風力発電等導入支援事業/

洋上ウィンドファーム開発支援事業/

我が国における洋上ウィンドファーム等の事業性に関する調査 のうち着床式洋上ウィンドファーム等の事業性評価

に関する検討(中間報告)

2024年10月

国立研究開発法人新エネルギー・産業技術総合開発機構

2019年度の「着床式洋上ウィンドファーム開発支援事業(洋上風力発電の発電コストに関する 検討)」において、我が国の洋上風力発電の発電コストを詳細に把握するため、国内の全海域を対 象に、気象・海象条件、水深・離岸距離等の観点から、着床式洋上風力の事業性に関して有望海 域を面的に明らかにする事業性評価マップを作成、2022年度には、欧州の最新の情報を基に新た なコスト算定モデル(以下、NEDOモデル)を作成し、事業性評価マップを更新した。

国内外の洋上風力の開発が進み、最新情報を用いて、我が国の洋上ウィンドファーム等の事業 性評価手法の見直しおよび精度向上を行うことができる状況にある。また、浮体式洋上風力の普 及を見据え、洋上風力の設置場所はEEZに拡大することが検討されている。

本調査は次の2項目を目的としている。

- (1) 2019・2022年で作成した事業性評価に用いた着床式洋上風力のNEDOモデルの更新 ※NEDOモデルは「現在の欧州並みのインフラ等が整備された将来の日本を想定」している。
- (2) 2022年で作成した事業性評価に用いた浮体式洋上風力のNEDOモデルの更新

# Summary

In the "Project to Support the Development of Landing-type Offshore Wind Farms (Study on the Generation Cost of Offshore Wind Power)" in FY 2019, in order to understand the generation cost of offshore wind power in Japan in detail, we will prepare a feasibility assessment map for all domestic sea areas to identify promising areas regarding the feasibility of landing-type offshore wind power in terms of weather and sea conditions, water depth and separation distance from shore, etc. In FY2022, a new cost calculation model (hereafter referred to as the NEDO model) was created based on the latest information from Europe, and the feasibility assessment map was updated.

With the development of offshore wind power both in Japan and overseas, we are now able to review and improve the accuracy of the feasibility assessment method for offshore wind farms and other projects in Japan using the latest information. In addition, in anticipation of the spread of floating offshore wind farms, the location of offshore wind farms is being considered for expansion into the EEZ.

This survey has the following items.

(1) Update of the NEDO model for implantable offshore wind used in the feasibility assessment prepared in 2019 and 2022.

\*The NEDO model assumes "a future Japan with infrastructure, etc. comparable to the current European level".

(2) Update of the NEDO model for floating offshore wind power used in the feasibility assessment prepared in 2022

# 目次

| 主な記号    |                             | . 1 |
|---------|-----------------------------|-----|
| 1. 目的及び | 「概要                         | . 3 |
| 1.1 目的  | 5                           | . 3 |
| 1.2 実施  | 西内容                         | . 3 |
| 1.2.1.  | 着床式洋上風力の NEDO モデルの更新        | . 3 |
| 1.2.2.  | 浮体式洋上風力の NEDO モデルの更新        | . 4 |
| 1.2.3.  | 委員会の開催及び報告                  | . 5 |
| 2. 着床式洋 | ¢上風力事業性評価のための NEDO モデルの更新   | . 6 |
| 2.1 事業  | 性評価方法                       | . 6 |
| 2.1.1.  | LCOE 算定式                    | . 6 |
| 2.1.2.  | コストに含める対象範囲                 | . 6 |
| 2.1.3.  | ベースラインウィンドファームの整理           | . 7 |
| 2.1.4.  | LCOE 算定条件                   | . 8 |
| 2.1.5.  | AEP 算定条件                    | . 9 |
| 2.2 NE  | DO モデル(着床式)                 | 10  |
| 2.2.1.  | モデルの概要                      | 10  |
| 2.2.2.  | 2024 年モデルの主な更新箇所            | 12  |
| 2.3 資本  | Σ費モデル                       | 21  |
| 2.4 運車  | ☆維持費モデル                     | 28  |
| 2.5 撤去  | 気費モデル                       | 31  |
| 2.6 LC0 | DE 算定                       | 32  |
| 2.7 202 | 4 年モデルの検証                   | 33  |
| 2.7.1.  | 欧州プロジェクトによる CAPEX モデルの検証    | 33  |
| 2.7.2.  | CAPEX 内訳の比較                 | 34  |
| 2.7.3.  | 欧州プロジェクトによる OPEX モデルの検証     | 35  |
| 2.8 ベー  | -スラインウィンドファームのコスト           | 36  |
| 3. 浮体式洋 | ¢上風力事業性評価のための NEDO モデルの更新   | 38  |
| 3.1 事業  | < <p> と性評価方法</p>            | 38  |
| 3.1.1.  | LCOE 算定式                    | 38  |
| 3.1.2.  | コストに含める対象範囲                 | 38  |
| 3.1.3.  | ベースラインウィンドファームの整理           | 39  |
| 3.1.4.  | 浮体式の洋上プロジェクトのベースラインウィンドファーム | 44  |
| 3.1.5.  | LCOE 算定条件                   | 44  |
| 3.1.6.  | AEP 算定条件                    | 44  |
| 3.2 NE  | DO モデル(浮体式)                 | 45  |
| 3.2.1.  | モデルの概要                      | 45  |

| 3.2.2.  | 2024 年モデルの主な更新箇所      | 47 |
|---------|-----------------------|----|
| 3.3 資   | 本費モデル                 | 51 |
| 3.4 運   | 転維持費モデル               | 57 |
| 3.5 撤:  | 去費モデル                 | 59 |
| 3.6 LC  | OE 算定                 | 59 |
| 3.7 20  | 24 年モデルの検証            | 60 |
| 3.7.1.  | 欧州プロジェクトとの CAPEX の比較  | 60 |
| 3.7.2.  | 英国浮体式ガイドとの CAPEX の比較  | 60 |
| 3.7.3.  | ベースラインウィンドファームの CAPEX | 61 |
| 4. まとめ  |                       | 63 |
| 4.1 NE  | DO モデル (着床式)          | 63 |
| 4.1.1.  | 基礎モデルの更新              | 63 |
| 4.1.2.  | 施エモデルの更新              | 63 |
| 4.1.3.  | 設備費モデルの更新・検証          | 63 |
| 4.1.4.  | 運転維持費モデルの更新・検証        | 63 |
| 4.1.5.  | AEP(推定年間発電量)算定モデルの更新  | 64 |
| 4.1.6.  | その他                   | 64 |
| 4.2 浮   | 体式 NEDO モデル           | 64 |
| 4.2.1.  | 前提条件の整理               | 64 |
| 4.2.2.  | 浮体基礎モデルの更新            | 64 |
| 4.2.3.  | 施エモデルの更新              | 64 |
| 4.2.4.  | 設備費モデルの更新・検証          | 64 |
| 4.2.5.  | 運転維持費モデルの更新・検証        | 64 |
| 5. 参考文  | 献                     | 65 |
| 付属資料 A: | ジャケット式基礎参照資料          | 67 |
| 付属資料 B  | 欧州施工日数データ             | 69 |
| 付属資料C   | ウェイク損失                | 71 |
| 付属資料 D  | 故障に関するデータ             | 73 |
| 付属資料E   | 浮体式基礎参照資料             | 75 |

# 主な記号

| 記号        | 単位                | 定義                                                        |  |  |  |
|-----------|-------------------|-----------------------------------------------------------|--|--|--|
| AEP       | [kWh]             | 年間(推定)発電量(Annual Energy Production)                       |  |  |  |
| ACC       | [£]               | アレイケーブル設備費                                                |  |  |  |
| AHV       |                   | Anchor Handling Vessel (アンカー設置船)                          |  |  |  |
| a.s.l.    |                   | above sea level (海抜)                                      |  |  |  |
| С         | [¥]               | 建設費                                                       |  |  |  |
| CAPEX     | [£]               | 設備費                                                       |  |  |  |
| Cac       | [ £ /km]          | アレイケーブル単価                                                 |  |  |  |
| CC        | [£]               | 予備費等                                                      |  |  |  |
| Cec       | [ £ /km]          | エクスポートケーブル単価                                              |  |  |  |
| Ccc       | [%]               | 予備費率                                                      |  |  |  |
| C_cm      | [£/年]             | 非定期保守費                                                    |  |  |  |
| C_ctv     | [£/年]             | CTV 年間総傭船費                                                |  |  |  |
| Cmob      | [£]               | 回航費 (表 2.14 参照)                                           |  |  |  |
| C_oil     | [£/年]             | CTV 年間総燃料費                                                |  |  |  |
| C_ppe     | [£/年]             | 作業員用具費                                                    |  |  |  |
| Co,cable  | [£]               | ケーブル施工の他の費用                                               |  |  |  |
| СО        | [£]               | その他の費用                                                    |  |  |  |
| Conts     | [k £ /MW]         | 陸上変電所の設備費                                                 |  |  |  |
| Cofts     | $[k \pounds /MW]$ | 洋上変電所の設備費                                                 |  |  |  |
| C_op      | [£/年]             | 運転守費                                                      |  |  |  |
| C_sm      | [£/年]             | 定期保守費                                                     |  |  |  |
| C_t       | [£/年]             | 年間総作業員費                                                   |  |  |  |
| CLV       |                   | Cable Laying Vessel (ケーブル敷設船)                             |  |  |  |
| CTV       |                   | Crew Transfer Vessel(作業員輸送船)                              |  |  |  |
| D_dt,i    | [日/年]             | 要素別ダウンタイム                                                 |  |  |  |
| CSS       |                   | モノパイル直径の増加係数※水深の二乗に比例する項                                  |  |  |  |
| Cvessel,i | [£/日]             | 備船費(i:sub[基礎]、wt[風車]、cable[ケーブル]、ss[洋上変電所]、表     2.14 参照) |  |  |  |
| DAS       | [km]              | 基地港からの距離                                                  |  |  |  |
| DECEX     | [£]               | 撤去費                                                       |  |  |  |
| DC        | [£]               | 設計・調査費                                                    |  |  |  |
| Dc        | [¥]               | 撤去費                                                       |  |  |  |
| dss       |                   | モノパイル直径の増加係数※水深に比例する項                                     |  |  |  |
| Dss       | [m]               | モノパイル直径                                                   |  |  |  |
| Dph       | [m]               | 水深                                                        |  |  |  |
| DTC       | [km]              | 離岸距離                                                      |  |  |  |
| DWT       | [km]              | 風車間隔                                                      |  |  |  |
| ECC       | [£]               | エクスポートケーブル設備費                                             |  |  |  |
| ess       |                   | モノパイル直径の増加係数※水深に関する多項式の0次項                                |  |  |  |

| 記号             | 単位                    | 定義                                                               |  |  |  |
|----------------|-----------------------|------------------------------------------------------------------|--|--|--|
| F(V)           |                       | ワイブル分布(風速出現の確率密度分布)                                              |  |  |  |
| FCV            |                       | Floating Crane Vessel (フローティングクレーン船)                             |  |  |  |
| fss            |                       | モノパイル厚みの増加係数※水深に比例する項                                            |  |  |  |
| Fyr,i          |                       | 基礎、風車及びケーブルそれぞれの工事を実施する年度数(i: sub [基礎]、<br>wt [風車]、cable [ケーブル]) |  |  |  |
| gss            |                       | モノパイル厚みの増加係数※水深に関する多項式の0次の項                                      |  |  |  |
| IC             | [£]                   | 工事費                                                              |  |  |  |
| ICcable        | [£]                   | ケーブル工事費                                                          |  |  |  |
| ICo            | [£]                   | その他の施工費                                                          |  |  |  |
| ICss           | [£]                   | 洋上変電所工事費                                                         |  |  |  |
| ICsub          | [£]                   | 基礎工事費                                                            |  |  |  |
| ICwt           | [£]                   | 風車工事費                                                            |  |  |  |
| Lacc           | [km]                  | アレイケーブル長さ                                                        |  |  |  |
| LCOE           | [¥/kWh]               | 発電コスト (Levelized Cost of Energy)                                 |  |  |  |
| Mi             | [kWh]                 | 発電電力量                                                            |  |  |  |
| N              | [基]                   | 風車基数                                                             |  |  |  |
| n              |                       | 運転年数                                                             |  |  |  |
| Nec            | [本]                   | エクスポートケーブル本数                                                     |  |  |  |
| Nvessel,i      | [基/隻]                 | 施工船1隻に搭載できる基礎/風車の基数                                              |  |  |  |
| Oi             | [¥/年]                 | 年間運転維持費                                                          |  |  |  |
| OPEX           | [£/年]                 | 年間運転維持費                                                          |  |  |  |
| P(V)           | [kW]                  | パワーカーブ                                                           |  |  |  |
| PC             | [£]                   | 港湾費                                                              |  |  |  |
| Pr             | [MW]                  | 風車定格出力                                                           |  |  |  |
| PsRate         | L £ /ton」             | 鋼材価格(表 2.12 参照)                                                  |  |  |  |
| r              | [%]                   | 割引率                                                              |  |  |  |
| SSC            | [£]                   | 基礎構造物設備費                                                         |  |  |  |
| Tday,i         | [日/基]                 | 基礎、風車の施工日数(i:sub[基礎]、wt[風車]、cable[ケーブル]、表 2.14<br>参照)            |  |  |  |
| Ti             | [¥]                   | 固定資産税                                                            |  |  |  |
| Tinstall,cable | [日]                   | ケーブル施工日数(表 2.14 参照)                                              |  |  |  |
| Tinstall,i     | [日]                   | 施工船の施工日数(i : sub [基礎]、wt [風車]、ss [洋上変電所])[£/日]、<br>表 2.14 参照)    |  |  |  |
| Ttrans1,i      | [日]                   | <ul> <li>         ★</li></ul>                                    |  |  |  |
| Ttrans2,i      | [日]                   | 輸送日数 (i: cable [ケーブル]、ss [洋上変電所])                                |  |  |  |
| TSC            | [£]                   | 変電所設備費                                                           |  |  |  |
| Tss            | [m]                   | モノパイルの板厚                                                         |  |  |  |
| V              | [m/s]                 | 風速                                                               |  |  |  |
| Vs             | [日/km]                | 輸送速度(表 2.15)                                                     |  |  |  |
| WDF            |                       | 船舶供用係数(図 2.12 及び表 2.9 参照)                                        |  |  |  |
| WTC            | [£]                   | 風力発電機設備費                                                         |  |  |  |
| η              |                       | 各種損失を考慮した効率(表 2.4 参照)                                            |  |  |  |
| ρ              | [ton/m <sup>3</sup> ] | 鋼材密度(=7.874)                                                     |  |  |  |

# 1. 目的及び概要

#### 1.1 目的

2019年度の「着床式洋上ウィンドファーム開発支援事業(洋上風力発電の発電コストに関する 検討)」において、我が国の洋上風力発電の発電コストを詳細に把握するため、国内の全海域を対 象に、気象・海象条件、水深・離岸距離等の観点から、着床式洋上風力の事業性に関して有望海 域を面的に明らかにする事業性評価マップを作成、2022年度には、欧州の最新の情報を基に新た なコスト算定モデル(以下、NEDOモデル)を作成し、事業性評価マップを更新した。

国内外の洋上風力の開発が進み、最新情報を用いて、我が国の洋上ウィンドファーム等の事業 性評価手法の見直しおよび精度向上を行うことができる状況にある。また、浮体式洋上風力の普 及を見据え、洋上風力の設置場所はEEZに拡大することが検討されている。

本調査では、2019・2022年で作成した事業性評価に用いた着床式洋上風力のNEDOモデルおよび、2022年で作成した事業性評価に用いた浮体式洋上風力のNEDOモデルを更新することを目的とする。

#### 1.2 実施内容

#### 1.2.1. 着床式洋上風力の NEDO モデルの更新

2022 年度の NEDO モデル (ベースラインはモノパイル式基礎<sup>1</sup>) に対して、下記 6 項目の更新 を実施 (図 1.1 参照)。また、ジャケット式基礎モデルを更新した。(現行モデルはモノパイル基 礎のエンジニアリングモデルに補正係数を乗算)



図 1.1 着床式洋上風力 NEDO モデルの概要

 ジャケット式基礎モデルの更新(現行モデルはモノパイル基礎のエンジニアリングモデル に補正係数を乗算)

<sup>1</sup> モノパイル式基礎は国内外で主要な基礎形式であり、実績データが豊富であるため。

- ② 施工モデルの更新
- ③ 最新の文献・情報を基に設備費算定モデルの更新・検証
- ④ 最新の文献・情報を基に運転維持費算定モデルの更新・検証
- 5 AEP(推定年間発電量)算定モデルの更新
- ⑥ その他

主に 2020 年以降の国内外の最新の文献・情報(専門家へのヒアリングを含む)を参考とし、モデル検証には信頼性ある海外データベース(4C Offshore、Peak-wind 等)を参照した。

#### 1.2.2. 浮体式洋上風力の NEDO モデルの更新

2022 年度の NEDO モデル (ベースラインはセミサブ式基礎2) に対して、下記 6 項目の更新を 想定(図 1.2 参照)。また、スパー式基礎モデルを追加した。



図 1.2 浮体式洋上風力 NEDO モデルの概要

- ① スパー式基礎コスト算定モデルの追加
- ② 係留施工モデルの更新
- ③ 最新の文献・情報を基に CAPEX 算定モデルの更新・検証
- ④ 最新の文献・情報を基に OPEX 算定モデルの更新・検証
- 5 AEP(推定年間発電量)算定モデルの更新
- ⑥ その他

着床式と同様に、主に 2020 年以降の国内外の最新の文献・情報(専門家へのヒアリングを含む) を参考とし、モデル検証には信頼性ある海外データベース(4C Offshore、Peak-wind 等)を参照した。

<sup>&</sup>lt;sup>2</sup> セミサブ式をベースとしているのは、スパー式と比べて喫水が浅いため、適用水深の範囲が広いことからベースとしている。後述する 2024 年の検討において、ベースラインウィンドファームの水深を 176m としたため、15MW 風車用の浮体としてスパー式基礎も適用可能と判断される。

## 1.2.3. 委員会の開催及び報告

有識者からなる委員会を設置し、洋上風力発電の発電コストの計算式の検討、発電コストの評価方法等について審議した。委員会委員を表 1.1 に示す。また、表 1.2 に 2024 年 9 月末時点における委員会の開催日時及び内容を示す。

| 氏名    | 所属                                    | 専門分野     |
|-------|---------------------------------------|----------|
| 池谷 毅  | 国立大学法人東京海洋大学プロジェクト教員・特任教授             | 沿岸海洋工学   |
| 鈴木 英之 | 国立大学法人東京大学大学院工学系研究科システム創成学専攻・教授       | 海洋システム工学 |
| 永尾 徹  | 学校法人足利大学総合研究センター・特任教授【委員長】            | 風車工学     |
| 原田 文代 | 株式会社日本政策投資銀行·常務執行役員                   | 金融       |
| 本田 明弘 | 公立大学法人青森公立大学·教授/国立大学法人弘前大学·学長特別<br>補佐 | 風工学      |

表 1.1 委員会委員(五十音順、敬称略)

| 表 1.2 | 委員会開催日及び審議内容 |
|-------|--------------|
|       |              |

| 委員会 | 開催日             | 主な内容                                 |
|-----|-----------------|--------------------------------------|
| 第1回 | 2024 年 8 月 21 日 | 実施方針、前提条件、ベースラインウィンドファーム、コストモデル更新内容に |
|     |                 | 関する審議                                |
| 第2回 | 2024年9月4日       | 前提条件、ベースラインウィンドファーム、コストモデル更新内容に関する審議 |
| 第3回 | 2024 年 9 月 11 日 | 前提条件、着床式コストモデルに関する審議                 |
| 第4回 | 2024 年 9 月 26 日 | 前提条件、ベースラインウィンドファームに関する審議            |

# 2. 着床式洋上風力事業性評価のための NEDO モデルの更新

#### 2.1 事業性評価方法

自然条件等をパラメータとして、各海域でウィンドファーム事業が実施された場合に想定される LCOE を算定する事により、各海域の事業性を評価する。

#### 2.1.1. LCOE 算定式

LCOE (Levelized Cost Of Energy) [¥/kWh] の算定は、発電コスト検証ワーキンググループ [1] の次式に示すコスト算定式の項目を参照する。

注記1:元のコスト算定式には、燃料費及び社会的費用が含まれるが、燃料費はゼロのため上記式から省略し、社会的費用は考慮しない。 注記2:建設費のうち、接続費用は含まれていない。

式(2.1)に本調査で用いた LCOE 算定式を示す。

$$LCOE[\Pi/kWh] = \frac{\left[C + \sum_{i=1}^{n} \frac{T_{i}}{(1+r)i} + Dc\right] + \sum_{i=1}^{n} \frac{O_{i}}{(1+r)i}}{\sum_{i=1}^{n} \frac{M_{i}}{(1+r)i}}$$
(2.1)

ここで、

- C :建設費
- T<sub>i</sub> :固定資産税
- D<sub>c</sub> : 撤去費
- Oi : 運転維持費
- M<sub>i</sub> : 発電電力量
- r :割引率
- n :運転年数

である。

#### 2.1.2. コストに含める対象範囲

LCOE 算定に含める洋上風力プロジェクトの対象範囲を図 2.1 に示す。コストの算定対象範囲 は、風車から陸上変電所への接続までを範囲として、系統接続費用は含まない。CAPEX モデルに は、図 2.1 にある洋上変電施設は、着床式では発電コスト算定には含めない。また、LCOE の計算 は発電コスト検証ワーキンググループのコストレビューシート [2]を参照する。



図 2.1 LCOE 算定に含める洋上風カプロジェクトの対象範囲<sup>3</sup>

## 2.1.3. ベースラインウィンドファームの整理

2019・2022 年度の調査では、LCOE を相対比較するためにベースラインウィンドファームの規 模は 350MW 程度と設定した。2024 年度では、今後の大規模化を見据え、着床式は 500MW 規模 を想定した。また、風車サイズは 9.5MW 機としていたが、大型化に対応して 15MW 機とした。 設備利用率は、発電コストワーキンググループでは、足元のモデルプラントとして、2019 年度ま での着床式の調達価格・基準価格における想定値を用いるとしていることを踏まえ、30%を維持 するとした(表 2.1)。

| 項目    |      | 2024 年             | 2019-2022 年         | 備考                                                                                                                                          |
|-------|------|--------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 出力    | [MW] | 495<br>(15MW×33 基) | 342<br>(9.5MW×36 基) | <ul> <li>今後大型化する風車出力及びウィンドファーム規模<br/>を見据え、15MW風車及び500MW規模を設定。</li> </ul>                                                                    |
| 設備利用率 | [%]  | 30                 | 30                  | <ul> <li>・正味設備利用率(各種損失含む)。</li> <li>・着床式の設備利用率は、発電コストワーキンググループ[1]では、足元のモデルプラントとして、2019年度までの着床式の調達価格・基準価格における想定値を用いるとしており、30%を維持。</li> </ul> |
| 水深    | [m]  | 30                 | 30                  | <ul> <li>着床式は、水深 30m 以浅において事業性が高いと<br/>考えられるため、前回想定を維持。</li> </ul>                                                                          |
| 離岸距離  | [km] | 5                  | 30                  | • 国内の海域条件を考慮の上設定。                                                                                                                           |

