanced Industrial Science and Technology, Japan Fine Ceramics Center, Mitsubishi Chemical Corporation

## Overview



| Development<br>items / contents | <ul> <li>Further sophistication of the process of removing NOx emitted from internal combustion engines.</li> <li>Search and narrow down new exhaust gas catalyst candidate zeolites.</li> <li>Scale-up production of zeolite catalyst.</li> <li>Pilot demonstration of NOx decomposition catalyst.</li> </ul>                                                                                                                                                              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final goal<br>(FY2029)          | •Practical realization of a revolutionary new exhaust gas catalyst that does not use NH <sub>3</sub> and precious metals, which enables driving under combustion conditions (lean burn engine, etc.) that greatly improves the fuel efficiency of internal combustion engine vehicles and drastically reduces CO <sub>2</sub> emissions. (NH <sub>3</sub> -free, conversion of 80% or more at 300°C, N <sub>2</sub> O emission is 1/10 or less of the current SCR catalyst) |
| FY2022                          | •To develop a new exhaust gas catalyst capable of high durability and low N <sub>2</sub> O emission in NH <sub>3</sub> -SCR at the laboratory level.                                                                                                                                                                                                                                                                                                                        |
| target                          | (A new NH <sub>3</sub> -SCR catalyst that has durability at 800 °C and emits 1/2 of the current exhaust gas catalyst (Cu / CHA) with N <sub>2</sub> O emissions.)                                                                                                                                                                                                                                                                                                           |
| Current                         | <ul> <li>The newly developed zeolite catalysts showed NOx decomposition performance superior to the current catalyst</li></ul>                                                                                                                                                                                                                                                                                                                                              |
| achievements                    | (Cu-CHA) before and after the durability test at 800°C in the NH <sub>3</sub> -SCR reaction. <li>The N<sub>2</sub>O emission of the catalyst was about half that of the current catalyst (Cu-CHA).</li>                                                                                                                                                                                                                                                                     |

Comparison of NOx purification performance and  $N_2O$  emissions of the current catalyst (Cu-CHA) and the new catalyst.

Aging condition :  $H_2O-10vol\%$ , SV = 3000 h<sup>-1</sup>, 800°C, 5h Reaction condition : SV = 200000 h<sup>-1</sup>, input NOx = 350 ppm, NH<sub>3</sub> = 385 ppm, O<sub>2</sub> = 14 vol%, H<sub>2</sub>O = 5vol%, Catalyst pellet size : 600~1000  $\mu$ m



- Before and after steam treatment, new zeolite catalysts had high NOx purification performance and low  $N_2O$  emissions.  $_{\circ}$ 

Comparison of Average NOx purification performance and N<sub>2</sub>O emissions of the current catalyst (Cu-CHA) and the new catalyst.

|           | Average NOx conversion<br>(150 – 500°C) |      |
|-----------|-----------------------------------------|------|
|           | fresh                                   | aged |
| Cu-CHA    | 83%                                     | 74%  |
| New Cat-1 | 88%                                     | 82%  |
| New Cat-2 | 90%                                     | 87%  |

|           | Average N <sub>2</sub> O emission<br>(150 – 500°C) |         |
|-----------|----------------------------------------------------|---------|
|           | fresh                                              | aged    |
| Cu-CHA    | 5.0 ppm                                            | 9.2 ppm |
| New Cat-1 | 4.1 ppm                                            | 6.9 ppm |
| New Cat-2 | 2.4 ppm                                            | 5.5 ppm |

Average N<sub>2</sub>O emission (150-500 $^{\circ}$ C)



• In the NH<sub>3</sub>-SCR reaction, the new zeolite catalyst showed NOx decomposition performance superior to that of the current catalyst (Cu-CHA) before and after the durability test at 800 °C. • The N<sub>2</sub>O emission of this catalyst was less than 1/2 that of the current catalyst (Cu-CHA), but it was slightly higher than 1/2 after the durability test, so further improvement of durability will be an issue in the future.

## Future plans

• Further lower N<sub>2</sub>O emissions.

 $\rightarrow$  Optimization of Metal loading amount + Examination of combinations of metal elements that have the effect of reducing N<sub>2</sub>O

•Scale-up of new catalysts

 $\rightarrow$  100 L scale synthesis of new zeolite catalysts.

Search for promising catalyst candidates for direct deNOx reaction

 $\rightarrow$  Focusing on the zeolite structure that showed high performance in the NH<sub>3</sub>-SCR reaction, we will investigate the supported metal species that will be the active centers, and search for a new zeolite catalysts that can decompose NOx even under NH<sub>3</sub>-free conditions.

 $\rightarrow$  Precise control of the coordination structure of the active metal in the zeolite pore space seems to be the point. In cooperation with JFCC and AIST, we aim to establish a method for precisely analyzing the structure around active metals and constructing active sites that are effective for direct deNOx.



