P19002

2023 年度実施方針

スマートコミュニティ・エネルギーシステム部

1. 件 名: 再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術 開発

2. 根拠法

国立研究開発法人新エネルギー・産業技術総合開発機構法第 15 条第 1 項第 1 号イ 及び第 3 号並びに第 9 号

- 3. 背景及び目的・目標
- (1)研究開発の背景
 - ① 政策的な重要性

ほとんどのエネルギー源を海外からの輸入に頼る我が国が抱える脆弱性を緩和するとともに、気候変動への抜本的かつ継続的な削減の努力が一層必要となる中、再生可能エネルギーへの期待が世界的にかつてなく高まっている。

このような状況の下、わが国では2030年のエネルギーミックスの確実な実現へ向けた取り組みのさらなる強化を行うとともに、新たなエネルギー選択として2050年のエネルギー転換・脱炭素化に向けた挑戦を掲げた「第5次エネルギー基本計画」が2018年7月3日閣議決定された。当該計画において、2030年に向けた重要な施策の一つとして再生可能エネルギーの主力電源化へ向けた取り組みが掲げられ、2030年度の総発電電力量(10,650億kWh)のうち、再生可能エネルギーの割合を22~24%程度とする導入目標が掲げられた。さらに、2021年10月の「第6次エネルギー基本計画」において、再生可能エネルギー割合は36~38%程度に引き上げられ、この実現に向けた取り組みが急務となっている。

② 我が国の状況

再生可能エネルギーの導入促進に向けては、2009 年 11 月に太陽光の余剰電力 買取制度が開始され、2011 年 8 月に「電気事業者による再生可能エネルギー電気の 調達に関する特別措置法」が成立、翌年の 2012 年 7 月から再生可能エネルギーの固 定価格買取制度(Feed in Tariff)(以下「FIT」という。)が施行された。

この結果、再生可能エネルギー導入量は、FIT 開始以降、2017 年 9 月時点で新た に約 3,906 万 kW 導入された。FIT 開始以前の累積導入量が約 2,060 万 kW であり、 FIT 開始以前の約 1,9 倍が僅か 5 年程度の期間で導入されたことになる。 然しながら、第5次エネルギー基本計画においては、2030 年度の総発電電力量 (10,650 億 kWh)のうち、再生可能エネルギーの割合は 22~24%程度、特に太陽光発電の割合は 7%程度(749 億 kWh)を目標としている。現状の太陽光発電の設備利用率(12~14%)を勘案すると、6,500 万 kW 程度の太陽光設備容量が見込まれる。現状の認定容量は、既にこの想定をはるかに超えたものとなっており、今後も再生可能エネルギーの導入量が拡大していくことは明白である。

現在の日本では、新規に電源を系統に接続する際、系統の空き容量の範囲内で先 着順に受け入れを行い、空き容量がなくなった場合には系統を増強した上で追加的な 受け入れを行うこととなっている。系統の増強には多額の費用と時間が伴うものである ことから、まずは、既存系統を最大限活用していくことが重要である。系統の空き容量 を柔軟に活用し、一定の制約条件の下で系統への接続を認める「日本版コネクト&マ ネージ」の仕組みの具体化に向けた検討が資源エネルギー庁、電力広域的運営推進 機関を中心に進められている。

一方、太陽光発電等の再生可能エネルギーの導入が進み相対的に火力・原子力等の同期発電機の発電台数が減ってくると、電力系統は瞬間的な大きな変動に耐えられなくなる傾向となり、これまで影響が限定的であった系統事故時でも、大停電に至るおそれがある。このような事態を避け、広域での電力系統の安定運用を維持するためには、電力系統の瞬間的な変動に対応する調整力、いわゆる慣性力及び同期化力(以下「慣性力等」という。)を確保することが重要である。

また、配電系統では、このまま再生可能エネルギーが電力系統に大量連系していくと、電圧上下限値の逸脱、電圧フリッカ等の電力品質上の問題が発生するおそれがあるため、新たな取り組みが必要である。

③ 世界の取組状況

昨今、世界各国は再生可能エネルギーの導入拡大に向けた取り組みを強化している。例えば、米国では、2017 年 6 月末時点で、47.1GW まで太陽光発電の導入が進んでおり、また多くの州で電力部門における再生可能エネルギーの導入義務制度(RPS制度)を策定している。EU は、2007 年に最終エネルギー消費に占める再生可能エネルギーの割合を 2020 年までに 20%とする戦略を決定し、最も導入が進んでいるドイツにおいては、2015 年 10 月時点で、39.5GW の太陽光発電が導入されている。

海外では、一時的に再生可能エネルギーが既に需要の半分に達する地域があるという報告もされており、再生可能エネルギーの大量導入による電力系統への影響が顕在化しつつある。近年、オーストラリアでは慣性力不足が原因とみられる大規模停電が発生した。また、系統規模の比較的小さいアイルランドでは再エネ発電比率に制限を設けて運用している。

また、コネクト&マネージについて、ヨーロッパにおいては、「Connect & Manage」(英国等)、「Priority Connection」(ドイツ等)、「Non Firm Access」(アイルランド等)といった考え方に基づき、既存系統の容量を最大限活用し、一定の条件付での接続を認める

制度を導入している国もある。

(2)研究開発の目的

本事業では、再生可能エネルギーの導入を将来的にも可能とするため、次世代の系統安定化に必要な基盤技術の開発を実施する。

送電系統では、既存系統の空き容量を柔軟に活用し、一定の条件の下で系統への接続を認めるノンファーム型接続といった「日本版コネクト&マネージ」を実現する制御システムを開発するとともに、基盤技術を確立し仕様の国内標準化を図る。