表 2.1 ベースラインウィンドファーム(着床式)

[1] エネ庁、第2回 発電コスト検証ワーキンググループ、資料2「再生可能エネルギー」、2024年8月16日

<sup>3</sup> 図は NEDO 再生可能エネルギー技術白書(2014) [32]より引用

#### 2.1.4. LCOE 算定条件

LCOE を算定するための設定条件を統一した。2019・2022 年の前提条件は基本的に発電コスト 検証ワーキング [3]を参考にしている。なお、NEDO モデルは英国のデータベースを使用している ため、英国ポンドを円換算している。

2024年の主な変更点は、運転維持費に関して、2019・2022年モデルでは固定値だったところ、 海域毎の自然条件を元に算定する式に変更(2.2.2項参照)。

2024 年モデルでは、過去 10 年間の平均為替レートを使用し、為替変動が算定結果に与える影響について評価できるようにした。表 2.2 に LCOE 算定のための設定条件を示す。

| 項目           |     | ベースライン<br>ウィンドファーム | 発電コスト検証<br>ワーキンググループ[1] | 備考                                                                                                          |  |  |
|--------------|-----|--------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| 割引率          | [%] | 3                  | 3                       | <ul> <li>欧州は 2%(2019 年 Carbon Trust ヒアリング)。</li> <li>発電コスト検証ワーキングでは、IRR は別建てとしており、10%を仮定している。</li> </ul>    |  |  |
| 物価上昇率        | [%] | 0                  | _                       | <ul> <li>欧州は 2%(2019 年 Carbon Trust ヒアリング)。</li> <li>物価上昇率は考慮しない。</li> </ul>                                |  |  |
| 稼働期間         | [年] | 20                 | 20、25                   | <ul> <li>● 発電コスト検証 WG の数値を参考に採用</li> </ul>                                                                  |  |  |
| 保険料<br>(建設中) | [%] | 建設費の 3%[2]         | _                       | <ul> <li>発電コスト検証 WG の数値を参考に採用</li> </ul>                                                                    |  |  |
| 固定資産税        | [%] | 1.4                | 1.4                     | • 発電コスト検証 WG の数値を採用                                                                                         |  |  |
| 撤去費          |     | 施工費の 70%[3]        | 建設費の 5%                 | <ul> <li>発電コスト検証 WG では、OECD/IEA の<br/>試算において各国から特段の廃棄費用<br/>データがない場合の値を使用[※1]</li> </ul>                    |  |  |
| 運転維持費        |     | 海域毎に算定             | 2.25                    | <ul> <li>2019・2022 年モデルでは、0.97 万円/kW<br/>(1 ユーロ=127 円換算)に固定。</li> <li>2024 年モデルは、海域毎に算定するモデルに変更。</li> </ul> |  |  |

表 2.2 LCOE 算定のための設定条件

[1] 第2回 発電コスト検証ワーキンググループ:資料12024年発電コスト検証WGの進め方(案)、2024年8月16日

[2] エネ庁・港湾局洋上風力促進小委員会(第2回):資料 2「再エネ海域利用法に基づく促進区域の指定について」、2019年1月30日 [3] Eva Topham, David McMillan, "Sustainable decommissioning of an offshore wind farm", Renewable Energy 201(2017)470-480.

日本における洋上風力発電の実績が限られていることから、LCOE 算定のためのコストモデル は、主に欧州のデータを参照して検証されている。このため、本コストモデルにより算定される コストは、洋上風力のサプライチェーン及びインフラが整備された現在の欧州市場を想定してい る。日本の環境条件(水深、離岸距離、船舶供用係数等)については考慮可能なモデルとしてい る。

欧州の現状のインフラは、開発から撤去までのライフサイクルに対するサプライチェーン、及 び洋上風力発電設備の設置に適した、地耐力が高く、水深の大きい岸壁、広い背後ヤードを持つ 港湾を想定している<sup>4</sup>。

なお、国内の洋上風力のコストデータは限られている5こと、NEDOモデルは欧州のデータに基

<sup>4</sup> 洋上風力のライフサイクル全体におけるサプライチェーンは欧州に集中している。また、洋上風力の導入量の拡大、風車の大型化を背景に、導入が進む欧州、アジア、アメリカの港湾においても、風車資機材の生産拠点の整備・計画が進展している。

<sup>5</sup> 発電コスト検証ワーキングの検討において、「再エネ特措法に基づく、着床式洋上風力発電の定期報告データ および設備利用率のデータは4件のみでありかつ、実証機によるデータが一部含まれている」と整理されて

づくことから、国内の現実のプロジェクトコストがこのモデルで表されるかどうかの妥当性は必要なタイミングで、最新のデータも踏まえて今後の委員会で議論する。なお、FIT/FIP価格について審議する調達価格算定委員会においては、国内外価格差についても議論がなされている[3]。

## 2.1.5. AEP 算定条件

AEP (Annual Energy Production:年間推定発電量)の算定のための風況データは、NeoWins<sup>6</sup> (500m メッシュ、詳細風況データ)を用いる。

風車は 2022 年モデルでは今後、大型化する風車を検討できるように、8、10、12 及び 15MW 風車を扱えるようにしている。2024 年においても同じ風車規模を選択可能とした。図 2.2 にそれぞれのパワーカーブを示す。また、表 2.3 には 8、10、12 及び 15MW 風車の主な仕様を示す。なお、15MW 風車のパワーカーブは 2022 年モデルから変更した。

AEPの算定にはNeoWinsの詳細風況データで提供されるワイブルパラメータからワイブル分布 <sup>7</sup>を求め、ワイブル分布、風車出力及び年間時間 8766h(閏年を考慮)の積により求める(グロス 値)。このグロス値に各種の損失をかけて正味(ネット値)の AEP を算出する。各種損失は、風車 効率、ウェイク損失、送電損失及びその他損失である。表 2.4 に AEP 算定のための各種損失を示 す。なお、ウェイク損失 10%は、着床式のポテンシャルマップに準じて、欧米の実績値等を参考 にして設定した(付属資料 C:ウェイク損失を参照)。また、稼働率は OPEX モデルで算出するダ ウンタイムを稼働率に反映する。



図 2.2 8, 10, 12 及び 15MW 風車の出力曲線

$$f(V) = \frac{k}{C} \left(\frac{V}{C}\right)^{k-1} \exp\left\{-\left(\frac{V}{C}\right)^k\right\}$$

ここで、V [m/s]:ハブ高さにおける風速、k [-]:ワイブル分布の形状パラメータ及び C [m/s]:ワイブル分布の尺度パラメータである。C が与えられていない場合、コストモデルでは k=2 とし、レイリー分布を使用。

いる。

<sup>6</sup> NeoWins (洋上風況マップ)、http://app10.infoc.nedo.go.jp/Nedo\_Webgis/top.html

<sup>7</sup> ワイブル分布:風速階級別の出現頻度を近似する確率分布。確率密度関数は以下の式で表される。

| 表 2.3 8, 10, 12 及び 15MW 風車の主な <sup>.</sup> | 仕様 | Ē |
|--------------------------------------------|----|---|
|--------------------------------------------|----|---|

| 定格出力<br>[MW] | ロータ径<br>[m] | ハブ高さ<br>[m] | カットイン<br>風速[m/s] | 定格風速<br>[m/s] | 出典           |
|--------------|-------------|-------------|------------------|---------------|--------------|
| 8MW          | 164         | 100         | 4.0              | 13.0          | Siemens 社[1] |
| 10MW         | 205         | 125         | 3.5              | 12.0          | IEA[2]       |
| 12MW         | 222         | 136         | 3.5              | 11.0          | NREL[3]      |
| 15MW         | 240         | 150         | 3.5              | 11.0          | NREL[3]      |

[1] Wind Power データベース (https://www.thewindpower.net/) [2] https://github.com/IEAWindTask37/IEA-10.0-198-RWT [3] https://www.researchgate.net/publication/351522553

| 表 | 2.4 | AEP | 算定のための | 各種損失 |
|---|-----|-----|--------|------|
|---|-----|-----|--------|------|

| 項目     | 数値[%]      | 備考                                         |
|--------|------------|--------------------------------------------|
| 稼働率    | ダウンタイム考慮   | OPEX モデルによるダウンタイムから算出                      |
| 送電損失   | ケーブル容量別に設定 | 欧州・日本のデータを参考に決定。ケーブルコスト算定モデル参照             |
| ウェイク損失 | 10.0       | 欧州のデータを参考に決定                               |
| その他    | 3.0        | 高風速時のヒステリシス損失 <sup>8</sup> 、所内使用電力などを考慮し仮定 |

## 【注記】

図 2.2 及び表 2.3 に示されるように、各風車のカットイン風速と定格風速が異なる。このため、 用いるパワーカーブによって設備利用率が異なる場合がある。パワーカーブは設備利用率(すな わち AEP) に影響するため、LCOE での比較の場合に留意が必要である。

## 2.2 NEDO モデル(着床式)

#### 2.2.1. モデルの概要

NEDO モデルは、菊地・石原モデル(2014)[2]を参考に、CAPEX の内訳の各項目に対して数 式が公開されているエンジニアリングモデルで、このモデルをベースにして欧州のデータに基づ き、CAPEX モデルを構築している。

2024 年モデルは、2022 年モデルを欧州の最新の情報を基にコストモデルを更新した。2024 年 モデルの変更点を表 2.5 に示す。

<sup>8</sup> 高風速時のヒステリシスとは、高風速時に風車が停止したのち、風速が低下し再度発電状態になるまでにタ イムラグが生じ損失する発電量

| 大項目   | 項目                |                                                                                           | 説明                                                                                                                                                                                                                         | 備考·更新内容等                                                                                          | 説明     |
|-------|-------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|
| CAPEX | 風車                |                                                                                           | <ul> <li>● 定格出力に対する1次式で算定</li> </ul>                                                                                                                                                                                       | <ul> <li>最新のデータを基に式</li> <li>を改定</li> </ul>                                                       | 2.3③   |
|       | 基礎                | モノパイル                                                                                     | <ul> <li>● モノパイル重量×鋼材単価(製作<br/>費含む)</li> </ul>                                                                                                                                                                             | <ul> <li>● 変更なし</li> </ul>                                                                        | 2.3④   |
|       |                   | ジャケット                                                                                     | <ul> <li>ジャケット重量×鋼材単価(製作<br/>費含む)</li> </ul>                                                                                                                                                                               | <ul> <li>ジャケットコスト算定式<br/>追加</li> </ul>                                                            | 2.3④   |
|       |                   | アレイ                                                                                       | <ul> <li>アレイケーブル長×長さあたり単<br/>価×本数</li> </ul>                                                                                                                                                                               | <ul> <li>ケーブル単価のアップデ<br/>ート</li> </ul>                                                            | 2.35   |
|       | 電力<br>ケーブル        | エクスポート                                                                                    | <ul> <li>エクスポートケーブル長×長さあ<br/>たり単価×本数</li> </ul>                                                                                                                                                                            | <ul> <li>ケーブル単価のアップデート</li> <li>エクスポートケーブルは<br/>揚陸点までの距離</li> </ul>                               | 2.36   |
|       | 変電所               |                                                                                           | ● 陸上及び洋上変電所                                                                                                                                                                                                                | ● 離岸距離 55km 以上で<br>洋上変電所考慮                                                                        | 2.3⑦   |
|       | 施工                | <ul> <li>基礎</li> <li>風車</li> <li>サブステーション</li> <li>アレイケーブル</li> <li>エクスポートケーブル</li> </ul> | 以下の作業にかかる日数×傭船費<br>+回航費で施工費を算定<br>① 基礎・風車:基地港→SEP 船で輸<br>送→基礎施工→風車施工<br>② サブステーション:基地港→SEP<br>船で輸送→基礎施工→サブスー<br>ション施工(日本では考慮しない)<br>③ アレイケーブル:基地港→サイト<br>→CLV 等でケーブル敷設(敷設・<br>引込)<br>④ エクスポートケーブル:基地港→<br>サイト→CLV 等でケーブル敷設 | <ul> <li>モノパイル式及びジャケット式基礎それぞれで施工日数を考慮</li> <li>使用船舶の回航費及び<br/>傭船費をアップデート</li> </ul>               | 2.3(8) |
|       | 港湾費               |                                                                                           | <ul> <li>MW 当たりの費用</li> </ul>                                                                                                                                                                                              | <ul> <li>● 変更なし</li> </ul>                                                                        | 2.39   |
|       | その他               |                                                                                           | <ul> <li>● MW 当たりの費用</li> </ul>                                                                                                                                                                                            | <ul> <li>文献 [4]を参考にした陸<br/>上変電所施工費、陸上<br/>ケーブル施工費、ロジス<br/>ティクス、海洋工事安全<br/>(HSE)管理などの費用</li> </ul> | 2.310  |
| OPEX  | 運転<br>維持          | <ul> <li>運転</li> <li>定期保守</li> <li>非定期保</li> <li>守</li> </ul>                             | <ul> <li>運転費は英国洋上風力ガイド情報を参照</li> <li>定期保守費は工程、CTV 傭船費を考慮</li> <li>要素の故障率、工程、傭船費を考慮</li> </ul>                                                                                                                              | <ul> <li>● 運転保守費固定値⇒故<br/>障率、海域情報を考慮し<br/>て算定</li> </ul>                                          | 2.4    |
| DECEX | 撤去費               | 撤去費                                                                                       | ● 施工費の 70%                                                                                                                                                                                                                 | <ul> <li>● 変更なし</li> </ul>                                                                        | 2.5    |
| AEP   | 年間推定<br>発電電力<br>量 | <ul> <li>パワーカー<br/>ブ</li> <li>損失</li> <li>稼働率</li> </ul>                                  | <ul> <li>風車パワーカーブ、風速出現頻度よりグロス AEP を算定</li> <li>各種損失、稼働率からネット AEP を算定</li> </ul>                                                                                                                                            | <ul> <li>15MW 風車パワーカー<br/>ブ更新</li> <li>稼働率は風車ダウンタ<br/>イムを考慮</li> </ul>                            | 2.1.5  |

# 表 2.5 2022 年モデルからの主な更新内容

#### 2.2.2. 2024 年モデルの主な更新箇所

本項では、2022年モデルからの主な更新箇所(風車モデル、ジャケットモデル、施工及び運転 維持モデル)について述べる。各モデルの数式は2.3項に示した。

① 風車モデル

図 2.3 に風車定格出力に対する MW あたりの設備費 [5]を示す。図中には、10 及び 15MW 風車の費用を追加でプロットしている。15MW 風車のデータは欧州の着床式 [4]及び浮体式洋上風力ガイド [6]及び NREL [7]の値である。図中の点線は 2022 年 NEDO モデルによるものである。

図 2.4 は、風車出力に対する風車設備費を示した図であり、2019・2022 年及び 2024 年のモデル 式を示す。また、表 2.6 に風車設備費の参考資料をまとめた。



図 2.3 風力発電機設備費の比較 (文献 [5]の図に追記、1 ポンド=147 円換算、1ドル=150 円換算)



図 2.4 風車出力に対する設備費の回帰式

図 2.3 から、15MW 風車の設備費が高くなっているが、これは近年の鋼材の高騰や不安定な世 界情勢の影響によるものと考えられる。風車設備費は高騰しているデータもある一方、他の民間 調査では 2022 年をピークに現在は低下傾向にあるとのデータがある。

図 2.4 中の2本の直線は、15MW風車の設備費は過少評価となっている。しかし、足下の風車

コストは数年前の風車価格高騰の影響が否めないものの、当該足下の風車コストデータを含めて も、Kikuchi & Ishihara の風車費用算定モデル [8] (NEDO モデルで参考にした 2014 年モデルの更 新版)を参考にした回帰式の当てはまりが良いことから、当該回帰式を採用することとした。

| No. | 年    | 発表者               | タイトル                                                                                      | URL                                                                                                                       |
|-----|------|-------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1   | 2024 | weatherguardwind  | Wind Turbine cost: How much? Are they worth in 2024 ?                                     | https://weatherguardwind.com/how-much-does-<br>wind-turbine-cost-worth-it/                                                |
| 2   | 2021 | Catapult          | Guide to a floating offshore wind farm                                                    | https://guidetofloatingoffshorewind.com/wind-farm-<br>costs/                                                              |
| 3   | 2019 | Catapult          | Guide to a offshore wind farm                                                             | https://guidetoanoffshorewindfarm.com/                                                                                    |
| 4   | 2024 | Statista          | Weighted average cost of installed<br>offshore wind energy worldwide from<br>2010 to 2022 | https://www.statista.com/statistics/506756/weighted-<br>average-installed-cost-for-offshore-wind-power-<br>worldwide/     |
| 5   | 2023 | Energy Monitor    | Data insight: the cost of a wind<br>turbine has increased by 38% in two<br>years          | https://www.energymonitor.ai/renewables/data-<br>insight-the-cost-of-a-wind-turbine-has-increased-by-<br>38-in-two-years/ |
| 6   | 2020 | offshore wind biz | Rystad Energy: Less Is More if Using<br>14 MW Turbines                                    | https://www.offshorewind.biz/2020/09/21/rystad-<br>energy-less-is-more-if-using-14-mw-turbines/                           |
| 7   | 2022 | NREL              | 2022 Cost of Wind Energy Review                                                           | https://www.nrel.gov/docs/fy24osti/88335.pdf                                                                              |
| 8   | 2021 | NREL              | 2021 Cost of Wind Energy Review                                                           | https://www.nrel.gov/docs/fy23osti/84774.pdf                                                                              |

表 2.6 風車コスト参考資料

#### ② ジャケット式モデル

2019・2022 年モデルは、モノパイル式基礎用コストモデルで算出した CAPEX をジャケット式 基礎用に補正する方法であったが、2024 年モデルは、国内外情報を基にした基礎重量の回帰式を 求め、モノパイルと同様に基礎費用を算定するモデルとした。回帰式は、国内外 24 のプロジェク トのジャケット及びピンパイル(ジャケット式基礎を海底に固定するための杭で、ジャケット式 基礎の脚本数により 3~4 本を使用する)の重量情報 [9](付属資料 A:ジャケット式基礎参照) を用いて決定した。

図 2.5 は、ジャケット式基礎の水深と重量を表す。図中の線は、それぞれ、7MW 未満及び 7MW 風車以上用ジャケット式基礎の重量に対する回帰式による曲線である。回帰曲線は、5MW 風車用 のジャケット式基礎の試設計を行い Alpha Ventus 及び Beatrice の実証試験機で検証した数式 [10] を参考にした。

また、図 2.6 にはピンパイルの水深に対する重量の分布を示す。なお、図 2.6 中の黒の破線は、 日本及び台湾のデータの回帰式であるが、青実線の欧州データよりもかなりピンパイルの重量(す なわちパイルの長さ)が重いことがわかる。これは、欧州と日本・台湾の地盤条件が異なること に起因するが、NEDOモデルでは、欧州データをベースにしている。

図 2.5 に示すように、ジャケット式基礎の重量は 7MW 以上風車用の回帰式 (図中の青の実線) の当てはまりが良いことから、この回帰曲線を使用する。図 2.6 に示すピンパイル重量は、風車 容量によらない回帰式 (図中の青の実線)を採用することとする。

なお、ジャケット式基礎及びピンパイルの単価は、ジャケット式基礎に関するデータをまとめた DNV の文献 [11]を参考にして決定した。



図 2.5 ジャケット式基礎の水深と重量

(図中のプロットの数値は風車サイズ、△は欧州、Oは台湾・日本、◇は IEA 参照モデルの値)



図 2.6 ピンパイルの水深に対する重量 (図中のプロットの数値は風車サイズ、▲:欧州データ、O:日本・台湾、□:F/S データ)

③ 施エモデル

## 施工方法

2022 年モデルでは、施工方法に関して、欧州の実績値と比較するために、大型化する欧州の SEP 船の世代を考慮している。表 2.7 に世代別 SEP 船の比較を、図 2.7 に、モノパイル及び風車(ブレード、RNA 及びタワー)重量の比較を示す。

表 2.7 及び表 2.8 の SEP 船 1 隻当たりの推定風車積載セット数及び推定基礎搭載セット数は、 SEP 搭載性能や施工時写真等(図 2.8)から推定し設定した。また、輸送・施工時の 4C Offshore データベースを参考に使用船数を設定した。

| 世代               | 第 1 世代               | 第2世代               | 第3世代                 | 第 4 世代                 |
|------------------|----------------------|--------------------|----------------------|------------------------|
| 竣工年              | 2005 年               | 2010 年             | 2015 年               | 2022 年                 |
| 平均クレーン<br>吊り上げ重量 | 500 ton              | 900 ton            | 1,400 ton            | 2,500~3,500 ton        |
| 平均積載<br>荷重       | 2,000 ton            | 5,000 ton          | 8,500 ton            | 10,000<br>~16,000 ton  |
| 適用風車<br>サイズ      | 3 MW                 | 6 MW               | 9 MW                 | 15 MW                  |
| 推定風車<br>重量       | 380                  | 565                | 862                  | 1,922                  |
| 推定風車積<br>載セット数※  | 5                    | 6                  | 6                    | 6                      |
| 備考               | 洋上風力における<br>初の SEP 船 | 洋上風力用新設計の<br>SEP 船 | 10MW クラス風車用<br>SEP 船 | 15MW 風車用の<br>次世代 SEP 船 |
| ジャッキアップ<br>船外観   |                      |                    |                      |                        |

## 表 2.7 世代別 SEP 船の比較 [12]

※風車・タワー重量等から設定



| 表 2.8 水深別推定平均モノバイル重量(単位:ton) |     |     |     |     |     |     |       |             |
|------------------------------|-----|-----|-----|-----|-----|-----|-------|-------------|
| 水深 [m]                       | 5   | 10  | 15  | 20  | 25  | 30  | 40    | 推定搭載<br>基礎数 |
| Pr ≤ 3.6MW                   | 162 | 250 | 345 | 446 | 553 | 667 | 915   | 4           |
| Pr > 3.6MW                   | 246 | 405 | 554 | 695 | 826 | 949 | 1,167 | 4           |

/ 11 舌旦/畄店 .





(a) Gode Wind 1&2 wind farm(2015)
 (b) Hohe See wind farm(2019)
 図 2.8 モノパイル(a) 及び風車タワー(b)施工例

ジャケット式基礎の施工手順は、図 2.9 に示す通りである。

 ピンパイル打設 海底に置かれたパイル施工フレームのガイドにピンパイルを貫入 し、パイルを用いて打ち込み作業
 基礎輸送 基地港で基礎をバージ台船に搭載(図では HLV を使用)
 基礎篏合 バージ台船で輸送されたジャケット式基礎をヘビーリフトクレーン にて打ち込まれたピンパイルへ篏合 パイルとジャケットのスリーブ間にグラウトを注入

使用船舶は、ジャケット式基礎輸送船はバージ台船・タグボード(3~6基/台船)、ピンパイル 施工はクレーン船/クレーン台船、ジャケット式基礎施工はヘビーリフトクレーン船(HLV)を 使用することとし、使用する船に対する傭船費を用いる。



#### <u>施工日数</u>

2019・2022 年モデルでは欧州の施工日数のデータ [9]を基に、風車、基礎の施工日数を求めた。 本調査では、ジャケット式基礎の施工日数を設定するために、改めてデータを整理した。

図 2.10 及び図 2.11 は、それぞれ、モノパイル(MP)及びジャケット式基礎(JKT)の施工日数の年推移、および風車施工日数の年推移を示す。施工日数には、荒天等による天候遅延日数を

含んでいる。図 2.10は風車規模及び基礎の違いに対して、図 2.11は基礎の違い(モノパイル[MP] 及びジャケット [JKT]) に対してプロットを分けている。



図 2.10 基礎(MP、JKT)施工日数の推移 [9]



図 2.11 風車施工日数の推移 [9]

図 2.10 により、2014~2017 年 (大型商用機のフェーズ、緑のプロット)のモノパイル式基礎施 工日数は、2009~2013 年 (青のプロット)と比べ、学習効果により平均 4.24 日/基礎から 2.39 日/ 基礎に減少している。なお、参照した文献 [9]によると、モノパイル式基礎の施工日数 (輸送日数 は含まない)は水深と離岸距離の影響は大きくなく、ほぼ一定である。また、図 2.11 によると、 1 部のジャケット式のプロジェクトで大きな外れ値はあるものの、風車の施工日数は、風車サイ ズ及び基礎の形式によらずほぼ一定である。

以上より、基礎の施工については、風車規模の大型化(図 2.10 中の MP(6.0+): 6MW 以上の風 車)で施工日数は短縮されており、NEDO モデルでは、MP(6.0+)の施工日数を参照する。ジャケ ット式は、データ数は限られているが、モノパイルよりも施工に係る日数が多い。また、風車の 施工日数について、学習効果による影響はモノパイル程ではないが、低減している。

風車、基礎それぞれに対する回帰式から 2018 年の施工日数を算出すると以下の通りとなる。括 弧内の数値は欧州の船舶供用係数 1.50 で除した日数で、遅延がないものとした場合の施工日数で ある。

- 風車(WT)施工日数:Tinstall,wt(2018) = -0.0443\*Yr + 92.926 = 3.6 (2.4) [日/風車]
- モノパイル式基礎(MP)施工日数: Tinstall,mp(2018) = -0.053 \* Yr + 109.25 = 2.3 (1.5) [日/ 基礎]
- ジャケット式基礎 (JKT) 施工日数: Tinstall,jkt(2018) = -0.2353 \*Yr + 481.68 =7.1 (4.7) [日/ 基礎]

## 船舶供用係数

NEDO モデルでは、海域毎の施工に数は船舶供用係数(WDF) [15] を用いている。表 2.9 及 び図 2.12 に船舶供用係数の値及びマップを示す。マップは、隣接する重要港湾間を垂直二等分線 で区分し、その区間において港湾毎に与えられている船舶供用係数の最大値をマップ化したもの である。

前提条件の1つであるベースラインウィンドファームで用いる船舶供用係数の統計値を図 2.13 及び表 2.10 に整理した。その結果、国内の船舶供用係数に関して、瀬戸内海、島嶼部等を除く中 央値は2.05(平均値は2.21)となった。



表 2.9 船舶供用係数

図 2.12 船舶供用係数の分布



図 2.13 船舶供用係数ランクの海域出現割合 (瀬戸内海、島嶼部等を除く)

## 表 2.10 船舶供用係数の平均値・中央値 (瀬戸内海、島嶼部等を除く)

| 海域     | 太平洋側 | 日本海側 | 全国   |
|--------|------|------|------|
| 平均 WDF | 2.34 | 1.95 | 2.21 |
| 中央 WDF | 2.15 | 1.93 | 2.05 |

なお、欧州における船舶供用係数については、欧州の72のプロジェクトを分析した結果 [16]の 平均値は 1.46(範囲は 1.34~1.56)であり、NEDO モデルでは、欧州の船舶供用係数は WDF=1.50 と設定している。

#### ④ 運転維持費モデル

2019・2022 モデルでは、運転維持費は、海域によらず 0.97 万円/kW/年と固定値としていたが、 2024 年モデルでは、海域情報(離岸距離、船舶供用係数等)を考慮することとした。具体的には、 定期保守、非定期保守及び運転に係る費用を算定することとした。

運転維持費は、施工費用と同様にサイトの気象・海象条件に応じて異なる。OPEX の試算ツー ルとして、例えば、ECN(オランダ)の O&M Calculator [17]がある。このツールは風車の故障を 各部品の故障率を基にポアソン過程で表し、保全作業を時間領域モンテカルロ法によりシミュレ ーションし、発電所の利用可能率(稼働率)及び運転維持費を評価する。ここでの運転維持費は 故障からの復旧に直接かかった費用と発電損失の合計である。日本では、菊地・石原ら [18]が、 O&M Calculator を使用して、銚子沖洋上風力発電所の維持管理モデルを構築し、維持管理費を算 出している。

2024年の運転維持費モデルは、保守費に関して、海域毎の環境条件(離岸距離及び船舶供用係数)を考慮した保守費算定モデルとした。このモデルは、Strathclyde大のFOWIT等[19][20][21] [22]を参考に構築した。維持費については、定期保守と非定期保守(大規模修繕などを実施)に分け、図 2.14に示す工程を設定した。以下に運転維持費モデルの概略を示す。

なお、図 2.15 に示すように、サイトの離岸距離により使用船舶(あるいはヘリコプターの併用) が選択されるが、定期保守に使用する船舶は、離岸距離 30NM (55.6km) 程度までを対象とした CTV のみを想定した (図 2.15 の左図)。



#### 定期保守費

- ▶ 毎月定期的に風車にアクセスする定期保守を想定
- ▶ 1 隻の CTV に乗船する作業員の人数は 12 名とし、風車 1 基あたり 4 名で保守作業を実施 する。作業員の 1 日当たりの作業時間の上限は 12 時間に設定
- ▶ 年間アクセス可能日数を船舶供用係数 WDF に応じて設定
- ➤ CTV の船速は 22 ノット(時速 41km)
- ▶ 年間アクセス可能日数及び必要保守日数・作業員数から必要な CTV の数を設定
- CTVの費用は定期傭船契約とし、傭船料(日単価)と運航費(燃料費、港湾費、物流費)
   及び作業員の人件費(日単価)で算定

#### 非定期保守費

- ▶ 非定期保守をカテゴリに分け、それぞれのカテゴリで必要な保守時間数、船を想定。大規 模修理では起重機船の使用を想定
- ▶ 風車の故障率 [20] [21] [22]から必要とされる故障時間を推定し、日数及び費用を算定
- ▶ 故障により風車が停止する時間(ダウンタイム)から算定される稼働率を AEP 計算に反映

#### <u>運転費</u>

➤ Guide to a offshore wind (英国洋上風力ガイド)のデータ(MW 当あたりの単価) [4]を参考に、安全衛生検査費、トレーニング費、陸上物流費、洋上物流費及び保険料等を MW 当たりの年間費用で算定

#### 2.3 資本費モデル

#### ① 入力変数及びベースラインデータ

表 2.11 に設備費(CAPEX)を算定するための入力変数を示す。また、表 2.12 に本調査で使用 するベースラインデータ(ベースラインウィンドファーム等のデータ)を示す。表中の記号は、 CAPEX モデル式の中で用いるものである。なお、モデルにおけるコストに関する数値及び変数は 英国 £ としている。また、本報告書中の £ ・ 円換算レートは 2014~2023 年の平均値 156 円/ £ と した。

| 項目            | 記号  | 備考                             |
|---------------|-----|--------------------------------|
| 水深 [m]        | Dph | サイト個別                          |
| 離岸距離 [km]     | DTC | サイト個別                          |
| 基地港からの距離 [km] | DAS | サイト個別                          |
| 船舶共用係数        | WDF | サイト個別                          |
| 風速[m/s]       | V   | NeoWinsの詳細風況データ(500m メッシュ)を使用。 |

表 2.11 入力変数

#### 表 2.12 ベースラインデータ

| 項目          | 記号     | 值            | 備考                                             |
|-------------|--------|--------------|------------------------------------------------|
| 風車基数        | Ν      | 36           | ベースラインウィンドファーム                                 |
| 定格出力        | Pr     | 15[MW]       | ベースラインウィンドファーム                                 |
| 風車間隔        | DWT    | 1.648[km]    | 7D(風車直径 D:240m)を仮定                             |
| 鋼材価格        | PsRate | 3000 [£/ton] | 人件費、製造費を含む。(EU 実績値や日本の<br>データを用いることで予測精度が高まる。) |
| エクスポートケーブル数 | Nec    | 2            | 冗長性確保のため2本使用                                   |

## 2 設備費

設備費 [£] は式(2.2)を用いて算定した。予備費 CC は本調査では CC=0 とした。

 $CAPEX = WTC + SSC + ACC + ECC + TSC + IC + PC + DC + CC \quad (2.2)$ 

式 (2.2) 中のパラメータは、次の通りである。

- WTC : 風力発電機設備費 [£]
- **SSC** : 基礎構造物設備費 [£]
- ACC : アレイケーブル設備費 [£]
- ECC : エクスポートケーブル設備費 [£]
- **TSC** : 変電所設備費 [£]
- IC : 工事費 [£]
- PC :港湾費 [£]
- DC : 設計・調査費 [£]
- CC : 予備費等 [£]

## ③ 風力発電機設備費

2.2.2 項で述べたように、2022 年モデルから変更した。風力発電機設備費 WTC [£] は式 (2.3) で算定した。

WTC = (997.01\*Pr + 345.09)\*1,000\*N...(2.3)

ここで、

Pr : 風車定格出力 [MW]

N : 風車基数

である。

## ④ 基礎構造物設備費

## モノパイル式基礎

モノパイル式基礎構造物設備費 SSC\_mp [£] は式(2.4)を用いて算定した。

| $SSC_mp = \pi Dss * Tss * Lss*PsRate * \rho*N \dots$           | (2.4)  |
|----------------------------------------------------------------|--------|
| $Dss = max(css*Dph^2 + dss*Dph + ess, 4) + cor \cdots$         | (2.4a) |
| $Tss = min((fss *Dph + gss)*(Pr/10)^{0.5} / 1000, 0.2) \cdots$ | (2.4b) |
| $Lss = 2*Dph + 20 \cdots$                                      | (2.4c) |
| cor=0.028*Dph-0.266                                            | (2.4d) |

ここで、

|   | css    | :モノパイル直径の増加係数(=0.0003)※水深の二乗に比例する項  |
|---|--------|-------------------------------------|
|   | cor    | :補正項                                |
|   | dss    | : モノパイル直径の増加係数(=0.0907)※水深に比例する項    |
|   | Dss    | :モノパイル直径 [m]                        |
|   | ess    | : モノパイル直径の増加係数(=3.7027)             |
|   | fss    | : モノパイル厚みの増加係数(=0.7177)※水深に比例する項    |
|   | gss    | : モノパイル厚みの増加係数(=50.609)             |
|   | Lss    | :モノパイル長さ [m]                        |
|   | PsRate | : 鋼材価格 [£/ton] (表 2.12 参照)          |
|   | Tss    | : モノパイルの板厚 [m]                      |
|   | ρ      | : 鋼材密度(=7.874)[ton/m <sup>3</sup> ] |
| C | ある。    |                                     |

## ジャケット式基礎

ジャケット式基礎構造物設備費 SSC\_jkt [£] は式(2.5)を用いて算定した。

| $SSC_jkt = cj^*Wj + cp^*Wp \cdots$                    | (2.5)  |
|-------------------------------------------------------|--------|
| $Wj = 0.4172 * Dph^2 - 14.958 * Dph + 958.437 \cdots$ | (2.5a) |
| Wp = (1.8638*Dph+37.366)*np                           | (2.5b) |

ここで、

cj : ジャケット基礎鋼材単価(=4,216GBP/ton) [11]

- cp : ピンパイル鋼材単価 (=1,860GBP/ton) [11]
- Dph :水深[m]
- np :1 基礎当たりのパイル数 [本/基礎]
- である。

#### ⑤ アレイケーブル設備費

アレイケール設備費 ACC [£] は式 (2.6) を用いて算定した。アレイケーブルの長さは、図 2.16 に示すように、風車の配置を正方形格子等間隔 (7D×7D) として算定した。ケーブル単価 Cac は、 33、66kV のケーブル費用を選択する。

| ACC = Cac*Lacc····  | (2.6)  |
|---------------------|--------|
| Lacc=(N+2)*DWT····· | (2.6a) |

ここで、

| Cac  | :アレイケーブル単価 [£/km]       |
|------|-------------------------|
| DWT  | :風車間隔=7*D (D:風車直径) [km] |
| Lacc | :アレイケーブル長さ [km]         |
| Ν    | :風車基数                   |
| である。 |                         |



図 2.16 アレイケーブル及びエクスポートケーブルレイアウト

## 【補足】

アレイケーブルの長さは、風車間隔などよりプロジェクト毎に異なる。図 2.17 には欧州のプロ ジェクトの実績値と NEDO モデルにおいて風車間距離を 10D(D:風車直径)に設定した場合の 値の比較を示す。実績値と NEDO モデルの相関係数は 0.89 であった。



図 2.17 アレイケーブル長の比較(風車間距離を 10D に設定)

#### ⑥ エクスポートケーブル設備費

エクスポートケーブル設備費 ECC [£] は式(2.7)を用いて算定した。ケーブル故障及び事故 を想定して、冗長性を確保するために、エクスポートケーブルは2本敷設することとする(図 2.16 参照)。ケーブル単価 Cac は、33 及び 66kV ケーブル費用を選択する。

 $ECC = Cec^*DTC^*Nec$ (2.7)

ここで、

Cec : エクスポートケーブル単価=648,000 [£/km]

Nec : エクスポートケーブル本数=2

ケーブルの単価は、公開されている情報が限られていることから、 [24] [25] [26]等で示されて いるコスト計算式から、33kV 及び 66kV の m 当たりの単価を設定した。

また、AEP を算定するために用いる送電損失については、ケーブルの仕様や長さによって損失 が異なるため、一定の値とすることは妥当ではないが、ここでは、最近の文献を参考にして、に 示すように送電損失を設定した(表 2.13)。

| 電圧   | £/m | 送電損失 [%/km] |
|------|-----|-------------|
| 33kV | 300 | 0.0068      |
| 66kV | 790 | 0.0030      |

表 2.13 電力ケーブルの単価及び送電損失 [24] [25] [26]

である。

#### ⑦ 変電所設備費

変電所設備費 TSC [£] は式(2.8)を用いて算定した。欧州の洋上ウィンドファームでは洋上 変電所が設置されている場合が多いが、Kikuchi らの文献 [8]を参考にし、離岸距離 55km 以上の 場合は洋上変電所を使用することとした(図 2.16参照)。

 $TSC = (Conts + Cofts) *1,000 *Pr *N \dots (2.8)$ 

ここで、

 Conts
 : 陸上変電所の設備費 [k £ /MW]

 Cofts
 : 洋上変電所の設備費 [k £ /MW]

である。

## ⑧ 施工費

施工費 IC [£] は式(2.9) を用いて算定した。式中の係数等は、2.2.3 項に示したように、欧州の最新のデータを用いて更新した。

IC = ICsub + ICwt + ICcable + ICss(2.9)

ここで、

```
ICsub : 基礎工事費 [£]
```

```
ICwt :風車工事費 [£]
```

```
ICcable : ケーブル工事費 [£]
```

```
ICss :洋上変電所工事費 [£]
```

```
であり、それぞれ、以下の式で算定した。
```

| ICsub = Fyr,sub*2*Cmob_sub + Cvessel,sub *(Tinstall,sub + Ttrans1,sub)*WDF                                                                                                                                                  | (2.9a)   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $ICwt = Fyr, wt^{*}2^{*}Cmob\_wt + Cvessel, wt^{*}(Tinstall, wt + Ttrans1, wt)^{*}WDF \cdots \cdots$ | (2.9b)   |
| ICcable = Fyr,cable*2*Cmob_cable + Cvessel,cable*(Tinstall, cable + Ttrans2,cable)*WDF +                                                                                                                                    | Co,cable |
|                                                                                                                                                                                                                             | (2.9c)   |
| ICss = Fyr,ss*2*Cmob_ss + Cvessel,ss*(Tinstall, ss + Trans2,ss)*WDF                                                                                                                                                         | (2.9d)   |
| Fyr,i = ROUNDUP(Tday,i*N/(365/WDF),0)·····                                                                                                                                                                                  | (2.9e)   |
| Tinstall,i = Tday,i * N / Nvessel,i·····                                                                                                                                                                                    | (2.9f)   |
| Nvessel,wt=6 (Pr>3.6), 5(Pr=<3.6)                                                                                                                                                                                           | (2.9g)   |
| Nvessel,sub=4 ·····                                                                                                                                                                                                         | (2.9h)   |
| Tinstall,cable = Lacc/0.6 + DTC/1.6*Nec                                                                                                                                                                                     | (2.9i)   |
| $T trans 1, i = Vs*(DTC + DAS)*ROUNDUP(N/Nvessel, i) \cdots $                                        | (2.9j)   |
| $T trans2, i = Vs^*(DTC + DAS) \cdots$                                                                                                                                                                                      | (2.9k)   |
| Vs = 1/(1.852*Vvessel)/24                                                                                                                                                                                                   | (2.91)   |
| Co, cable = (1000*(Lacc + DTC) + 8,000 + 10,000)*N*Pr                                                                                                                                                                       | (2.9m)   |

|   | ここで、           |                                                        |
|---|----------------|--------------------------------------------------------|
|   | Cmob           | :回航費 [£] (表 2.14 参照)                                   |
|   | Co,cable       | :ケーブル施工の他の費用 [£]                                       |
|   | Cvessel,i      | : 傭船費(i: sub [基礎]、wt [風車]、cable [ケーブル]、ss [洋上変電所]) [£/ |
|   |                | 日]、表 2.14参照)                                           |
|   | DTC            | :離岸距離 [km]                                             |
|   | DAS            | : 基地港までの距離 [km]                                        |
|   | Fyr,i          | :基礎、風車及びケーブルそれぞれの工事を実施する年度数(i:sub [基礎]、wt              |
|   |                | [風車]、cable [ケーブル])                                     |
|   | Tday,i         | : 基礎、風車の施工日数(i : sub [基礎]、wt [風車]、[日/基]、表 2.14 参照)     |
|   | Tinstall,i     | :施工船の施工日数(i:sub [基礎]、wt [風車]、ss [洋上変電所]、[日]、表          |
|   |                | 2.14 参照)                                               |
|   | Tinstall,cable | :ケーブル施工日数([日]、表 2.14参照)                                |
|   | Ttrans1,i      | : 輸送日数(i : sub [基礎]、wt [風車]、[日])                       |
|   | Ttrans2,i      | : 輸送日数(i : cable [ケーブル]、ss [洋上変電所]、[日])                |
|   | Vs             | : 輸送速度 [日/km] (Vvessel は表 2.15 の船の速度 [knots])          |
|   | WDF            | :船舶供用係数(図 2.12 及び表 2.9 参照)                             |
| 7 | である。           |                                                        |

式(2.9a)~(2.9d)は、それぞれ、基礎、風車、ケーブル及び変電所を施工するためのコスト を算定する式である。回航費、傭船費、施工及び輸送に係る日数を欧州の洋上ウィンドファーム のモノパイルに対する実績値を参考にして決定した。欧州の工事費に用いるデータは表 2.14 及び 表 2.15 を参照。式(2.9f)の右辺の Tday,i は風車、基礎を1基の施工に要する日数で、風車、モ ノパイル式及びジャケット式基礎で異なる(表 2.14 参照)。洋上における工事は、気象・海象の 影響を受け、風速や波高によって施工日数が限られる。この影響は、日本の海域に対して、船舶 供用係数 WDF で考慮し、式(2.9a)~(2.9d)に含めた。

式(2.9e)は、回航費を算定するために用いる。施工可能な期間は欧州では1年であるが、日本では、船舶供用係数の定義により1/WDF年とする。基礎、風車及びケーブルそれぞれで、施工日数が施工期間を過ぎた場合、工事は次年以降に実施すると仮定することで回航費を算定する。船舶供用係数は図 2.12及び表 2.9を参照。

式(2.9i)は、風車及び基礎の輸送に関する日数を算定するための式である。想定した船の速度 は表 2.15 にまとめた。往路と復路で船の速度は異なる。また、輸送距離は離岸距離及び基地港か らの距離 DAS を仮定する。DAS は任意の距離を設定できる。欧州における一般的な DAS の距離 は 40km 程度である。一度に輸送できる基礎及び風車の数は式(2.9g)及び(2.9h)で算定した。 また、式(2.9i)は、ケーブル及び洋上変電所の輸送に関する日数を算定するための式である。

式(2.9j)は、ケーブル施工日数を算定するための式で、表 2.14 に示すように、欧州の実績を 参考にして、アレイケーブルとエクスポートケーブルで日当たりの施工距離が異なる。

式 (2.9m) は、ケーブル施工に係る埋設費 (1,000 £ /km/MW)、ケーブル引込費用 (8,000 £ /MW)

及び試験費(10,000 £/MW)を算定するために用いる。

| NEDO モデル                   | レ使用データ                | 備考       |                                                |  |  |
|----------------------------|-----------------------|----------|------------------------------------------------|--|--|
| 輸送日数                       | 個別                    | B        | 船の種類別に輸送速度を算定(文献[17])。距<br>離は基地港からの距離を仮定。      |  |  |
| 回航費(基礎)                    | 868,000               | [£/船/片道] | 文献 [9] [27]                                    |  |  |
| 回航費(風車)                    | 1,240,000             | [£/船/片道] | 文献 [9] [27]                                    |  |  |
| 回航費(ケーブル)                  | 555,000               | [£/船/片道] | 文献 [9] [27]                                    |  |  |
| 回航費(変電所)                   | 900,000               | [£/変電所]  | 文献 [4]                                         |  |  |
| 傭船費(JUV)                   | 173,600               | [釲/日]    | 文献 [9] [27]                                    |  |  |
| 傭船費(風車施工船)                 | 248,000               | [釲/日]    | 文献 [9] [27]                                    |  |  |
| 傭船費(ケーブル施工船)               | 111,000               | [釲/日]    | 文献 [9] [27]                                    |  |  |
| 傭船費(変電所施工船)                | 180,000               | [釲/日]    | 文献 [27]                                        |  |  |
| 施工日数(モノパイル)                | 2.3                   | [日/基礎]   | 文献 [9] [27]                                    |  |  |
| 施工日数(ジャケット)                | 4.2                   | [日/基礎]   | 文献 [9] [13]                                    |  |  |
| 施工日数(風車)                   | 3.6                   | [日/風車]   | 文献 [9] [27]                                    |  |  |
| 1日当たりの施工距離(アレ<br>イケーブル)    | 0.6                   | [km/日]   | 文献 [28]                                        |  |  |
| 1日当たりの施工距離(エク<br>スポートケーブル) | 1.6                   | [km/日]   | 文献 [28]                                        |  |  |
| 施工日数(洋上変電所)                | 5                     | [日/変電所]  | 文献 [27]                                        |  |  |
| 施工日数(洋上変電所基礎)              | 2                     | [日/基礎]   | 文献 [28]                                        |  |  |
| 船舶共用係数                     | 1.65 <b>~</b><br>3.70 | [-]      | 文献 [15] 欧州は 1.50(文献 [16])。表 2.9<br>及び図 2.12参照。 |  |  |

表 2.14 工事費に用いるパラメータ

表 2.15 工事費に用いる船の速度(1 konts = 1.852 km/h)

| Vessel              | Transit speed (loaded) [knots] | Transit speed (return) [knots] |  |  |  |
|---------------------|--------------------------------|--------------------------------|--|--|--|
| Large jack-up       | 3                              | 10                             |  |  |  |
| Cable-laying vessel | 9                              | 14                             |  |  |  |

## ⑨ 港湾費

2022 年モデルから変更なし。港湾費 PC [£] は式(2.10)を用いて算定した。基礎一基あたりの港湾費を考慮したモデル式である。

10 その他

2022 年モデルから変更なし。その他の費用 OC [£] は、文献 [4]を参考にした陸上変電所施工 費、陸上ケーブル施工費、ロジスティクス、海洋工事安全(HSE)管理などの費用を算定した。

OC=220,500\*Pr\*N.....(2.11)

#### ① 設計·調査費

2022 年モデルから変更なし。設計調査費 DC [£] は式(2.12)を用いて算定した。式(2.12) 中の ICC は式(2.11a)を用いて算定した。

## 2.4 運転維持費モデル

年間運転維持費 OPEX [£/年] は、定期保守費 C\_sm、非定期保守費 C\_cm 及び運転費 C\_op により算定した。

 $OPEX = C_{sm} + C_{cm} + C_{op}$ (2.14)

式(2.14)の右辺の各項は、以下で算出する。

## ① 定期保守費 C\_sm

定期保守費 C\_sb [£/年] は式(2.15)を用いて算定した。本モデルでは、年間アクセス可能日数及び必要保守日数・作業員数から必要な CTV の数を設定する。

| $C\_sm = C\_ctv+C\_t+C\_oil+C\_ppe$                                                                                                                                      | (2.15)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $C\_ctv = odoctvpy*noctvpy*ctvrate \cdots \cdots$ | (2.15a) |
| $C_t = tdrate*odoctvpy*(noctvpy+1)*12\cdots$                                                                                                                             | (2.15b) |
| $C\_oil = Fcpl*odoctvpy*24*noctvpy \cdots$                                                                                                                               | (2.15c) |
| $C\_ppe = ppept*(nocvtvpy+1)*12*0.5$                                                                                                                                     | (2.15d) |
| odoctvpy= roundup(N/nowtpd/noctpy,0)*12 ·····                                                                                                                            | (2.15e) |
| nowtpd= IF(toampwt/5<4,3,4) ·····                                                                                                                                        | (2.15f) |
| noctvpy= roundup(tdst/nowtpd/365/WDF,0) ·····                                                                                                                            | (2.15g) |
| toampwt= roundup(12-2*tdst-toawt-1,0) ······                                                                                                                             | (2.15h) |

ここで、

| C_ctv    | :CTV 年間総傭船費 [£/年]  |
|----------|--------------------|
| C_t      | :年間総作業員費 [£/年]     |
| C_oil    | : CTV 年間総燃料費 [£/年] |
| C_ppe    | :作業員用具費 [£/年]      |
| cdoctvpy | : CTV1 隻あたりの年間稼働日数 |
| ctvrate  | : CTV 傭船費日単価 [£/日] |
| Fc       | : CTV 燃費消費量(=L/h)  |
| Fcpl     | : CTV 燃料費 [£/L]    |
| DST      | : 基地港·風車間距離        |
| dowt     | :風車間距離(=7*D、D:風車径) |
| Ν        | :風車基数              |
| noctvpy  | :年間使用 CTV 数        |

toampwt :一日あたりの風車保守可能時間(作業員1日当たりの作業可能時間、休憩時間、移動時間を考慮)

ppept : 作業員用具費(2年おきに交換)

tdrate : 作業員の時間単価 [£/h]

tdst : 基地港・風車間移動時間(=DST/Vctv)

toawt : 風車間移動時間(=dowt/Vctv\*(nowtpd-1)\*1.5)

Vctv : CTV 船速 [km/h]

である。

式(2.15a)は、CTV年間総傭船費で、式(2.15e)及び(2.15g)によりCTVの年間傭船日数及 び年間必要CTV数を求め、傭船費日単価 ctvrate を乗じて算定した。

式(2.15b)は、作業員の年間総労務費で、式(2.15e)及び式(2.15g)により作業員の年間総作 業時間数に差作業員の時間単価を乗じて算定した。

式 (2.15c) は、CTV の年間総燃料費で、式 (2.15e) 及び (2.15g) により CTV の年間傭船日数 及び年間必要 CTV 数を求め、CTV 燃料費 Fcpl を乗じて算定した。

式(2.15d)は、作業員の用具費で、2年に1回交換するものとして算定した。

式(2.15e)は、CTV1 隻あたりの年間傭船日数を計算する式で、WDF を用いることで海域毎の アクセス可能日数を求めている。また、式(2.15f)はCTV 一隻・1日当たりの保守可能風車基数 である。式(2.15g)は、年間使用 CTV 数を、式(2.15h)は一日あたりの風車保守可能時間(作 業員1日当たりの作業可能時間、休憩時間、移動時間を考慮)である。

#### ② 非定期保守費 C cm

非定期保守費 C\_cm [£/年] は式 (2.16)を用いて算定した。このモデルは、非定期保守をカテ ゴリに分け、それぞれのカテゴリで必要な保守時間数、船舶を想定する。大規模修理では起重機 船の使用を想定風車の故障率 [17] [18] [19]から必要とされる故障時間を推定し、故障により風車 が停止する時間 (ダウンタイム)から算定される稼働率を AEP 計算に反映する。

ここで、

D\_dt,i :ダウンタイム

N : 風車基数

vrate,i : 使用船舶 i の傭船費

WDF :船舶供用係数

である。

表 2.16 に修理カテゴリとその定義、また、表 2.17 にカテゴリ別ダウンタイム (DT) を示す [19] [20]。表 2.16 に示した修理カテゴリに関して、要素に対する故障発生率は付属資料 D:故障 に関するデータにまとめた。表中のロジ時間は、故障が発生してから、該当する要素を調達する のに要する時間である。割り当てられている数値は文献 [19]から引用したもので、これはプロジ ェクトごと、地域ごとに異なる数値と考えられるため、今後アップデートが必要である。

| 修理カテゴリ | 定義                              |
|--------|---------------------------------|
| А      | 修理・クリーニング・交換なし                  |
| В      | 消耗品の修理・交換・クリーニング                |
| С      | 小部品の交換                          |
| D      | 大部品(>50ton)の交換                  |
| E      | ロータ、ナセル、ヨー装置、主軸ベアリング交換(<300ton) |

表 2.16 修理カテゴリと定義[17] [18] [19]

## 表 2.17 着床式のカテゴリ別ダウンタイム(DT)表 (離岸距離 5km、WDF=2.05 の場合) [17] [18] [19]

| 使用<br>船舶            | 修理<br>カテゴリ | 年間<br>発生率 | 輸送時<br>間[h] | 作業時<br>間[h] | 作業時<br>間[日] | 年間傭<br>船日数 | ロジ時<br>間[h] | 天候遅<br>延[h] | DT 合<br>計[h] | 作業可<br>能[h] | 年間<br>DT[h] | 年間<br>DT[日] |
|---------------------|------------|-----------|-------------|-------------|-------------|------------|-------------|-------------|--------------|-------------|-------------|-------------|
|                     |            |           | tt,i        | t0          |             |            | tl,i        | tw,i        | t,i          | teff        |             | D_dt,i      |
| CTV                 | А          | 1.0515    | 0.3         | 53.4        | 2.2         | 3          | 0           | 96          | 149          | 10.3        | 157         | 0.00        |
| CTV                 | В          | 0.0140    | 0.3         | 53.4        | 2.2         | 1          | 8           | 96          | 157          | 10.3        | 2           | 0.00        |
| CTV                 | С          | 0.0117    | 0.3         | 180.4       | 7.5         | 1          | 48          | 96          | 324          | 10.3        | 4           | 0.16        |
| CTV                 | D          | 0.1107    | 0.3         | 96.3        | 4.0         | 1          | 160         | 96          | 352          | 10.3        | 39          | 1.62        |
| CTV                 | E          | 0.3521    | 0.3         | 96.3        | 4.0         | 2          | 500         | 96          | 692          | 10.3        | 244         | 0.00        |
| FCV                 | А          | 1.0515    | 1.1         | 4.6         | 0.2         | 1          | 0           | 96          | 101          | 11.0        | 108         | 0.00        |
| FCV                 | В          | 0.0140    | 1.1         | 4.6         | 0.2         | 1          | 8           | 96          | 109          | 11.0        | 2           | 0.00        |
| FCV                 | С          | 0.0117    | 1.1         | 11.6        | 0.5         | 1          | 48          | 96          | 156          | 11.0        | 2           | 0.08        |
| FCV                 | D          | 0.1107    | 1.1         | 97.6        | 4.1         | 1          | 0           | 96          | 194          | 11.0        | 22          | 0.90        |
| FCV                 | E          | 0.3521    | 1.1         | 97.6        | 4.1         | 2          | 0           | 96          | 194          | 11.0        | 69          | 0.00        |
| CLV                 | С          | 0.0000    | 2.6         | 0.0         | 0.0         | 0          | 48          | 96          | 146          | 11.0        | 0           | 0.00        |
| CLV                 | D          | 0.0250    | 2.6         | 240.0       | 10.0        | 1          | 500         | 96          | 838          | 11.0        | 21          | 0.88        |
| CLV                 | E          | 0.0160    | 2.6         | 360.0       | 15.0        | 1          | 48          | 96          | 506          | 11.0        | 8           | 0.00        |
| CLV                 | С          | 0.0000    | 2.6         | 0.0         | 0.0         | 0          | 48          | 96          | 146          | 11.0        | 0           | 0.00        |
| CLV                 | D          | 0.0200    | 2.6         | 60.0        | 2.5         | 1          | 500         | 96          | 658          | 11.0        | 13          | 0.55        |
| CLV                 | E          | 0.0000    | 2.6         | 0.0         | 0.0         | 0          | 48          | 96          | 146          | 11.0        | 0           | 0.00        |
| CTV                 | 定期<br>保守   | 1         |             |             |             |            |             |             |              |             |             | 2.50        |
| ダウンタイム(DT)計[日/風車/年] |            |           |             |             |             |            |             |             | 6.69         |             |             |             |

なお、修理カテゴリAは、定期保守費に算入し、設備利用率が98%程度になるように修理カテ ゴリを選択した。本調査では電力ケーブルに関する修理は想定していない。表 2.17 に示した例で は、ダウンタイムの合計は6.69 日となり、稼働率は、(366-6.69)/366=98%となる。修理カテゴリ を全て考慮した場合、稼働率は91%となる(366 は閏年を考慮した年間日数)。要素別の故障発生 率は、本来なら風車毎に異なるが、メーカー毎のデータは入手困難であるため、文献[17][18][19] を参考にした。

#### ③ 運転費 C\_op

運転費 C\_op は、Guide to a offshore wind(英国洋上風力ガイド)のデータ(MW 当あたりの単 価) [4]を参考に、安全衛生検査費 Ctc、トレーニング費 Ct、陸上物流費 Conlg、洋上物流費 Cent 及び保険料 Cins 等(単位: £/MW/年)を用いて算定した。

 $C_{op} = (Ctc + Ct + Conlg + Ccnt)*N*Pr$ (2.17)

#### 2.5 撤去費モデル

2022 年モデルから変更なし。洋上風力プロジェクトの撤去の実績はまだ少ないため、ここでは、 限られた文献を参考にして撤去費用を見積もった。

初期のウィンドファームの撤去費は、風車サイズが小さく、離岸距離も短かったため、€200k/MW (2.7万円/kW)程度であったが、近年の状況(離岸距離と水深の増加、厳しい海象条件)を反映 すると、モノパイルの撤去費は€300k/MW~€500k/MW(4.1万円/kW~6.8万円/kW)と見積られて いるが(DNV-GL 試算[29]、図 2.18参照)、これは施工費の約 60%~70%[30]に相当する。なお、 発電コストワーキンググループにおいても、2021年検証で設定した施工費の 70%を引き続き採用 している。

これらのデータを参考して、本調査では、発電コストを算定するための撤去費 DECEX [£]は、 工事費 IC(式(2.11)参照)の70%とし、次式(2.13)で算定した。



図 2.18 撤去費(文献[20]より作成)
# 2.6 LCOE 算定

2022 年モデルから変更なし。本調査で算定した LCOE は、2.1 節から 2.4 節で述べたモデル及び 式を用いると式(2.1)は式(2.18)になる。風車の運転年数は20年とした。

 $LCOE = \left[CAPEX + \Sigma Ti/(1+r)^{i} + DECEX\right] + \Sigma OPEX/(1+r)^{i}) / \left[AEP/(1+r)^{i}\right] \dots (2.18)$ AEP =  $\Sigma F(V) * P(V) * \eta * 8766 \dots (2.18a)$ 

| ここで、  |                        |
|-------|------------------------|
| CAPEX | :建設費 [式 (2.2)]         |
| DECEX | :撤去費[式(2.12)]          |
| F(V)  | : ワイブル分布 (風速出現の確率密度分布) |
| i     | : 年数(1~約 20)           |
| OPEX  | : 運転維持費 [式 (2.14)]     |
| P(V)  | : パワーカーブ [kW] (図 2.2)  |
| V     | : 風速 [m/s]             |
| $T_i$ | :固定資産税=1.4%(表 2.2)     |
| r     | :割引率=3% (表 2.2)        |
| η     | :各種損失を考慮した効率(表 2.4)    |

である。

# 2.7 2024 年モデルの検証

# 2.7.1. 欧州プロジェクトによる CAPEX モデルの検証

# ① モノパイル式基礎によるプロジェクト

2024 年モデルの CAPEX の推定精度を検証するために、欧州の実績値と比較を行った。欧州実 績は 2014~2023 年における英国、ベルギー、デンマーク、ドイツ及びオランダのデータを使用し た。図 2.19 は、欧州のモノパイルを採用したプロジェクトの CAPEX の比較を示す。図 2.19 (a) 及び (b) それぞれは、2022 年モデル及び 2024 年モデルと欧州実績値との比較である。図中の太 破線は傾き 1、点線は 10%及び 90%分位置である。また、表 2.18 は、欧州のモノパイルを採用し たプロジェクトの CAPEX の相関係数 R 及び二乗平均平方根誤差 RSME<sup>9</sup>の比較を示す。

2024 年モデルは 2022 年モデルと比較して同水準の結果となった。



<sup>(</sup>a)2022 年モデル

(b)2024 年モデル

図 2.19 欧州のモノパイル式基礎を採用したプロジェクトの CAPEX の比較

|   | CAPE   | Xの | 目関係数及び二乗平均平方  | 根誤差の比較    |
|---|--------|----|---------------|-----------|
| 7 | 長 2.18 | 欧州 | のモノパイル式基礎を採用し | したプロジェクトの |

| モデル       | 相関係数 R | 二乗平均平方根誤差 RSME |
|-----------|--------|----------------|
| 2022 年モデル | 0.73   | 7.4 万円/kW      |
| 2024 年モデル | 0.74   | 7.5 万円/kW      |

※1GBP=156JPY

# ② ジャケット式基礎によるプロジェクト

図 2.20 はジャケット式基礎による商用期プロジェクトのデータと比較を示す。モノパイル式と 比べて、データのばらつきは大きいものの、商用期プロジェクトのデータ(2014 年以降、風車容

<sup>9</sup> RMSE=sqrt(1/N\*Σ(yi-yEi)2)、yi: 真値、yEi: 予測値、N: データ総数

量 5MW の Wikinger 除く)と比較して同水準であるため、NEDO モデルについては一定程度の精 度があると評価される。一方、習熟が進み、高い技術を活用した今後の商用プロジェクトについ ては、より効率的な事業実施が可能となることも見込まれる。



図 2.20 欧州のジャケット式基礎を採用したプロジェクトの CAPEX の比較

#### 2.7.2. CAPEX 内訳の比較

図 2.21 は英国の Crown Estate による 1GW の洋上ウィンドファーム(10MW×100=1GW、水深 30m、離岸距離 60km、表 2.19)の CAPEX を 2019 年及び 2022 年モデルの結果を比較した図であ る。為替は 2014~2023 年の平均値(1 £ =156 円)を使用した。

| 設備容量  | 1000MW(10MW 風車×100 基) |
|-------|-----------------------|
| 水深    | 30 m                  |
| 年平均風速 | 10 m/s @100 m a.s.l.  |
| 離岸距離  | 60 km                 |
| 基地港距離 | 60 km                 |
| 基礎形式  | モノパイル                 |
| FID 年 | 2019                  |
| 運開年   | 2022                  |

表 2.19 英国洋上風力ガイドの条件 [4]

2.7.1 項に示したように、CAPEX はプロジェクトによってばらつきがあるため、個別の条件に おいて表 2.18 に示したような誤差を含む事に留意が必要である。2022 年モデルは、英国洋上風 カガイドと比較して施工費の割合が少し低く、基礎の費用の割合が少し高い。一方、2024 年モデ ルは、施工費は同程度で、基礎の費用の割合は少し低い。2024 年モデルは英国洋上風力ガイドの モデル(図中では英国ガイド)と CAPEX の内訳はほぼ一致しており、CAPEX の値も同程度の水 準にある。なお、風車費用は NEDO モデル及び英国洋上風力ガイドで同じである。



図 2.21 モノパイルの CAPEX コスト内訳の比較

#### 2.7.3. 欧州プロジェクトによる OPEX モデルの検証

OPEX のプロジェクト個別のデータは限られているため、ここでは、Peakwind 社のデータ [31] を参考に同様の評価を実施した。OPEX のデータは対象プロジェクト(ベルギー、デンマーク、ド イツ、オランダ、英国、モノパイルの商用期 2014~2023 年)とした。

図 2.22 に NEDO・OPEX モデルによるプロジェクト毎の OPEX [万円/kW/年] の比較を示す。 データは OPEX の高い順番に並べている。NEDO モデルによる OPEX の範囲は、以下の通りであった。

 NEDOモデルによる欧州プロジェクトの OPEX 範囲:0.86~3.21 万円/kW/年(中央値:1.81、 平均値:1.79 万円/kW/年)

また、欧州の実績等については次の通りである。

- 英国洋上風力ガイド [4]の条件(設備容量 1GW、10MW 風車、モノパイル基礎、水深 30m、 離岸距離 60km) では、1.19 万円年/kW/年、NEDO モデル: 1.27 万円/kW/年
- 欧州実績値(2015~2020年) [31]では、1.06~4.46万円/kW/年(80~338k€/MW/年、外れ 値含む)、平均値は1.78万円/kW/年(135k€/MW/年)

これらの結果を表 2.20 にまとめた。NEDO OPEX モデルによる算定値は、欧州実績データ [31] と比較対象としている WF の条件は不明だが、概ね実績値と同程度の範囲である事が示された。



# (商用期 2014~2023 年の運転維持費算定結果)

| 条件           | データ                | 範囲        | 中央値  | 平均值  |
|--------------|--------------------|-----------|------|------|
| 英国洋上風力ガイドの条件 | NEDO モデル           | 1.27      | -    | -    |
| [4]          | 英国洋上風カガイド          | 1.19      | —    | -    |
| 欧州プロジェクト     | NEDO モデル           | 0.86~3.21 | 1.81 | 1,79 |
|              | Peakwind 社データ [31] | 1.06~4.46 | _    | 1.78 |

#### 表 2.20 OPEX の比較(為替は 2014~2023 年の平均値 1&=156 円を使用)

# 2.8 ベースラインウィンドファームのコスト

ベースラインウィンドファーム(15MW×33 基=495MW、表 2.1 参照)に対して NEDO モデル により CAPEX を算出した。船舶供用係数は、中央値の 2.05 に設定した(図 2.13 及び表 2.10 参 照)。英国ポンドから日本円への換算は、2023 年の為替(1 £ = 174 円)で円換算したが、為替変動 (2014 年~2023 年)の振れ幅の影響を整理した。

算定結果を図 2.23 及び図 2.24 に示す。図 2.23 により 2023 年の為替レートの場合、モノパイ ル式及びジャケット式の CAPEX はそれぞれ、37.0 万円/kW 及び 47.3 万円/kW となる。ジャケッ ト式の CAPEX はモノパイル式の 1.3 倍となる。

また、2014~2023年の為替変動の影響に関して、平均値及び標準偏差は以下の通りである。

- モノパイル式:平均 32.9 万円/kW、標準偏差 3.6 万円
- ジャケット式:平均 41.5 万円/kW、標準偏差 4.2 万円



図 2.23 更新モデルによるベースラインウィンドファーム CAPEX の比較(1&=174 円換算)



図 2.24 2014~2023 年の為替の影響(平均為替:156.3 円/ポンド、標準偏差:16.7 円/ポンド)

# 3. 浮体式洋上風力事業性評価のための NEDO モデルの更新

## 3.1 事業性評価方法

着床式と同様、自然条件等をパラメータとして、各海域でウィンドファーム事業が実施された 場合に想定される LCOE を算定することにより、各海域の事業性を評価する。

## 3.1.1. LCOE 算定式

LCOE(Levelized Cost Of Energy) [¥/kWh]の算定式は着床式と同様である。2.1.1 項を参照。

# 3.1.2. コストに含める対象範囲

LCOE 算定に含める洋上風力プロジェクトの対象範囲を図 3.1 に示す。コストの算定対象範囲 は、風車から陸上変電所への接続までを範囲として、系統接続費用は含まない。また、LCOE の計 算は、着床式と同様、発電コスト検証ワーキンググループのコストレビューシート [2]を参照する。



図 3.1 LCOE 算定に含める洋上風カプロジェクトの対象範囲<sup>10</sup>

<sup>10</sup> 図は NEDO 再生可能エネルギー技術白書(2014) [32]より引用

#### 3.1.3. ベースラインウィンドファームの整理

#### <u>諸外国の洋上プロジェクトのサイト条件</u>

浮体式のベースラインの環境条件(水深、離岸距離、年平均風速)を設定するために、諸外国 のプロジェクトに関して整理した。

諸外国の洋上ウィンドファームのプロジェクトデータ [32] (2024 年 9 月時点データ、1990~ 2040 年の計画も含む 473 プロジェクト)を整理した。着床式は 366 プロジェクト、浮体式は 107 プロジェクトである (図 3.2)。

図 3.4 は離岸距離及び水深のデータを着床式((a)及び(c))と浮体式((b)及び(d))に対し て小さい値順にプロットした図である。また、表 3.1 は着床式及び浮体式洋上風力の諸外国デー タの水深及び離岸距離データの分位値を整理した表である。

これらの図表から、水深に関して、

- 着床式:水深 60m 程度までで 100%、平均は 21m
- 浮体式:水深 245m までが全体の 85%で、平均水深は 176m

である。また、離岸距離については、

- 着床式:平均 27km
- 浮体式: 平均 31km

である。

なお、平均値を用いたのは、表 3.1 に示されるように、浮体式の中央値の水深は98m で、15MW 風車用ではスパー式の喫水は100m を超えるため [33] [34]、セミサブ式にほぼ限定されるためで ある。ここでは、諸外国の洋上プロジェクトの代表値として水深176m、離岸距離31kmと整理す ることとする。



図 3.2 国別のデータセット数



図 3.3 着床式及び浮体式洋上風力の諸外国データの水深及び離岸距離データ



図 3.4 着床式及び浮体式洋上風力の諸外国データの水深及び離岸距離データ(続き)

| 項目   | %タイル | 10 | 20 | 30 | 40 | 50 | 60  | 70  | 80  | 85         | 90  | 100  | 平均值        |
|------|------|----|----|----|----|----|-----|-----|-----|------------|-----|------|------------|
| 水深   | 着床式  | 4  | 7  | 10 | 16 | 20 | 25  | 30  | 34  | 38         | 40  | 58   | 21         |
| [m]  | 浮体式  | 20 | 45 | 70 | 80 | 98 | 125 | 140 | 218 | <u>245</u> | 350 | 1130 | <u>176</u> |
| 離岸距離 | 着床式  | 2  | 4  | 8  | 12 | 19 | 27  | 36  | 43  | 49         | 55  | 207  | 27         |
| [km] | 浮体式  | 2  | 5  | 10 | 16 | 19 | 25  | 40  | 58  | 70         | 74  | 131  | <u>31</u>  |

| 表 3.1 着 | 床式及び浮体式洋 | 上風力の諸外国デー | -タの水深及び離 | 岸距離データの分 | 位値 |
|---------|----------|-----------|----------|----------|----|
|---------|----------|-----------|----------|----------|----|

#### 諸外国の洋上プロジェクトのサイト条件に対応する日本の自然条件

上述の通り、諸外国の洋上プロジェクトの代表値として水深 176m、離岸距離 31km と整理した。 この水深・離岸距離条件において、日本の周辺海域での事業性を評価するために、対応する風速 の出現頻度を調べた。

図 3.5 は、水深 175m・離岸距離 31km 以下の風速出現頻度<sup>11</sup>を、また、図 3.6 は水深 175m・離 岸距離 31km となるライン上の風速出現頻度を示している。なお、地形データは、日本海洋データ センター JODC 500m メッシュデータを用いたため、1m は誤差の範囲とみなした。また、海底勾 配 5 度以上のデータは除外している。

これらの図から、日本における水深 175m、離岸距離 31km の水域における平均風速は 7.9m/s (≤31km、図 3.5) 及び 8.4m/s (31km ライン、図 3.6) となる。

この条件における度数分布を用い、NEDO モデルにより算出した 15MW 風車の加重平均の設備 利用率<sup>12</sup>は、38%(≤31km)及び 41%(31km ライン)となった。



図 3.5 水深 175m・離岸距離 31km 以下の風速 出現頻度(※諸外国の浮体プロジェクト の平均に対応した日本の海域条件)

図 3.6 水深 175m・離岸距離 31km ライン上の 風速出現頻度

【注記】

今回、海底勾配 5°以下は、平坦地形としてみなした。Handbook for Marine Geotechnical Engineering (NAFVAC、2012)では、ドラックアンカーに適用可能な海底勾配は 10°以下が推奨されている。ドラッグアンカーは係留索を引っ張ると海底に潜り込んでいく構造になっているため、設置後、一旦海底に潜り込めば、傾斜に関わらず張力がかかり潜り込む方向になり、勾配の影響は問題ない。ただし、アップリフト(アンカー張力方向の角度)が大きいとアンカーが抜ける可能性はある。設置の際は、海底は水平が前提のため、アンカーをアップリフトなしに水平に引っ張ると海底に潜り始めるが、傾斜がついていると潜り込まない可能性もある。限界値は状況

<sup>&</sup>lt;sup>11</sup> NeoWins (http://app10.infoc.nedo.go.jp/Nedo\_Webgis/top.html)の140m高の年平均風速データを使用。

<sup>&</sup>lt;sup>12</sup> 図 2.2 の 15MW 風車のパワーカーブを使用し、稼働率を 95%に設定。

によるため、海底勾配5度の制約は業者の経験値である。また、サクションアンカーでも水平(垂直)に打ち込むことが求められるため、傾斜地に打ち込む際は角度に制限がある。なお、海底勾配の計算で使用したデータは500mメッシュのため、より詳細な情報で整理する必要がある。

## EEZ 内の水深・離岸距離

ここでは、EEZ内における年平均風速8、9及び10m/s以上、かつ水深50m以上のエリアの水 深及び離岸距離を整理した(ただし、海底勾配5度以下を考慮。図3.7参照)。

図 3.7 により、EEZ 内の水深・離岸距離は以下の特徴がある。

- EEZ 内(離岸距離 370km 以下)における離岸距離の中央値(Med.)は風速 8、9、10m/s 以上の順で、各海域において 184、221、273km である。
- 年平均風速 8m/s 以上のエリアは、離岸距離 50km 以内で、水深の中央値は 356m であるが、 標準偏差(Std.)は 711m である。
- 年平均風速が高いエリアほど、水深及び離岸距離は大きくなる。
- 年平均 10m/s 以上のエリアは限られ(風速マップ参照)、中央値は水深 5,382m である。





(b)離岸距離(9m/s以上)







さらに、諸外国の浮体式プロジェクトの平均水深 176m・平均離岸距離 31km に対応する日本の 海域情報を整理した結果を図 3.8 及び表 3.2 に示す。年平均風速 8m/s 以上のエリアで離岸距離 50km 以下の水深データを 500m×500m メッシュで整理した。ただし、制約条件(海底勾配等)は 未考慮である。

整理結果は、以下のようにまとめることができ、平均水深 176m・平均離岸距離 31km 周辺の海 域は設置ポテンシャルの観点からも事業性が期待できる。

- 水深 150~190m(平均値:170m・25km、中央値:182m・25km)のデータ数は17,722で、面積に換算すると4,431km<sup>2</sup>
- さらに、水深 150~510m (平均値: 300m・27km、中央値: 287m・27km) では、面積は 25,542km<sup>2</sup> となる。なお、浮体式ウィンドファームの現状技術で検討されている水深は 500m 程度であ ることを考慮(数値の範囲は図 3.8の水深ビン幅に対応)。



図 3.8 年平均風速 8m/s 以上、離岸距離 50km 以下における水深の度数分布 (ビン幅 20m、■:水深 150~190m、■:水深 190~410m)

| 表 | 3.2 | 年平均風速 | 8m/s いけ | :離岸距離?          | 50km 以下 | 「における | ら水深及て | 「離岸距離の      | 統計値      |
|---|-----|-------|---------|-----------------|---------|-------|-------|-------------|----------|
| - | 0.2 |       |         | - \ ML/T_PLML \ |         |       |       | ᄼᄚᄔᇧᅮᅹᆮᄚᇿᅗᄼ | <u> </u> |

| 対象範囲統計値  | 最小 | 最大    | 平均  | 中央  | 標準偏差 |
|----------|----|-------|-----|-----|------|
| 水深 [m]   | 50 | 3,609 | 768 | 509 | 758  |
| 離岸距離[km] | 0  | 50    | 30  | 31  | 13   |

備考:海底勾配等の制約は未考慮

#### <u>浮体式洋上風力のベースラインウィンドファームの環境条件</u>

以上の整理から、諸外国の浮体式プロジェクトの条件を参考にし、日本の海域情報を考慮した ベースラインウィンドファームの前提条件(水深 176m・離岸距離 31km)は、設置ポテンシャル の観点からも概ね妥当と思われる。また、この条件における 15MW 風車の加重平均の設備利用率 は 41%である。

## 3.1.4. 浮体式の洋上プロジェクトのベースラインウィンドファーム

2022年調査では、LCOE を相対比較するためにベースラインウィンドファームの規模は 350MW 程度と設定した。2024年は、浮体式は洋上風力の EEZ 展開へ向けた論点を踏まえ 990MW に設定 し、大型化に対応して風車は 15MW 機とした。また、水深及び離岸距離は、国内の海域条件や諸 外国のプロジェクトを考慮の上、平均水深 176m 及び平均離岸距離 31km とした。この水深、離岸 距離における国内海域の年平均風速は 8.4m/s であり、15MW 風車のパワーカーブ及び稼働率 95% を用いると、設備利用率は 41%となる。平均水深 176m 及び平均離岸距離 31km 周辺の海域は設置 ポテンシャルの観点からも事業性が期待できるため、ベースラインウインドファームの条件とし て設定した(表 3.3)。

| 項目    |      | 2024 年             | 2019•2022 年         | 備考                                                                                                                                         |
|-------|------|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 出力    | [MW] | 990<br>(15MW×66 基) | 342<br>(9.5MW×36 基) | • 浮体式については、洋上風力の EEZ 展開へ向けた論点を踏まえた。                                                                                                        |
| 設備利用率 | [%]  | 41                 | 30                  | <ul> <li>・正味設備利用率(各種損失含む)。</li> <li>・浮体式の設備利用率は、諸外国の状況と日本の<br/>海域情報を考慮し、15MW 風車のパワーカーブ及<br/>び稼働率 95%を用いて算出した値。</li> </ul>                  |
| 水深    | [m]  | 176                | 30                  | <ul> <li>浮体式は、諸外国のプロジェクトにおける平均水<br/>深 176mに設定。欧米では水深 1000m を超える<br/>プロジェクトの計画も存在することから、水深<br/>500m、1000m も参考値として示すことを検討す<br/>る。</li> </ul> |
| 離岸距離  | [km] | 31                 | 30                  | • 国内の海域条件や諸外国のプロジェクトを考慮の<br>上設定。                                                                                                           |

表 3.3 ベースラインウィンドファーム(浮体式)

[1] エネ庁、洋上風力の EEZ 展開へ向けた論点、2023 年 11 月 15 日

#### 3.1.5. LCOE 算定条件

LCOE を算定するための設定条件を統一した。2019・2022 年の前提条件は基本的に発電コスト 検証ワーキング [3]を参考にしている。なお、NEDO モデルは英国のデータベースを使用している ため、英国ポンドを円換算している。

## 3.1.6. AEP 算定条件

着床式と同様、AEP (Annual Energy Production:年間推定発電量)の算定のための風況データは、 NeoWins<sup>13</sup> (500m メッシュ、詳細風況データ)を用いる。詳細は、2.1.5 項を参照。

<sup>13</sup> NeoWins (洋上風況マップ)、http://app10.infoc.nedo.go.jp/Nedo Webgis/top.html

# 3.2 NEDO モデル(浮体式)

## 3.2.1. モデルの概要

NEDO モデルは、着床式に関する菊地・石原のモデル(2014)[2]、浮体式に関する Maienza [35] や Ioannau のコストモデル [28]などのコストモデルと同様に、資本費(CAPEX)の内訳の各項目 に対するエンジニアリングモデルとして構築されている。浮体式洋上風力は、着床式と比べてま だ実証段階であり、商用プロジェクトの件数は限られていることから、モデルの検証は今後の実 データを待たなければならないが、欧米において浮体式のコストに関して F/S などが実施されて いることから、本調査ではそれらの事例を参考に NEDO モデルの妥当性について評価する。

2024 年モデルは、2022 年モデルを欧州の最新の情報を基にコストモデルを更新した。2024 年 モデルの変更点を表 3.4 に示す。

| 大項目   | 項目                |                                                                                                                             | 説明                                                                                                                                                                                                                                                                                                                                                                                                            |   | 備考·更新内容等                                                                   | 説明      |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------|---------|
| CAPEX | 風車                |                                                                                                                             | <ul> <li>● 定格出力に対する1次式で算定</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | • | 最新のデータを基に式<br>を改定                                                          | 2.3③    |
|       | 基礎                | セミサブ式                                                                                                                       | ● 浮体重量×鋼材単価(製作費含む)                                                                                                                                                                                                                                                                                                                                                                                            | • | MW に応じて算定式更<br>新                                                           | 3.2.3④  |
|       |                   | スパー式                                                                                                                        | <ul> <li>● 浮体重量×鋼材単価(製作費含む)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        | • | 算定式追加                                                                      | 3.2.3④  |
|       | 係留<br>システム        |                                                                                                                             | <ul> <li>係留ライン:係留長さ×長さあたり単価<br/>×本数</li> <li>アンカー:アンカー重量×重量単価×<br/>個数</li> </ul>                                                                                                                                                                                                                                                                                                                              | • | 係留長さ算定式変更                                                                  | 3.2.35  |
|       | 電力<br>ケーブル        | アレイケーブ<br>ル                                                                                                                 | <ul> <li>● アレイケーブル長×長さあたり単価×</li> <li>本数</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | • | ケーブル単価更新                                                                   | 3.2.36  |
|       |                   | エクスポート<br>ケーブル                                                                                                              | <ul> <li>● エクスポートケーブル長×長さあたり単<br/>価×本数</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |   |                                                                            | 3.2.3⑦  |
|       | 変電所               |                                                                                                                             | <ul> <li>● 陸上及び洋上変電所</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               | • | 離岸距離 55km 以上<br>で洋上変電所考慮                                                   | 3.2.3®  |
|       | 施工                | <ul> <li>基礎</li> <li>風車</li> <li>アレイケ <ul> <li>ブル</li> </ul> </li> <li>エクスポ <ul> <li>トケー</li> <li>ブル</li> </ul> </li> </ul> | <ul> <li>以下の作業にかかる日数×傭船費+回航<br/>費で施工費を計算</li> <li>① 係留システム:基地港→AHV 等でサイ<br/>トへ輸送→海底布設</li> <li>② 風車・浮体(セミサブ式):基地港で浮体<br/>に組立→AHV 等でサイトへ曳航</li> <li>③ 風車・浮体(スパー式):基地港→スパ<br/>ー曳航→建て起し海域→基地港→風<br/>車輸送→建て起し海域で風車施工→<br/>AHV 等でサイトへ曳航</li> <li>④ 浮体と係留を接続(把駐力試験含む)</li> <li>⑤ 風車・浮体(TLP 式):TBD</li> <li>⑥ ダイナミックケーブル:基地港→サイト<br/>→CLV 等でケーブル敷設(敷設・引込)</li> <li>⑦ エクスポートケーブル:基地港→サイト<br/>→CLV 等でケーブル敷設</li> </ul> | • | セミサブ式の施工日数<br>を更新<br>スパー式の施工方法<br>を追加<br>使用船舶の回航費及<br>び傭船費を更新              | 3.2.39  |
|       | 港湾費               |                                                                                                                             | <ul> <li>MW 当たりの費用</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 | • | 変更なし                                                                       | 3.2.310 |
|       | その他               |                                                                                                                             | ● MW 当たりの費用                                                                                                                                                                                                                                                                                                                                                                                                   | • | [6]を参考にした陸上<br>変電所施工費、陸上<br>ケーブル施工費、ロジ<br>スティクス、海洋工事<br>安全(HSE)管理など<br>の費用 | 3.2.3①  |
| OPEX  | 運転維持              | <ul> <li>● 運転</li> <li>● 定期保守</li> <li>● 非定期保</li> <li>守</li> </ul>                                                         | <ul> <li>運転費は英国浮体式洋上風力ガイドの情報を参照</li> <li>定期保守費は工程、CTV 傭船費を考慮</li> <li>要素の故障率、工程、傭船費を考慮</li> </ul>                                                                                                                                                                                                                                                                                                             | • | 運転保守費固定値➡<br>故障率、海域情報を<br>考慮して算定                                           | 3.3     |
| DECEX | 撤去費               | ● 撤去費                                                                                                                       | ● 施工費の 70%                                                                                                                                                                                                                                                                                                                                                                                                    | • | <br>変更なし                                                                   | 3.4     |
| AEP   | 年間推定<br>発電電力<br>量 | <ul> <li>パワーカ<br/>ーブ</li> <li>損失</li> <li>稼働率</li> </ul>                                                                    | <ul> <li>風車パワーカーブ、風速出現頻度より<br/>グロス AEP を算定</li> <li>各種損失、稼働率からネット AEP を算<br/>定</li> </ul>                                                                                                                                                                                                                                                                                                                     | • | 稼働率は風車ダウンタ<br>イムを考慮                                                        | 2.1.5   |

| 表 | 3.4 | 2022 年モデルからの主な更新内容 |
|---|-----|--------------------|
|   |     |                    |

#### 3.2.2. 2024 年モデルの主な更新箇所

本項では、2022年モデルからの主な更新箇所(風車モデル、セミサブ式及びスパー式基礎モデル、係留ラインモデル、ダイナミックケーブルモデル、施工及び運転維持費モデル)について述べる。各モデルの数式は3.3項に示した。

## ① 風車モデル

風車モデルの変更は着床式と同じで、2.2.2項の①を参照。

#### ② セミサブ式モデル

2022 年モデル [33]は菊地・石原による 10MW 風車用のセミサブ式基礎モデル [36]を参照 (10MW 風車のみ)し、風車規模に応じた重量の回帰式を基に基礎費用を算定するモデルに変更 した。回帰式については、国内外 14 のプロジェクト・F/S のセミサブ式基礎重量情報を基に整理 した(付属書 E の表 E.1 参照)。NREL モデル式 [37]、WindFloat 及び 15MW 風車の F/S [33]を実 施した NEDO プロジェクトを参考にして、重量に関する回帰式を導出し、重量×鋼材単価により、 風車規模に応じたセミサブ式基礎のコストを算定した。セミサブ式浮体は、コラム及びトラス・ ヒーブプレートによる構造を仮定し、製作費を含めた鋼材費を考慮するために、コラム及びトラ ス・ヒーブプレートの構造重量比の関係を NREL のエンジニアリングモデル [37]を参考にして求 めた。

図 3.9 は、セミサブ式基礎の重量の分布を示す。データ回帰式は WindFloat 及び NEDO F/S デー タを基に定めた。図 3.10 は、NREL のモデルによるコラム及びトラス・ヒーブプレートの構造重 量比を示した図である。



(コラム及びトラス+ヒーブプレート)

# ③ スパー式基礎モデル

国内外の14のプロジェクト(付属書Eの表E.2参照)、NRELモデル式[37]及び15MW風車の F/Sを実施したNEDOプロジェクト[33]等を参考にして、重量に関する回帰式を導出し、重量× 鋼材単価により、風車規模に応じたスパー式基礎のコストを算定した。スパー式浮体は、直線部 であるコラム部、タワーとコラム部をつなぐテーパ部による構造を仮定し、製作費を含めた鋼材 費を考慮するために、コラム及びテーパ部の構造重量比の関係を NREL のエンジニアリングモデ ル [37]を参考にして求めた。

図 3.11 はスパー式基礎の重量の分布を示す。データ回帰式はデータ及び NREL のエンジニアリ ングモデル式を参考にして求めた。また、図 3.12 は、NREL のモデルによるコラム及テーパの構 造重量比を示した図である。

スパー式の場合、浮体の重心を下げるために、固体のバラストを搭載するため、固体バラスト の重量及び費用も考慮した。算出式は NREL のエンジニアリングモデル [37]を引用した。



# ④ 係留ラインモデル

係留ラインの長さを文献 [35] [36] [38] [39] [40] [41]等及び OrcaFlex による係留シミュレーショ ンで確認した長さから係留ライン長モデルを検討し、線形回帰式から曲線近似式に更新した(図 3.13)。



図 3.13 係留索の全長 iM と水深 Dph の比 iM/Dph の関係

係留ライン長 iM [m] は次の式(3.1) で算出する(図 3.13 中の補正モデル式)。

 $iM = (53.13 * 1.03^{(-Dph)+4.05)*Dph}$  (3.1)

ここで、Dph は水深 [m] である。

# ⑤ ダイナミックケーブルモデル

セミサブ型浮体のレイジーウェーブ方式(Lazy wave configuration)のダイナミックケーブルの 解析結果 [42]を引用し、風車間のダイナミックケーブル長 Lacc(図 3.14 中の *l*+*l*<sub>2</sub>+*l*<sub>3</sub>、余長を含 む)を算出し、アレイケーブル設備費を算出した。ダイナミックケーブルの全長で求める係数を 固定から、水深に応じて計算する方法に変更した。また、文献 [24] [25] [26]を参考にし、スタテ ィック及びダイナミックケーブルのそれぞれの m 当たりの単価を設定した。

ダイナミックケーブル長 Lacc は次の式(3.2) で算出した。

 $Lacc=2*(2.22*Dph^{0.0486})*Dph/1000....(3.2)$ 

ここで、Dph は水深 [m] である。



#### ⑥ 施エモデル

2022 年モデルはセミサブ式基礎を想定しているため、図 3.15 の浮体式洋上風車の施工方法に 示すように、風車の組立は港湾のヤードで行い、同様に港湾で組立てられた浮体に搭載する。搭 載後、タグボートとアンカーハンドリング船(AHV、図 3.16)によりサイトまで曳航し、係留を 接続する。

施工に係るコストモデルは、風車組立日数、曳航時間、係留接続及びダイナミックケーブル施 工日数を考慮する。浮体式洋上変電所も設置する場合、変電所の施工についても風車と同様の工 程で実施するものとする。



図 3.15 浮体式洋上風車の施工方法 [35]



図 3.16 AHV(川崎近海汽船)<sup>14</sup>

2024 年モデルに追加したスパー式基礎の施工手順は、図 3.17 に示す通りである。





<sup>14</sup> https://funeco.jp/news/kline-kinkai-6000-horsepower-type-offshore-support-vessel-introduced/

#### ⑥ 運転維持費モデル

2024年の運転維持費モデルは、着床式と同様、保守費に関して、海域ごとの環境条件(離岸距離及び船舶供用係数)を考慮したモデルとした。このモデルは、Strathclyde大のFar Offshore Wind Interactive Tool (FOWIT)等 [19][20][21][22]を参考に構築した。維持費については、定期保守と 非定期保守(大規模修繕などを実施)に分け、図 2.14に示す工程を設定した。また、浮体及び係留システムに係る運転維持費を想定した。

大規模修繕は、①大型クレーン船(HLV)によりオンサイトで修理を行うか、又は②係留及び ケーブルを切り離して、港湾あるいは静穏な海域まで浮体を曳航して、オフサイトで修理する場 合があるが、ここでは、着床式と同様に①の修理方法を仮定した。

#### 3.3 資本費モデル

#### ① 入力変数及びベースラインデータ

2.3 項の①と同様である。

#### 2) 設備費

設備費 CAPEX [£] は式 (3.3) を用いて算定した。

CAPEX = WTC+SSC+CMC+CAC+ACC+ECC+TSC+IC+PC+DC(3.3)

式 (3.3) 中のパラメータは、次の通りである。

- WTC : 風力発電機設備費 [£]
- SSC : 基礎構造物設備費 [£]
- CMC : 係留索設備費 [£]
- **CAC** : アンカー設備費 [£]
- ACC : アレイケーブル設備費 [£]
- ECC : 送電ケーブル設備費 [£]
- TSC : 変電所設備費 [£]
- IC : 工事費 [£]
- PC :港湾費 [£]
- DC : 設計・調査費 [£]

# ③ 風力発電機設備費

2.3 項の③と同様である。

#### ④ 基礎構造物設備費

## セミサブ式基礎

セミサブ式基礎設備費 SSC ssb は式(3.4)で算定した。

 $SSC_ssb=cs*mf_ssb*[(-0.0148*Pr+0.6631)+2*(0.0148*Pr+0.3369)] \cdots (3.4)$ mf\_ssb=4.8006\*Pr^2+236.6\*Pr+807.61 (3.4a)

ここで、

mf\_ssb :セミサブ重量

Pr : 風車定格出力 [MW]

cs : コラム鋼材単価 [£/ton]

である。なお、コラム以外の主要部材(トラス及びヒーブプレート)の単価はコラムの2倍 [37] を想定して式(3.4)を定式化した。

# スパー式基礎

スパー式基礎設備費 SSC\_spr は式(3.5)で算定した。

 $SSC\_spr = cs1*mf\_spr*(1+0.35*0.3399*exp(-0.096*Pr))+cs2*mf\_bst.....(3.5)$ mf\\_spr = 7.1361\*Pr^2+150.4\*Pr+605.97....(3.5a) mf\\_bst= -16.536\*Pr^2+1261.8\*Pr-1554.6...(3.5b)

ここで、

cs1、cs2 : スパー鋼材単価およびバラスト単価 [£/ton]

mf spr : バラスト重量 [ton] [37]

Pr : 風車定格出力 [MW]

である。なお、テーパ部の単価はコラム部の1.35倍を想定した[37]。

# ⑤ 係留システム設備費

係留索の設備費 CMC は式(3.6)を用いて算定した。Maienza ら [35]及び corewind [45]を参考にして、アンカーの種類により係留索費用を算定するモデルとしている。

| CMC=Lac*Dph*CpM*nM*N ·····     | (3.6)  |
|--------------------------------|--------|
| Lac = 53.13 * 1.03^(-Dph)+4.05 | (3.6a) |

ここで、

| СрМ | : 係留ライン長さあたりの単価 [k£/m]    |
|-----|---------------------------|
| Dph | :水深 [m]                   |
| iM  | : 係留ラインの長さ(式中の下線の項)[m]    |
| Lac | :係留長さ [m]                 |
| nM  | :1浮体あたりの係留ライン本数 = nCt*nMt |
| N   | :風車基数                     |
| nCt | :1浮体あたりのコラム数              |
| nMt | :1コラムあたりの係留ライン数           |

である。

アンカーの設備費 CAC は式 (3.7) を用いて算定した。アンカーは海底底質が砂質の場合にドラ ッグアンカーを、それ以外の岩等はパイルアンカーとし、Maienza ら [35]及び corewind [45]でま とめられたデータを参考にして費用を決定した。

| $CAC = mA^*cA^*nM^*(N+1)^*fA$ | (3.7)  |
|-------------------------------|--------|
| fA=1 (ドラックアンカー、砂質)            | (3.7a) |
| fA=1.65(パイルアンカー、岩等)           | (3.7b) |

### ここで、

| mA   | : アンカーの質量 [ton]          |
|------|--------------------------|
| cA   | :アンカーの単位質量当たりの単価 [k£/kg] |
| nM   | :1浮体当たりのアンカーの本数          |
| fA   | : アンカー種類係数               |
| である。 |                          |

# ⑥ アレイケーブル設備費

アレイケーブル設備費 SSC spr は式 (3.8) で算定した。

| AC=(Cacs * (DWT - 4*Dph/1000) +Cacd * Lacc)*(N+2) | (3.8)  |
|---------------------------------------------------|--------|
| Lacc=2*(2.22*Dph^0.0486) * Dph/1000               | (3.8a) |

# ここで、

Cacd :ダイナミックアレイケーブル単価 [£/km]
 Cacs :スタティックアレイケーブル単価 [£/km]
 DWT :風車間距離 [km] =7\*D (D:風車直径)
 Dph :水深 [m]
 N :風車基数

# である。

# ⑦ エクスポートケーブル設備費

送電ケーブル設備費 ECC [£] は式(3.9)を用いて算定した。ケーブル故障及び事故を想定して、冗長性を確保するために、送電ケーブルは2本敷設することとする(図 2.16 参照)。

# ここで、

- Cec :送電ケーブル単価=648,000 [£/km]
- Nec : 送電ケーブル本数=2

である。

## ⑧ 変電所設備費

変電所設備費 TSC [£] は式 (3.10) を用いて算定した。欧州の洋上ウィンドファームでは洋上 変電所が設置されている場合が多いが、日本における着床式洋上発電コストの算定では、欧州の 実績、複数の専門家の意見に基づき、非設置とした。一方、浮体式の場合、本調査では離岸距離 は最大 30km までを想定しているため、洋上変電所は1 基設置するとした。変電所は、浮体基礎 構造に搭載することとした。

 $TSC = (Conts + Cofts) *1,000 *Pr *N \dots (3.10)$ 

#### ここで、

 Conts
 : 陸上変電所の設備費 [k £ /MW]

 Cofts
 : 洋上変電所の設備費 [k £ /MW]

 である。

# ⑨ 施工費

# <u>セミサブ式基礎</u>

工事費 IC [£] は式 (3.11) を用いて算定した。

IC = ICwt + ICsub + ICma + ICcable + ICss (3.11)

# ここで、

| ICwt    | :風車工事費        |
|---------|---------------|
| ICsub   | : 基礎工事費(セミサブ) |
| ICma    | : 係留システム工事費   |
| ICcable | :ケーブル工事費      |
| ICss    | :洋上変電所工事費     |

であり、それぞれ、以下の式で算定した。

| ICwt =N*tLTP*Cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.11a) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ICsub =N*tLTP*Cc+ Fyr,sub*2*Cmob_sub + Cvessel,sub *Ttrans1,sub*WDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3.11b) |
| ICma = Fyr,sub*2*Cmob_ma + Cvessel,ma *(Tinstall,ma +Ttrans1,ma)*WDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.11c) |
| $IC cable = Fyr, cable * 2*Cmob\_cable + Cvessel, cable * (Tinstall, cable + Ttrans1, cable) * WDF + Co, cable + Cvessel, cable * (Tinstall, cable + Ttrans1, cable) * WDF + Co, cable + Cvessel, cable * (Tinstall, cable + Ttrans1, cable) * WDF + Co, cable * (Tinstall, cable + Ttrans1, cable) * WDF + Co, cable * (Tinstall, cable + Ttrans1, cable) * (Tinstall, cable + Ttrans1, cable + Ttrans1, cable) * (Tinstall, cable + Ttrans1, cable) * (Tinstall, cable + Ttrans1, cable) * (Tinstall, cable + Ttrans1, cable + Ttran$ | cable   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3.11d) |
| $ICss{=}tLTP*Cc{+}Fyr, ss*2*Cmob\_ss + Cvessel, ss*Trans1, ss*WDF \cdots \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3.10e) |
| Cmob_sub=Cmob_sub1*2+Cmob_sub2 ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3.11f) |
| Cvessel_sub=Cvessel,sub1+Cvessel,sub2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3.11g) |
| Fyr,i = ROUNDUP(Tday,i*N/(365/WDF),0)·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (3.11h) |

| Co,cable=(1000*(Lacc+DTC)+8000+10000)*N*Pr            | (3.11i) |
|-------------------------------------------------------|---------|
| Ttrans1,sub=DAS*(Vld+Vul)/1.852/24*(N+1)              | (3.11j) |
| Tinstall,wt=2*(N+1)                                   | (3.11k) |
| $T trans 1, ma = DAS*(Vld+Vul)/1.852/24*(N+1) \cdots$ | (3.111) |
| Tinstall,cable=Lacc/0.6+DTC/1.6*Nec                   | (3.11m) |

ここで、

| Cc             | :港湾におけるクレーン使用料 [£/浮体]                                  |
|----------------|--------------------------------------------------------|
| Cmob           | :回航費 [£] (表 3.5 参照)                                    |
| Co,cable       | :ケーブル施工の他の費用 [£]                                       |
| Cvessel,i      | : 傭船費(i: sub [基礎]、wt [風車]、cable [ケーブル]、ss [洋上変電所]) [£/ |
|                | 日]、表 3.5 参照)                                           |
| DAS            | : 基地港からの距離 [km]                                        |
| Fyr,i          | :基礎、風車及びケーブルそれぞれの工事を実施する年度数(i:sub [基礎]、wt              |
|                | [風車]、cable [ケーブル])                                     |
| Tday,i         | :基礎、風車の施工日数(i:sub [基礎]、wt [風車]、表 3.5 参照)               |
| Tinstall,i     | :施工船の施工日数(i:sub [基礎]、ma [係留システム])[£/日]、表 3.5 参         |
|                | 照)                                                     |
| Tinstall,cable | :ケーブル施工日数 (表 3.5 参照)                                   |
| tLTP           | :港湾における作業時間 [h/浮体]                                     |
| Ttrans1,i      | : 輸送日数(i : sub [基礎]、ma [係留システム]、wt [風車])               |
| Vs             | : 輸送速度 [日/km] (Vvessel は表 3.6 の船の速度 [knots])           |
| WDF            | :船舶供用係数(表 2.9 及び図 2.12 参照)                             |
| である。           |                                                        |

式(3.11a)~(3.11e)は、それぞれ、風車、基礎、係留システム、ケーブル及び変電所を施工 するためのコストを算定する式である。

式 (3.11a) ~ (3.11e) 中の回航費、傭船費、施工及び輸送に係る日数は Maienza らのモデル [35] を参考に決定した。欧州の工事費に用いるデータは図 2.12 及び表 3.6 を参照する。洋上における 工事は、気象・海象の影響を受け、風速や波高によって施工日数が限られため、この影響は、日 本の海域に対して、船舶供用係数 WDF で考慮し、式 (3.11b) ~ (3.11e) に含めた。

船舶供用係数は表 2.9 及び図 2.12 を参照。図 2.12 は、隣接する重要港湾間を垂直二等分線で区分し、その区間において港湾毎に与えられている船舶供用係数の最大値を示している。浮体式用に離岸距離 30km の範囲を含んでいる。

式 (3.11f) は、回航費を算定するために用いる。また、式 (3.11g) は、傭船費を算定するため に用いる。

式(3.11h)は、回航費を算定するために用いる。施工可能な期間は欧州では1年であるが、日本では、船舶供用係数の定義により1/WDF年とする。基礎、風車及びケーブルそれぞれで、施工日数が施工可能な期間を超過した場合、工事は次年以降に実施すると仮定する。船舶供用係数は

図 2.12 及び表 2.9 を参照。

式 (3.11i) は、ケーブル施工日数を算定するための式で、表 3.6 に示すように、欧州の実績を 参考にして、アレイケーブルと送電ケーブルで日当たりの施工距離が異なる。式 (3.11i) の内訳 は、ケーブル施工に係る埋設費 (1,000 £ /km/MW)、ケーブル引込費用 (8,000 £ /MW) 及び試験費 (10,000 £ /MW) である [28]。

式(3.11j)は、浮体の輸送に関する日数を算定するための式である。想定した船の速度は表 3.6 にまとめた。往路及び復路で船の速度(それぞれ Vld 及び Vul)は異なる。また、輸送距離は離岸 距離+基地港からの距離 200km を仮定し、港湾からサイトまでは AHV とタグを使用して一度に 浮体風車1基を輸送するとした。

式 (3.11k) は港湾で風車及び変電所の組立にかかる日数を算定する式である。また、式 (3.11l) は、係留システムの施工日数の算定式である。式 (3.11j) 及び (3.11k) で N+1 を掛けているのは、 洋上変電所を考慮しているためである。また、式 (3.11m) はケーブルの施工日数を算定する式で ある。

| NEDO モデル使用データ            |           | 文献       | 備考   |                                             |
|--------------------------|-----------|----------|------|---------------------------------------------|
| 輸送日数                     | 個別        | в        |      | 船の種類別に輸送速度を算定 [35]。距離は基地港<br>からの距離 DAS を仮定。 |
| Cmob_sub1                | 3,650     | [£/船/片道] | [35] | タグボート 2 隻使用                                 |
| Cmob_sub2                | 90,000    | [£/船/片道] | [35] | AHV1 隻使用                                    |
| Cmob_cable               | 555,000   | [£/船/片道] | [11] |                                             |
| Cmob_ss                  | 90,000    | [£/変電所]  | [6]  |                                             |
| Cvessel,wt               | 72,993    | [윤/日]    | [11] |                                             |
| Cvessel,sub1             | 3,650     | [윤/日]    | [35] | タグボート 2 隻使用                                 |
| Cvessel,sub2             | 66,993    | [윤/日]    | [35] | AHV1 隻使用                                    |
| Cvessel,ma               | 66,993    | [윤/日]    | [35] |                                             |
| Cvessel,cable            | 111,000   | [윤/日]    | [11] |                                             |
| 基礎施工日数                   | 0.3       | [日/基礎]   | [35] | 港湾における作業時間                                  |
| 係留施工日数                   | 4         | [日/係留]   |      | 専門家ヒアリング                                    |
| 風車・洋上変電所施<br>エ日数         | 0.3       | [日/風車]   | [35] | 港湾における作業時間                                  |
| 1 日当たりのケーブル<br>施工距離(アレイ) | 0.6       | [km/日]   | [4]  |                                             |
| 1 日当たりのケーブル<br>施工距離(送電)  | 1.6       | [km/日]   | [6]  |                                             |
| 船舶共用係数                   | 1.65~3.70 | [-]      | [15] | 欧州は 1.50                                    |

表 3.5 工事費に用いるパラメータ

# 表 3.6 工事費に用いる船の速度(1 konts = 1.852 km/h)

| 船               | 輸送速度(積載時)<br>Vld[knots] | 輸送速度(非積載時)<br>Vul[knots] | 輸送日数<br>(基地港からの距離:DAS) |
|-----------------|-------------------------|--------------------------|------------------------|
| Cable-laying    | 9                       | 14                       | DAS*(Vld+Bul)/1.852/24 |
| Anchor-handling | 5                       | 15                       | DAS*(VId+Bul)/1.852/24 |
| Tug boat        | 5                       | 15                       | DAS*(Vld+Bul)/1.852/24 |

# <u>スパー式基礎</u>

スパー式基礎の施工費 ICsub,spr は式(3.11)で算定した。施工費 IC は式で ICsub= Icsub,spr と する。

| ICsub,spr=Fyr,sub*2*Cmob,sub + Cvessel,sub*(Ttrans1,sub+Tinstall,sub)*WDF+Co,sub ····                            | (3.11)  |
|------------------------------------------------------------------------------------------------------------------|---------|
| $T trans 1, sub = (DAS/Vld + DAS/Vul)/1.852/24 + nM*(DABP/Vld + DABP/Vul)/1.852/24 \cdots \cdots \cdots \cdots $ | (3.11a) |
| Tinstall,sub=4.5*nM·····                                                                                         | (3.11b) |
| Fyr,sub=ROUNDUP( $\Sigma$ (Ttrans1,sub_i + Tinstall1,sub_i) /(365/WDF),0) ······                                 | (3.11c) |

# ここで、

| Co,sub        | :浮体施工その他の費用 [£]         |
|---------------|-------------------------|
| Cmob,sub_i    | :浮体敷設船回航費 [£]           |
| Cvessel,sub_i | :浮体敷設船傭船費 [£]           |
| Fyr,sub       | : 浮体工事を実施する年度数          |
| Ttrans1,sub   | :浮体輸送日数                 |
| Tinstall,sub  | :浮体設置日数                 |
| DAS           | :基地港から組立海域までの距離 [km]    |
| DABP          | : 組立海域から設置サイトまでの距離 [km] |
| nM            | :1浮体あたりの係留ラインの本数        |
| WDF           | : 船舶供用係数                |

である。

式(3.11a)は、基地港から組立海域及び組立海域から設置サイトまでの輸送日数を算定した。 式(3.11a)はセミサブ式基礎では、式(2.9j)を用いた。

## 11) 港湾費

2.3 項⑩参照。

# ① その他

2022 年モデルから変更なし。その他の費用 OC [£] は、文献 [6]を参考にした陸上変電所施工 費、陸上ケーブル施工費、ロジスティクス、海洋工事安全(HSE)管理などの費用を算定した。

#### 12 設計·調査費

2.3 項12参照。

#### 3.4 運転維持費モデル

運転維持費 OPEX [£/年] の算定方法は、2.4 節と同様で、定期保守費 C\_sm、非定期保守費 C\_cm 及び運転費 C\_op により算定した(式(2.14)参照)。

#### ① 定期保守費 C\_sm

使用する数式は2.4節の①と同じ。

なお、図 2.15 に示すように、サイトの離岸距離により使用船舶が選択されるが、定期保守に使用する船舶は、離岸距離 30NM (55.6km) 程度までを対象とした CTV のみを想定しているが(図 2.15 の左図)、浮体式は EEZ への展開が計画されているため、離岸距離 30NM を超えるプロジェクトも考えられるため、その場合は SOV と CTV 併用による定期保守を想定する必要がある。現状の運転維持費算定モデルは離岸距離 30NM 程度までが適用範囲であることに留意されたい。

## ② 非定期保守費 C\_sm

使用する数式は2.4節の②と同じ。

2.4 節に示されるように、表 2.16 及び表 2.17 からカテゴリ別ダウンタイム(DT)を算出する (着床式の場合)。浮体式の場合、浮体及び係留ラインの保守があるため、表 2.17 の代わりに表 3.7 を用いる。また、要素に対する故障発生率は付属資料 D:故障に関するデータにまとめた。表 3.7 中のロジ時間は、故障が発生してから、該当する要素を調達するのに要する時間である。割り 当てられている数値は文献 [19]から引用したもので、これはプロジェクトごと、地域ごとに異な る数値と考えられるため、今後アップデートが必要である。

修理カテゴリAは、着床式と同様に定期保守費に算入し、設備利用率が95%程度になるよう に修理カテゴリを選択した。本表3.7に示した例では、ダウンタイムの合計は17.78日となり、稼 働率は、(365-17.78)/365=95%となる(365は閏年を考慮した年間日数)。修理カテゴリを全て考慮 した場合、稼働率は91%となる。要素別の故障発生率は、本来なら風車毎に異なるが、メーカー ごとのデータは入手困難であるため、文献[17][18][19][20]を参考にした。

| 使用                  | 修理       | 年間     | 輸送時  | 作業時  | 作業時  | 年間傭 | ロジ時  | 天候遅  | DT 合 | 作業可   | 年間    | 年間     |
|---------------------|----------|--------|------|------|------|-----|------|------|------|-------|-------|--------|
| 船舶                  | カテゴリ     | 発生率    | 間[h] | 間[h] | 間[日] | 船日数 | 間[h] | 延[h] | 計[h] | 能[h]  | DT[h] | DT[日]  |
|                     |          |        | tt,i | t0   |      |     | tl,i | tw,i | t,i  | teff  |       | D_dt,i |
| CTV                 | A        | 1.0515 | 1.5  | 56   | 2.3  | 3   | 0    | 96   | 152  | 8.0   | 160   | 0.00   |
| CTV                 | В        | 0.0140 | 1.5  | 56   | 2.3  | 1   | 8    | 96   | 160  | 8.0   | 2     | 0.00   |
| CTV                 | С        | 0.0100 | 1.5  | 183  | 7.6  | 1   | 48   | 96   | 327  | 8.0   | 3     | 0.14   |
| CTV                 | D        | 0.1107 | 1.5  | 99   | 4.1  | 1   | 160  | 96   | 355  | 8.0   | 39    | 1.64   |
| CTV                 | E        | 0.3521 | 1.5  | 99   | 4.1  | 2   | 500  | 96   | 695  | 8.0   | 245   | 10.19  |
| FCV                 | Α        | 1.0515 | 5.2  | 5    | 0.2  | 1   | 0    | 96   | 105  | 11.0  | 111   | 0.00   |
| FCV                 | В        | 0.0140 | 5.2  | 5    | 0.2  | 1   | 8    | 96   | 113  | 11.0  | 2     | 0.00   |
| FCV                 | С        | 0.0100 | 5.2  | 12   | 0.5  | 1   | 48   | 96   | 160  | 11.0  | 2     | 0.07   |
| FCV                 | D        | 0.1107 | 5.2  | 98   | 4.1  | 1   | 0    | 96   | 198  | 11.0  | 22    | 0.92   |
| FCV                 | E        | 0.3521 | 5.2  | 98   | 4.1  | 2   | 0    | 96   | 198  | 11.0  | 70    | 0.00   |
| AHV                 | С        | 0.0000 | 3.3  | 0    | 0.0  | 0   | 48   | 96   | 147  | 11.0  | 0     | 0.00   |
| AHV                 | D        | 0.0300 | 3.3  | 240  | 10.0 | 1   | 160  | 96   | 499  | 11.0  | 15    | 0.62   |
| AHV                 | E        | 0.0580 | 3.3  | 360  | 15.0 | 1   | 500  | 96   | 959  | 11.0  | 56    | 0.00   |
| CLV                 | С        | 0.0000 | 2.9  | 0    | 0.0  | 0   | 48   | 96   | 147  | 11.0  | 0     | 0.00   |
| CLV                 | D        | 0.0250 | 2.9  | 240  | 10.0 | 1   | 160  | 96   | 499  | 11.0  | 12    | 0.52   |
| CLV                 | E        | 0.0160 | 2.9  | 360  | 15.0 | 1   | 500  | 96   | 959  | 11.0  | 15    | 0.64   |
| CLV                 | С        | 0.0000 | 2.9  | 0    | 0.0  | 0   | 160  | 96   | 259  | 11.0  | 0     | 0.00   |
| CLV                 | D        | 0.0200 | 2.9  | 60   | 2.5  | 1   | 500  | 96   | 659  | 11.0  | 13    | 0.55   |
| CLV                 | E        | 0.0000 | 2.9  | 0    | 0.0  | 0   | 48   | 96   | 147  | 11.0  | 0     | 0.00   |
| CTV                 | 定期<br>保守 | 1      |      |      |      |     |      |      |      |       |       | 2.50   |
| ダウンタイム(DT)計[日/風車/年] |          |        |      |      |      |     |      |      |      | 17.78 |       |        |

# 表 3.7 浮体式のカテゴリ別ダウンタイム(DT)表

# ③ 運転費 C\_op

運転費 C\_op は、Guide to a floating offshore wind(英国浮体式洋上風力ガイド)のデータ(MW 当あたりの単価) [6]を参考にコントロールセンター運営 Ctc、トレーニング費 Ct、陸上・洋上技 術費 Conlg、管理員・作業員費 Ccnt 及び保険料 Cins 等(単位: £/MW/年)を用いて算定した。

 $C_{op} = (Ctc + Ct + Conlg + Ccnt)*N*Pr$ (3.12)

# 3.5 撤去費モデル

浮体式の撤去の実績は限られるため、着床式と同様とする。2.5節参照。

## 3.6 LCOE 算定

2.6 節参照。

## 3.7 2024 年モデルの検証

## 3.7.1. 欧州プロジェクトとの CAPEX の比較

図 3.18 に NEDO モデルと欧州の実証及び商用プロジェクト(表 3.8)の CAPEX の比較を示す。 商用プロジェクトと比較して同水準であるため、NEDO モデルについては一定程度の精度がある と評価される。一方、より規模が大きく、プレ商用プロジェクトと比較して、習熟が進み、高い 技術を活用した今後の商用プロジェクトについては、より効率的な事業実施が可能となることも 見込まれる。

| プロジェクト                     | E  | 年    | WT<br>[MW] | 基数 | WF<br>[MW] | 平均水深<br>[m] | 離岸距離<br>[km] |
|----------------------------|----|------|------------|----|------------|-------------|--------------|
| Hywind Scotland Pilot Park | UK | 2017 | 6.0        | 5  | 30         | 108         | 24           |
| Hywind Tampen              | NO | 2022 | 8.6        | 11 | 94.6       | 280         | 131          |
| WindFloat Atlantic         | PO | 2019 | 8.4        | 3  | 25.2       | 93          | 15           |
| Kincardine - phase 2       | UK | 2020 | 9.5        | 5  | 47.5       | 70          | 16           |

表 3.8 欧州のプロジェクト情報



図 3.18 更新モデルと実績 CAPEX [32] (浮体式基礎)の比較

# 3.7.2. 英国浮体式ガイドとの CAPEX の比較

Guide to a Floating Offshore Wind Farm(英国浮体式洋上風力ガイド)の条件 [6]と比較するために、英国浮体式洋上風力ガイドのプロジェクト条件を NEDO モデルに入力し、NEDO モデルにより CAPEX を算定した。プロジェクト条件は表 3.9 に示す。なお、英国浮体式洋上風力ガイドの洋上変電所はジャケット式基礎であるが、NEDO モデルでは考慮していない。

CAPEX については、NEDO モデル及び英国浮体式洋上風力ガイド(図中では英国 FOWT ガイド)は、ぞれぞれ、60.2 万円/kW 及び 58.0 万円/kW となり、NEDO モデルは+3.8%となった。

CAPEX の内訳は、NEDO モデルの風車コストは英国浮体式洋上風力ガイドよりも約 33%低い。 また、セミサブ式基礎のコストが NEDO モデルの風車コストは英国浮体式洋上風力ガイドよりも 高い。これは、セミサブ式基礎の重量について、NEDO モデルが英国浮体式洋上風力ガイドより 重くなっているためである。英国浮体式洋上風力ガイドは NREL などで想定されている、最適化 された浮体を想定しているためと思われる。

| 設備容量  | 450 MW(15MW 風車×30 基) |  |  |  |  |  |
|-------|----------------------|--|--|--|--|--|
| 水深    | 100 m                |  |  |  |  |  |
| 年平均風速 | 10 m/s @100 m a.s.l. |  |  |  |  |  |
| 離岸距離  | 60 km                |  |  |  |  |  |
| 基地港距離 | 60 km                |  |  |  |  |  |
| 浮体形式  | 3 コラムセミサブ浮体          |  |  |  |  |  |
| 係留方式  | 3 係留ライン+3ドラッグアンカー    |  |  |  |  |  |
| 変電所基礎 | ジャケット式(NEDO モデルは未考慮) |  |  |  |  |  |

表 3.9 英国浮体式洋上風力ガイドの条件



図 3.19 英国浮体式ガイド条件(セミサブ)との比較

#### 3.7.3. ベースラインウィンドファームの CAPEX

ベースラインウィンドファーム (15MW×66 基=990MW、前提条件は表 3.3 を参照) に対して NEDO モデルにより CAPEX を算出した。船舶供用係数は、中央値の 2.05 に設定した(図 2.13 及 び表 2.10 参照)。英国ポンドから日本円への換算は、2023 年の為替(1 £ =174 円) で円換算した が、為替変動(2014 年~2023 年)の振れ幅の影響を整理した。

算定結果を図 3.20 及び図 3.21 に示す。図 3.20 により、2023 年の為替レートの場合、セミサブ 式及びスパー式の CAPEX はそれぞれ、68.8 万円/kW 及び 57.0 万円/kW となる。セミサブ式の CAPEX はスパー式の 1.2 倍となる。また、2014~2023 年の為替変動の影響に関して、平均値及び 標準偏差は以下の通りである。

- セミサブ式 : 平均 61.6 万円/kW、標準偏差 6.4 万円
- スパー式 : 平均 50.9 万円/kW、標準偏差 5.4 万円



図 3.20 更新モデルによるベースラインウィンドファーム CAPEX の比較(1&=174 円換算)



図 3.21 為替の影響(平均為替:156.3円/ポンド、標準偏差:16.7円/ポンド)

# 4. まとめ

本調査では、2019・2022年で作成した事業性評価に用いたNEDOモデル及び2022年で作成した 事業性評価に用いた浮体式洋上風力のNEDOモデルを更新することを目的とした。

NEDOモデル(着床式)は、2022年度のモデル(ベースラインはモノパイル式基礎)に対して、 ジャケット式基礎モデル(2022年モデルはモノパイル基礎のエンジニアリングモデルに補正係 数を乗算)を追加、施工モデル及びOPEXモデルを更新した。

NEDOモデル(浮体式)は、セミサブ式モデルの更新、スパー式モデルの追加及び運転維持費 モデルを更新した。また、諸外国の浮体式プロジェクトの条件を参考にし、日本の海域情報 を考慮して浮体式のベースラインモデルの条件を設定した。

更新したNEDOモデル(着床式及び浮体式)は、最新の情報により検証を行った。

# 4.1 NEDO モデル(着床式)

#### 4.1.1. 基礎モデルの更新

2019・2022 年モデルは、モノパイル式基礎用コストモデルで算出した CAPEX をジャケット式 基礎用に補正する方法であったが、2024 年モデルは、国内外情報を基にした基礎重量の回帰式を 求め、モノパイルと同様に基礎費用を算定するモデルとした。回帰式は、国内外 24 のプロジェク トのジャケット及びピンパイル(ジャケット式基礎を海底に固定するための杭で、ジャケット式 基礎の脚本数により 3~4 本を使用する)の重量情報を用いて決定した。

#### 4.1.2. 施エモデルの更新

ジャケット式コストモデルの更新に伴い、ジャケット式基礎の施工モデルを追加した。追加に あたり、ジャケット式基礎の施工日数を設定するために、改めて欧州の施工日数のデータを整理 した。商用期プロジェクトのデータとの比較では、同水準の結果であり NEDO モデルについては 一定程度の精度があると評価された。

#### 4.1.3. 設備費モデルの更新・検証

ジャケット式基礎モデル及び施工モデルの更新に加えて、最新の文献・情報により、幾つかの コストモデルを更新した。欧州実績と検証では 2014~2023 年における英国、ベルギー、デンマー ク、ドイツ及びオランダのデータを使用した。結果は、2024 年モデルは 2022 年モデルと比較して 同水準となった。

#### 4.1.4. 運転維持費モデルの更新・検証

2024年の運転維持費モデルは、保守費に関して、海域毎の環境条件(離岸距離及び船舶供用係数)を考慮したモデルとした。このモデルは、Strathclyde大のFOWIT等を参考に構築した。維持費については、定期保守と非定期保守(大規模修繕などを実施)に分けた工程を設定した。欧州のデータの比較では、概ね実績値と同程度の範囲である事が示された。

#### 4.1.5. AEP(推定年間発電量)算定モデルの更新

AEP を算定するために用いる風車のパワーカーブデータのうち、15MW 風車のデータを更新した。また、稼働率は OPEX モデルにより算定するダウンタイムを反映することで、海域毎の稼働率を算定するモデルに更新した。

#### 4.1.6. その他

ベースラインウィンドファームの条件の一つとして、船舶供用係数の統計値を整理し、国内の 船舶供用係数に関して、瀬戸内海、島嶼部等を除く中央値は 2.05(平均値は 2.21)とした。

#### 4.2 浮体式 NEDO モデル

#### 4.2.1. 前提条件の整理

諸外国の浮体式プロジェクトの条件を参考にし、日本の海域情報を考慮したベースラインウィンドファームの前提条件は、水深 176m・離岸距離 31km 及びこの条件における 15MW 風車の加重 平均の設備利用率 41%とした。

#### 4.2.2. 浮体基礎モデルの更新

セミサブ式基礎費用算定は、風車規模に応じた重量の回帰式を基に基礎費用を算定するモデル に変更した。国内外 14 のプロジェクト・F/S のセミサブ式基礎重量情報を整理し、セミサブ式浮 体の重量に関する回帰式を導出した。

また、スパー式基礎費用算定モデルを追加した。スパー式のモデルも、国内外のプロジェクト・ F/S のスパー式基礎重量情報を整理し、スパー式浮体の重量に関する回帰式を導出した。

#### 4.2.3. 施エモデルの更新

2022 年モデルは、セミサブ式浮体の施工に対するモデルであったが、スパー式浮体を想定した施工モデルを追加した。

#### 4.2.4. 設備費モデルの更新・検証

セミサブ式、スパー式基礎モデル及び施工モデルの更新に加えて、最新の文献・情報により、 幾つかのコストモデルを更新した。

NEDO モデルと欧州の実証及び商用プロジェクトの CAPEX の比較により、商用プロジェクト と比較して同水準であるため、NEDO モデルについては一定程度の精度があると評価した。一方、 より規模が大きく、プレ商用プロジェクトと比較して、習熟が進み、高い技術を活用した今後の 商用プロジェクトについては、より効率的な事業実施が可能となることも見込まれる。

#### 4.2.5. 運転維持費モデルの更新・検証

2024年の運転維持費モデルは、保守費に関して、海域毎の環境条件(離岸距離及び船舶供用係数)を考慮したモデルとした。このモデルは、Strathclyde大のFOWIT等を参考に構築した。維持費については、定期保守費と非定期保守(大規模修繕などを実施)に分けた工程を設定した。

# 5. 参考文献

- [1] エネ庁, "発電コスト検証ワーキンググループ「長期エネルギー需給見通し小委員会に対する発電コスト等の検証に関する報告」," 2015 年 5 月 26 日.
- [2] 資源エネルギー庁、"「発電コストレビューシート」(xls 形式: 12,649KB)(平成 27 年 7 月 16 日)," 2015.
- [3] エネ庁、"第2回 発電コスト検証ワーキンググループ、資料2「再生可能エネルギー」、" 2024年8月16日.
- [4] The Crown Estate, et al.;, "Guide to an offshore wind farm Updated and extended," Jan. 2019.
- [5] PwC アドバイザリー, "令和元年度エネルギー需給構造高度化対策に関する調査等事業(洋上風力発電の認定に係る費用分析等支援業務)報告書," 2020.
- [6] The Crown Estate, et al., "Guide to a Floating Offshore Wind Farm," 2023.
- [7] NREL, "Cost of Wind Energy Review," 2022.
- [8] Kikuchi , Ishihara, "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy 341, 2023.
- [9] Lacal-Arantegui, et al., "Offshore Wind Installation: Analysing the Evidence beheind Improvements in Installation time," Renewable and Sustainable Energy Reviews, 92, 2018.
- [10] Hensel, et al., "Development of a technology type factor for jacket structures for offshore wind turbines in Rhode Island," 2012.
- [11] DNV, "COST AND PERFORMANCE DATA FOR OFFSHORE HYDROGEN PRODUCTION," 2023.
- [12] Ulstein., "Securing your future in offshore wind," 2019.
- [13] Jiang, "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews 139, 2021.
- [14] 瀬谷, "石狩湾新港洋上風力発電所事業説明資料,"第45回風力エネルギー利用シンポジウム講演資料,2023.
- [15] 日本港湾協会, "港湾土木請負工事積算基準," 2019.
- [16] Muhabie, et al., "Weather Down Time Analysis for Offshore Wind Farm Installations," 2016.
- [17] ECN, "Cost Modeling of Floating Wind Farms," 2016.
- [18] 菊地,石原,他2名, "時間領域モンテカルロシミュレーションを利用した洋上風力発電所利用可能率の評価," 第 38 回風力エネルギー利用シンポジウム, 2017.
- [19] FOWIT, "Analysis of Far Offshore Accommodation," 2014.
- [20] corewind, "D4.2, Floating Wind O&M Strategies Assessment," 2021.
- [21] McMorland, et al., "Operation and maintenance for floating wind turbines: A review," Renewable and Sustainable Energy Reviews 163, 2022.
- [22] Carbon Trust, "ヒアリング".
- [23] Boston Consulting Group, "Offshore Wind: Future of logistics," 2022.
- [24] corewind, "D3.1 Review of the state of the art of dynamic cable system design,", 2020..
- [25] Liang, et al., "Levelized cost of energy analysis for offshore wind farms A case study of the New York State development," 2021.
- [26] Thyssen, "Wind power plants internal distribution system and grid connection A technical and economical comparison between a 33 kV and a 66kV," 2015.
- [27] 菊地, ジラウォンサパン,石原, "エンジニアリングモデルを用いた着床式洋上風力発電所のコスト評価に 関する研究," 第43回風力エネルギー利用シンポジウム予稿集,2021.
- [28] Ioannou, et al., "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, 2018.
- [29] Smith, Garrett, Gibberd, "Logistics and cost reduction of decommissioning offshore wind farms," EWEA offshore, 2015.
- [30] Topham, McMillan, "Sustainable decommissioning of an offshore wind farm," Renewable Energy 201, 2017.
- [31] Peak Wind, "OPEX Benchmark An insight into operational expenditures of European offshore wind farms". [32] 4C Offshore, "データベース".
- [33] NEDO, "2020~2021 年度 浮体式洋上風力発電低コスト化技術開発に関する調査報告書," 2022.

- [34] 中條, "超大型風車を搭載した浮体式洋上風力発電の日本近海における導入ポテンシャル評価," 日本船舶 海洋工学会論文集 36 巻,2022.
- [35] Maienza, e. al., " A life cycle cost model for floating offshore wind farms," Applied energym 266, 2020.
- [36] Kikuchi, Ishihara, "Upscaling and levelized cost energy for offshore wind turbines supported by semi-submergible floating platforms," Journal of Physics, Conf. Ser. 1356 012033, 2019.
- [37] Maness, "NREL Offshore Balance-of-System Model," NREL/TP-6A20-66874, 2017.
- [38] 福島洋上風力コンソーシアム, "浮体式洋上ウィンドファーム実証研究事業(報告書概要版)," 2016.
- [39] NEDO, "次世代浮体式洋上風力発電システムのバージ型浮体が完成," 2018.
- [40] Choisnet, e. al., "Performance and Mooring Qualification in Floatgen," 16th Journees de I' Hydrodynamique, 2018.
- [41] Collu, Borg, "Design of floating offshore wind turbines," Journal of Wind Engineering and Industrial Aerodynamics, 2019.
- [42] Manuel, Rentschler, "Design optimization of dynamic inter-array cable systems for floating offshore wind turbines," 2019.
- [43] Jiang, "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews 139, 2021.
- [44] 松信, "浮体式風力の現状と展開," 第45回風力エネルギー利用シンポジウム講演資料,2023.
- [45] Corewind, "D2.1 Revies of the sate of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs," 2020.
- [46] NEDO, "NEDO 再生可能エネルギー技術白書," 2014.

# 付属資料 A:ジャケット式基礎参照資料

| No. | 围   | プロジェクト                    | 年    | 発表者        | 所属等             | タイトル・URL                                                                                                                        |
|-----|-----|---------------------------|------|------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| 1   | JP  | Ishikari                  | 2023 | 瀬谷         | GPI             | 石狩湾新港洋上風力発電所事業説明資料                                                                                                              |
| 2   | UK  | UK                        | 2012 | Hensel     | Braunschweig 工大 | Development of a technology type factor for jacket structures for offshore wind turbines in Rhode Island ↔<br>JKT 重量計算式         |
| 3   | DE  | NREL5M GF/S               | 2018 | Häfele     | ForWind         | A comparison study on jacket substructures for offshore wind turbines based on optimization                                     |
| 4   | DE  | Alpha Ventus              | 2007 | Seidel     | REpower         | Jacket substructures for the REpower 5M wind turbine                                                                            |
| 5   | UK  | Beatrice Demo             | 2007 | Seidel     | REpower         | Tragstruktur und Installation der Offshore-Windenergieanlage Repower 5M                                                         |
| 6   | UK  | Beatrice                  | 2019 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=uk53                                          |
| 7   | DE  | Alpha ventus              | 2010 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=DE01                                          |
| 8   | ΤW  | Changfang                 | 2024 | CS WIND    | CS WIND         | https://www.cswoffshore.com/references/foundations-references/changfang-xidao/                                                  |
| 9   | IEA | IEA                       | 2023 | Mroczek    | IEA Wind        | Design optimization of offshore wind jacket piles by assessing support structure orientation relative to<br>metocean conditions |
| 10  | ΤW  | TW                        | 2019 | Chi        | GERC,Taiwan     | Study of typhoon impacts on the turbines in Tiwan                                                                               |
| 11  | IN  | Tamil Nadu                | 2018 | fowind     | Tamil Nadu      | Feasibility study for offshore wind farm development in Tamil Nadu                                                              |
| 12  | ΤW  | Taiwan                    | 2017 | OWEC TOWER | OWEC TOWER      | Foundations for offshore wind turbines & Taiwan offshore industry solutions                                                     |
| 13  | UK  | Beatrice                  | 2019 | seaway7    | seaway7         | Beatrice Offshore Wind Farm Project                                                                                             |
| 14  | US  | Block Island              | 2017 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=US12                                          |
| 15  | UK  | East Anglia ONE           | 2020 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK64                                          |
| 16  | UK  | Moray East                | 2022 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK40                                          |
| 17  | UK  | Neart na Gaoithe          | 2025 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK56                                          |
| 18  | DK  | Nissum Bredning Vind      | 2018 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=DK44                                          |
| 19  | DK  | Nordsee Ost               | 2015 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=DE06                                          |
| 20  | UK  | Ormonde                   | 2012 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK17                                          |
| 21  | FR  | Saint-Brieuc              | 2024 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=FR36                                          |
| 22  | BE  | Thornton Bank – phase II  | 2013 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=BE09                                          |
| 23  | BE  | Thornton Bank – phase III | 2013 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=BE10                                          |
| 24  | DE  | Wikinger                  | 2018 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=DE47                                          |
| 25  | UK  | Forthwind I               | 2026 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK65                                          |
| 26  | UK  | Seagreen 1A               | 2028 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK4P                                          |
| 27  | UK  | Berwick bank              | 2031 | 4Coffshore |                 | https://subscribers.4coffshore.com/dashboard/owf/overview/details.aspx?windfarmid=UK74                                          |

# 表 A.1 ジャケット式基礎を採用した洋上風力発電プロジェクト
| No. | E  | プロジェクト                                                       | 年    | 発表者        | 所属等 | タイトル・URL                                                                                                                               |
|-----|----|--------------------------------------------------------------|------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 28  | тw | Taiwan Power Company<br>Offshore Windfarm Phase<br>1 Project | 2021 | Jan-de-nul |     | https://www.jandenul.com/news/jan-de-nul-loads-first-jackets-tpcs-offshore-wind-farm-taiwan                                            |
| 29  | ΤW | Formosa 2                                                    | 2023 | Jan-de-nul |     | https://www.jandenul.com/projects/formosa-2-offshore-wind-farm-taiwan                                                                  |
| 30  | тw | Greater Chunghua(1, 2A)                                      | 2024 | Orsted     |     | https://orsted.tw/en/renewable-energy-solutions/offshore-wind/our-projects/greater-<br>changhua/chw1/news/2020/10/first-pin-pile-batch |

# 付属資料 B:欧州施工日数データ

| Wind farm project       | No. of   | WT power | WF capacity    | Type | Year start   | Days/      | Davs/ turbine | Davs/ set  |
|-------------------------|----------|----------|----------------|------|--------------|------------|---------------|------------|
|                         | WT       | [MW]     | [MW]           | 1960 | installation | foundation | Bayer tarbine | Baye, oot  |
| Utgrunden               | 7        | 1.5      | 10.5           | MP   | 2000         | 4.3        | 6.6           | 10.9       |
| Yttre Stengrund         | 5        | 2.0      | 10.0           | MP   | 2001         | 11.0       | 3.6           | 14.6       |
| Horns Rev 1             | 80       | 2.0      | 160.0          | MP   | 2002         | 3.2        | 2.7           | 5.9        |
| Samso                   | 10       | 2.3      | 23.0           | MP   | 2002         | 3.7        | 3.0           | 6.7        |
| North Hoyle             | 30       | 2.0      | 60.0           | MP   | 2003         | 5.2        | 7.3           | 12.6       |
| Arklow Bank I           | 7        | 3.6      | 25.2           | MP   | 2003         | 6.6        | 4.9           | 11.4       |
| Scroby Sands            | 30       | 2.0      | 60.0           | MP   | 2003         | 2.6        | 2.1           | 4.7        |
| Kentish Flats           | 30       | 3.0      | 90.0           | MP   | 2004         | 2.0        | 3.8           | 5.8        |
| Barrow                  | 30       | 3.0      | 90.0           | MP   | 2005         | 6.0        | 5.0           | 11.0       |
| OWEZ                    | 36       | 3.0      | 108.0          | MP   | 2006         | 3.3        | 2.4           | 5.6        |
| Burbo Bank              | 25       | 3.6      | 90.0           | MP   | 2006         | 2.2        | 1.6           | 3.8        |
| Prinses Amalia          | 60       | 2.0      | 120.0          | MP   | 2006         | 3.0        | 6.1           | 9.2        |
| Lynn & Inner Dowsing    | 54       | 3.6      | 194.4          | MP   | 2007         | 4.3        | 2.3           | 6.6        |
| Robin Rigg              | 60       | 3.0      | 180.0          | MP   | 2007         | 4.2        | 5.0           | 9.2        |
| Rhvl Flats              | 25       | 3.6      | 90.0           | MP   | 2008         | 4.0        | 7.6           | 11.6       |
| Horns Rev 2             | 91       | 2.3      | 209.3          | MP   | 2008         | 1.6        | 2.7           | 4.3        |
| Gunfleet Sands I & II   | 48       | 3.6      | 172.8          | MP   | 2008         | 2.4        | 4.6           | 7.0        |
| Thanet                  | 100      | 3.0      | 300.0          | MP   | 2009         | 5.5        | 2.0           | 7.4        |
| Belwind                 | 55       | 3.0      | 165.0          | MP   | 2009         | 5.4        | 3.2           | 8.6        |
| Greater Gabbard         | 140      | 3.6      | 504.0          | MP   | 2009         | 37         | 2.8           | 6.5        |
| Walney I                | 51       | 3.6      | 183.6          | MP   | 2010         | 27         | 4.8           | 7.5        |
| EnBW Baltic 1           | 21       | 2.3      | 48.3           | MP   | 2010         | 3.0        | 1.0           | 4.8        |
| Sheringham Shoal        | 88       | 3.6      | 316.8          | MP   | 2010         | 3.2        | 6.9           | 10.1       |
| London Array            | 175      | 3.6      | 630.0          | MP   | 2010         | 4.3        | 33            | 7.6        |
| Lincs                   | 75       | 3.6      | 270.0          | MP   | 2011         | 5.0        | 3.6           | 9.6        |
| Walney II               | 51       | 3.6      | 183.6          | MP   | 2011         | 3.0        | 13            | 8.2        |
| Anholt                  | 111      | 3.6      | 300.6          | MD   | 2011         | 2.8        | 4.3           | 7.2        |
| Teesside                | 27       | 2.0      | 62.1           | MD   | 2011         | 2.0        |               | 14.5       |
| Borkum Piffaat          | 30       | 2.5      | 113.3          | MD   | 2012         | 3.0        | 2.8           | 5.8        |
| Gwypt y Mor             | 160      | 3.6      | 576.0          | MD   | 2012         | 5.0        | 5.0           | 10.0       |
| Meenwind                | 80       | 3.6      | 288.0          | MD   | 2012         | 6.4        | 5.0<br>6.5    | 12.0       |
|                         | 200      | 5.0      | 200.0          |      | 2012         | 6.0        | 0.5           | 12.9       |
| Don Tyck                | 2<br>80  | 0.0      | 288.0          |      | 2012         | 3.0        | 0.5           | 5.9        |
| Northwind               | 70       | 2.0      | 200.0          |      | 2013         | 3.9        | 1.9           | 5.0        |
| Nort of Duddon Sondo    | 100      | 3.0      | 210.0          |      | 2013         | 2.1        | 3.3           | 5.4        |
| Humber Cetoway          | 72       | 3.0      | 300.0<br>210.0 |      | 2013         | 2.2        | 2.3           | 4.5        |
| EppW/ Poltic II/MD)     | 20       | 3.0      | 219.0          |      | 2013         | 5.5        | 3.0           | 7.5        |
| Amrumbank West          | 00       | 2.0      | 202.0          |      | 2013         | 3.5        | 3.0           | 9.1<br>7.2 |
| Annumbank West          | 00<br>70 | 3.0      | 302.0          |      | 2014         | 4.0        | 2.1           | 7.3        |
| Mostermest Bough        | 10       | 4.0      | 312.0          |      | 2014         | 2.0        | 2.1           | 0.2        |
| Rutandiak               | 35       | 0.0      | 210.0          |      | 2014         | 2.7        | 0.7           | 9.3        |
|                         | 00       | 3.0      | 200.0          |      | 2014         | 2.0        | 3.4           | 0.2        |
|                         | 43       | 3.0      | 129.0          |      | 2014         | 1.8        | 1.5           | 3.4        |
|                         | 48       | 3.0      | 144.0          | MP   | 2015         | 1.4        | 3.7           | 5.1        |
|                         | 97       | 6.0      | 582.0          | MP   | 2015         | 1.6        | 3.0           | 4.6        |
| Kentish Flats Extension | 15       | 3.3      | 49.5           | MP   | 2015         | 1.5        | 3.8           | 5.3        |
|                         | 150      | 4.0      | 600.0          | MP   | 2015         | 1.4        | 2.5           | 4.0        |
| Sandbank                | 12       | 4.0      | 288.0          | MP   | 2015         | 2.6        | 2.5           | 5.1        |
| Nordsee One             | 54       | 6.2      | 332.1          | MP   | 2015         | 2.3        | 3.8           | 6.1        |
| Rampion                 | 116      | 3.5      | 400.2          | MP   | 2016         | 2.9        | 2.6           | 5.4        |
| Veja Mate               | 67       | 6.0      | 402.0          | MP   | 2016         | 3.9        | 3.3           | 7.3        |
| Dudgeon                 | 67       | 6.0      | 402.0          | MP   | 2016         | 1.8        | 3.6           | 5.5        |
| Nordergrunde            | 18       | 6.2      | 110.7          | MP   | 2016         | 4.4        | 7.3           | 11.7       |
| Nobelwind               | 50       | 3.3      | 165.0          | MP   | 2016         | 2.5        | 3.2           | 5.7        |
| Burbo Bank Extension    | 32       | 8.0      | 256.0          | MP   | 2016         | 1.7        | 4.0           | 5.6        |
| Galloper                | 56       | 6.3      | 352.8          | MP   | 2016         | 1.6        | 5.4           | 7.1        |

### 表 B.1 欧州における洋上風カプロジェクトの施工日数

| Wind farm project     | No. of<br>WT | WT power<br>[MW] | WF capacity<br>[MW] | Туре | Year start<br>installation | Days/<br>foundation | Days/ turbine | Days/ set |
|-----------------------|--------------|------------------|---------------------|------|----------------------------|---------------------|---------------|-----------|
| Walney 3              | 40           | 8.3              | 330.0               | MP   | 2017                       | 2.5                 | 2.5           | 5.0       |
| Walney 4              | 47           | 7.0              | 329.0               | MP   | 2017                       | 2.5                 | 30.0          | 38.5      |
| Rentel                | 42           | 7.4              | 308.7               | MP   | 2017                       | 1.3                 | 8.7           | 23.5      |
| Arkona                | 60           | 6.4              | 385.0               | MP   | 2017                       | 2.4                 | 4.6           | 9.2       |
| Beatrice pilot        | 2            | 5.0              | 10.0                | JKT  | 2006                       | 8.5                 | 8.8           | 16.2      |
| Alpha Ventus (J)      | 6            | 5.0              | 30.0                | JKT  | 2009                       | 14.8                | 12.8          | 19.3      |
| Ormonde               | 30           | 5.1              | 152.3               | JKT  | 2010                       | 4.6                 | 7.7           | 16.9      |
| Thornton Bank II      | 30           | 6.2              | 184.5               | JKT  | 2011                       | 7.4                 | 44.0          | 44.0      |
| Thornton Bank III     | 18           | 6.2              | 110.7               | JKT  | 2012                       | 6.5                 | 4.0           | 11.0      |
| Nordsee Ost           | 48           | 6.2              | 295.2               | JKT  | 2012                       | 9.2                 | 3.8           | 13.8      |
| Belwind Haliade prot. | 1            | 6.0              | 6.0                 | JKT  | 2013                       |                     | 30.0          | 38.5      |
| Wikinger              | 70           | 5.0              | 350.0               | JKT  | 2016                       | 7.0                 | 8.7           | 23.5      |
| EnBW Baltic II (J)    | 41           | 3.6              | 147.6               | JKT  | 2013                       | 10.0                | 4.6           | 9.2       |
| Hywind Scotland       | 5            | 6.0              | 30.0                | SPAR | 2017                       | 1.9                 | 1.9           |           |

# 付属資料 C:ウェイク損失

### C.1 欧州におけるウェイク損失

ウィンドファームでは、風下側の風車が上流側の風車の後流(ウェイク)により発電量が低下 するウェイク損失が発生する。図 C.1 に示すように、レイアウトは場所・風車基数などにより異 なる。ウェイク損失は風車レイアウトに依存するため、プロジェクト個別に評価する必要がある。 表 C.1 によれば、欧州の代表的な洋上ウィンドファームのウェイク損失は、9%~11%である。

洋上ウィンドファームにおける風車の配置は、一般的に、10D(主風向)×3D(横方向)(D: 風車直径)と言われているが、DNV GL [C.1] では、初期検討のレイアウトとして 6D×4D を推 奨している。



| 図 C.1 欧州 | における洋上ウィンドファームのレイアウ | フト <sup>15</sup> |
|----------|---------------------|------------------|
|----------|---------------------|------------------|

|              | 2017<br>Baseline | オランダ  | 英国    | ベルギー  | デンマーク | 米国    | ドイツ   | 日本    |
|--------------|------------------|-------|-------|-------|-------|-------|-------|-------|
| 風車定格 [MW]    | 4                | 4     | 6     | 7     | 8     | 6     | 6     | 5.2   |
| 年平均風速 [m/s]  | 9.9              | 9.36  | 9.15  | 8.95  | 9.57  | 8.99  | 9.47  | 8.67  |
| グロス設備利用率 [%] | 57.22            | 51.09 | 50    | 54.92 | 50.04 | 53.11 | 57.4  | 55.14 |
| ウェイクロス [%]   | 11.37            | 9.61  | 9.13  | 10.04 | 10.75 | 9.02  | 10.04 | 9.55  |
| 送電ロス [%]     | 2                | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| その他のロス [%]   | 1                | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| 稼働率 [%]      | 94.22            | 94.87 | 94.2  | 95.3  | 95.32 | 94.54 | 94    | 94.44 |
| トータル効率 [%]   | 81.02            | 83.20 | 83.09 | 83.18 | 82.54 | 83.45 | 82.04 | 82.88 |
| ネット設備利用率 [%] | 46.36            | 42.51 | 41.55 | 45.68 | 41.30 | 44.32 | 47.09 | 45.70 |

| 表 C.1 | IEA Wind Task26 | 発電量関連の入力値及び結果[ | B.2 <sup>-</sup> |
|-------|-----------------|----------------|------------------|
|-------|-----------------|----------------|------------------|

<sup>15</sup> 各プロジェクトの資料を基に作成

### C.2 NEDO モデルのウェイク損失

発電コストマップの作成では、海域毎に風車レイアウトの最適化を行うのは現実的でないため、 風車のレイアウトは固定とし、固定したレイアウトにおけるウェイク損失を決めることで、年間 発電量 AEP を算定することとする。

図 C.2 に示すウィンドファームのレイアウトに対して、洋上風力の分野で実績のある発電量計 算ソフト WAsP<sup>16</sup>を使用して、ウェイクロスの計算を実施した。その結果を図表 C.2 に示す。ウェ イクロスの大きさは、5~9%程度となった。発電量を最大化するためには、ウェイクロスの少ない レイアウトするのが望ましいが、B.1 節で述べた欧州の実績などを考慮して、本調査では、発電コ ストの算定では、ウェイクロスは 10%とする。



### 図表 C.2 WAsP によるウェイク損失試算例

| レイアウト          | 全体   | 最小   | 最大    |
|----------------|------|------|-------|
| 6列×7列(7D×7D)   | 9.13 | 2.04 | 12.54 |
| 6列×7列(10D×10D) | 5.54 | 1.25 | 7.68  |
| 4列×11列(7D×7D)  | 8.14 | 2.11 | 10.9  |

#### 参考文献

[C.1] DNV GL, Offshore Wind Farm Layout Optimization

[C.2] M. Noornan et al., IEA Wind Task26, Offshore Wind Energy International Comparative Analysis, 2018.

<sup>16</sup> デンマーク工科大学が開発した風況解析ソフト。線形理論をベースにしており、ウェイクの計算を行える。 欧州の洋上風力の発電量評価で実績がある。

| 要素         | 修理カテゴリ | 発生率/年 |
|------------|--------|-------|
| 電気         | А      | 0.243 |
|            | D      | 0.005 |
|            | E      | 0.022 |
| 制御ユニット     | A      | 0.105 |
|            | E      | 0.105 |
| インバータ      | A      | 0.180 |
|            | E      | 0.020 |
| ヨーシステム     | A      | 0.130 |
|            | E      | 0.068 |
|            | С      | 0.002 |
| ブレーキ       | А      | 0.040 |
|            | E      | 0.010 |
| ギアボックス     | А      | 0.213 |
|            | E      | 0.013 |
|            | D      | 0.025 |
| ジェネレータ     | А      | 0.065 |
|            | D      | 0.039 |
|            | E      | 0.026 |
| ピッチ        | A      | 0.075 |
|            | E      | 0.075 |
| ブレード       | В      | 0.014 |
|            | С      | 0.001 |
|            | D      | 0.041 |
|            | E      | 0.014 |
| シャフト・ベアリング | А      | 0.001 |
|            | С      | 0.009 |
| アレイケーブル    | С      | 0.000 |
|            | D      | 0.025 |
|            | E      | 0.016 |
| エクスポートケーブル | С      | 0.000 |
|            | D      | 0.020 |
|            | E      | 0.000 |

表 D.1 要素別の故障発生率と修理カテゴリ(着床式) [19] [20] [21]

## 表 D.2 要素別の故障発生率と修理カテゴリ(浮体) [19] [20] [21]

| 要素             | 修理カテゴリ | 発生率/年 |
|----------------|--------|-------|
| 電気             | А      | 0.243 |
|                | D      | 0.005 |
|                | E      | 0.022 |
| 制御ユニット         | А      | 0.105 |
|                | E      | 0.105 |
| インバータ          | А      | 0.180 |
|                | E      | 0.020 |
| ヨーシステム         | А      | 0.130 |
|                | E      | 0.068 |
|                | С      | 0.002 |
| ブレーキ           | A      | 0.040 |
|                | Ш      | 0.010 |
| ギアボックス         | А      | 0.213 |
|                | E      | 0.013 |
|                | D      | 0.025 |
| ジェネレータ         | А      | 0.065 |
|                | D      | 0.039 |
|                | E      | 0.026 |
| ピッチ            | А      | 0.075 |
|                | Ш      | 0.075 |
| ブレード           | В      | 0.014 |
|                | С      | 0.001 |
|                | D      | 0.041 |
|                | E      | 0.014 |
| シャフト・ベアリン<br>グ | A      | 0.001 |
|                | С      | 0.009 |
| バラストシステム       | С      | 0.010 |
|                | D      | 0.000 |
|                | E      | 0.000 |

| 要素             | 修理カテゴリ | 発生率/年 |
|----------------|--------|-------|
| 係留             | С      | 0.000 |
|                | D      | 0.015 |
|                | E      | 0.013 |
| アンカー           | С      | 0.000 |
|                | D      | 0.015 |
|                | E      | 0.013 |
| アレイケーブル        | С      | 0.000 |
|                | D      | 0.025 |
|                | Е      | 0.016 |
| 浮体             | С      | 0.000 |
|                | D      | 0.000 |
|                | Е      | 0.033 |
| エクスポートケーブ<br>ル | С      | 0.000 |
|                | D      | 0.020 |
|                | E      | 0.000 |

# 付属資料 E:浮体式基礎参照資料

| No. | 玉  | プロジェクト                | 年    | 発表者                     | 所属               | タイトル・URL                                                                                                                                                          |
|-----|----|-----------------------|------|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | JP | 福島<br>FORWARD         | 2016 | 福島<br>FORWARD           |                  | 浮体式洋上ウィンドファーム実証研究事業(報告書概要版)                                                                                                                                       |
| 2   | JP | NEDO                  | 2018 | NEDO                    | NEDO             | 次世代浮体式洋上風力発電システムのバージ型浮体が完成                                                                                                                                        |
| 3   | FR | Floatgen              | 2018 | Choisnet                | Ideol            | Performance and Mooring Qualification in Floatgen, 16th Journees de l'Hydrodynamique                                                                              |
| 4   | JP | 福島洋上風<br>カコンソーシ<br>アム | 2019 | Kikuchi and<br>Ishihara | 東大               | Upscaling and levelized cost energy for offshore wind turbines<br>supported by semi-submergible floating platforms, Journal of<br>Physics, Conf. Ser. 1356 012033 |
| 5   | IT | F/S                   | 2020 | Maienza                 | Campania 大       | A life cycle cost model for floating offshore wind farms                                                                                                          |
| 6   | JP | NEDO                  | 2022 | NKCS                    | NKCS             | NEDO「浮体式洋上風力発電低コスト化技術開発に関する調査」報告書                                                                                                                                 |
| 7   | PO | WindFloat             | 2019 | PPI                     | PPI              | Principle Power, Inc. WindFloat Pacific Project Final Scientific /<br>Technical Report (DOE-F 241.3) Contract No. DE EE0005987                                    |
| 8   | US | F/S                   | 2016 | Griffith                | Sandia           | A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines                                                              |
| 9   | US | F/S                   | 2023 | Roach                   | Amherst 大        | A New Methodology for Upscaling Semi-submersible Platforms for<br>Floating Offshore Wind Turbines                                                                 |
| 10  | UK | F/S                   | 2019 | M. Collu                | Strathclyde<br>大 | Design of floating offshore wind turbines, Journal of Wind<br>Engineering and Industrial Aerodynamics                                                             |
| 11  | PO | F/S                   | 2014 | George                  | Lisbon 大         | WindFloat design for different turbine sizes, Master thesis of Lisbon<br>University                                                                               |
| 12  | UK | F/S                   | 2023 | Catapult                | Catapult         | Guide to a floating offshore wind farm                                                                                                                            |
| 14  | IT | F/S                   | 2020 | Ghigo                   | Torino 大         | Platform optimization and cost analysis in a floating offshore wind farm                                                                                          |

## 表 E.1 セミサブ式浮体参考文献

## 表 E.2 スパー式浮体参考文献

| No. | 国   | プロジェクト             | 年    | 発表者       | 所属          | タイトル・URL                                                                                                                            |
|-----|-----|--------------------|------|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1   | NR  | F/S                | 2014 | Browning  | NTNU        | Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool               |
| 2   | NR  | F/S                | 2020 | Wang      | NTNU        | Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine                       |
| 3   | NR  | F/S                | 2012 | Karimirad | NTNU        | Feasibility of the Application of a Spar-type Wind Turbine at a<br>Moderate Water Depth                                             |
| 4   | JP  | F/S                | 2020 | 菊地        | 東大          | Comparison of dynamic response and levelized cost of energy on<br>three platform concepts of floating offshore wind turbine systems |
| 5   | EU  | F/S                | 2020 | corewind  |             | Public design and FAST models of the two 15MW floater-turbine<br>concepts                                                           |
| 6   | JP  | F/S                | 2021 | NEDO      | NEDO        | 浮体式洋上風力発電低コスト化技術開発に関する調査                                                                                                            |
| 7   | IEA | F/S                | 2022 | Kaptan    | Stavanger 大 | Analysis of spar and semi-submersible floating wind concepts with respect to human exposure to motion during maintenance operations |
| 8   | UK  | Hywind<br>Scotland | 2017 | 4COffhore |             | Hywind Scotland                                                                                                                     |
| 9   | UK  | Hywind<br>Scotland | 2023 | 4COffhore |             | Hywind Tampen                                                                                                                       |
| 10  | IT  | F/S                | 2020 | Maienza   | Campania 大  | A life cycle cost model for floating offshore wind farms                                                                            |
| 11  | US  | F/S                | 2016 | Griffith  | Sandia      | A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines                                |
| 12  | IEA | F/S                | 2019 | WISDEM    | IEA         | https://wisdem.readthedocs.io/en/master/wisdem/floatingse/verificati<br>on.html                                                     |
| 13  | IT  | F/S                | 2020 | Ghigo     | Torino 大    | Platform optimization and cost analysis in a floating offshore wind farm                                                            |

| No | 围  | プロジェクト         | 年    | 発表者    | 所属      | タイトル・URL                                                                                                                                                              |
|----|----|----------------|------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | NR | Hywind<br>demo | 2015 | Skaare | Statoil | Analysis of measurements and simulations from the Hywind Demo<br>floating wind turbine, Wind Energy, 18<br>(https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.1750) |

契約管理番号 : 24000890-0