また、慣性力等の把握手法や可視化による運用手法の確立を目指し、PMU(Phasor Measurement Unit)を用いることで時刻同期がとれた詳細計測データが電力会社間で比較・検証可能な常時監視システムを構築するための基盤技術を確立する。さらには、新たな慣性力等を確保するための技術の確立を目指し、慣性力等が具備されている制御装置を開発し、電力系統へ適用するための基盤技術の確立及び仕様の国内標準化を図る。

配電系統では、再エネが大量導入された状況下で適正電圧を維持しつつ、電圧フリッカ・電圧不平衡等の電力品質上の問題を回避するために必要な技術開発を実施する。さらに、将来的な需要能動化や自家消費進展後を想定した配電系統の潮流監視・電圧制御技術を開発し、上位系統である特別高圧系統へ配電系統の情報を適切に伝達する技術開発等を実施する。

また、再生可能エネルギーの大量導入と各関連技術の進展等により、これまでにない大きな変革を迫られている電力系統の今後のあり方を検討するため、電力供給の将来の全体最適を見据えた課題の整理及び抽出を行う。

(3)研究開発の目標

研究開発項目①-1 日本版コネクト&マネージを実現する制御システムの開発 2019 年度は、資源エネルギー庁や電力広域的運営推進機関が主体となって取り 組んでいるノンファーム型接続の制度設計の取決め状況を確認しながら、ノンファーム型接続システムを開発可能とするための要件定義や要求仕様をまとめることを目 的としたフィージビィリティスタディ(FS)を行い、2020 年度以降の実証用システムの 開発規模や導入エリア、フィールド試験における実証内容を検討している。

2020 年度以降については、2019 年度の FS 結果やノンファーム接続の制度設計の取決め状況を踏まえ、以下のとおり達成目標を設定する。

【最終目標】(2023年度末)

・ノンファーム型接続システムについて、フィールド実証においてノンファーム適用系統の活用可能な空き容量に対し、ノンファーム発電事業者による発電が制度設計に基づき最大限受け入れた際にも、計画通りに出力制御(制度設計に基づき、算出した各コマ(30分毎48コマ/日)の出力制御値を、当該コマのゲートクローズ後(実需給断面の1時間前)に送信)を行い、混雑を発生することなく

適正な運用が可能であることが検証されていること

- ・ノンファーム型接続システムについて、従来の電力需給バランス維持のための 再生可能エネルギーの出力制御システム等と協調運用が可能であり、フィール ド実証にて検証されていること
- ・また、システム全体のコスト最小化の観点から、システム保守業務及び潮流計画・監視業務の煩雑化を極力回避し、保守・運用者の負担が極力増加しないような合理的かつ効率的なシステムが開発されること
- ・フィールド実証による検証結果をもとにノンファーム型接続システムを実現する ための基盤技術を確立し要求仕様を取り纏めること

【中間目標】(2021年度末)

- ・ノンファーム型接続システムについて、ノンファーム適用系統の活用可能な空き 容量に対し、ノンファーム発電事業者による発電が制度設計に基づき最大限受け入れた際にも、計画通りに出力制御を行い、適正な運用を可能とする制御方式が確立されていること
- ・システム全体のコスト最小化の観点から、保守・運用者の負担が軽減される合理的かつ効率的な仕組みがシステムの設計に織り込まれていること
- ・フィールド実証に向けて、効果的かつ合理的な検証を行うための実証計画が策 定されていること

【初年度目標】(2019年度末)

- ノンファーム型接続システム実現のための要件が定義されていること。また、 2020年度以降、速やかに発注ができるよう要求仕様がまとめられていること
- 2020年度以降の具体的な実証用システム開発規模や導入エリア、フィールド試験における実証内容、実証スケジュールがまとめられていること
- ・ 再エネ発電事業者が精度のよい発電予測を可能とする汎用ソフトウェアについ て調査されていること。また、送配電事業者の実施するサイトの需要予測精度向 上のための手法について調査されていること

研究開発項目①-2 慣性力等の低下に対応するための基盤技術の開発 【最終目標】(2021 年度末)

- ・ PMU を用いた電力会社間でデータ比較・検証が可能な常時監視システムの開発 に必要なデータの取得及び分析ができていること。また、開発時に必要となる要 求仕様がまとめられていること
- 2つ以上のアプローチを検証した上で、電力系統の慣性力等を把握するための 基盤的な手法が開発されていること
- ・ 慣性力等を備えた制御装置について、従来の電カシステムと接続可能な機能を 有し、必要な慣性力等低下対策機能を備えている基盤的な手法が開発されてい

ること。また、開発時に必要となる基本的な要求仕様がまとめられていること

研究開発項目②-1 配電系統における電圧·潮流の最適な制御方式の開発 【最終目標】(2021 年度末)

- ・需要能動化及び自家消費進展後の状況において、配電線全体の電圧・潮流の 適正化を図ることを目的に、需要家側リソースも制御対象に取り入れ、配電線全 体で需要家側リソースと系統側の電圧調整機器(SVR、TVR、SVC 等)の制御量 を適切に分担する2つの制御方式(ローカル制御方式及び集中制御方式)を開 発すること
- ・ 開発する制御方式は配電系統の電圧・潮流を適正(101V±6V 以内、過負荷無し) に維持可能であること

研究開発項目②-2 高圧連系 PCS における電圧フリッカ対策のための最適な単独 運転検出方式の開発

【最終目標】(2021年度末)

・ インバータによる高圧連系の単独運転検出に関して、系統の電力品質を確保しつつ、求められる時限(3s 程度)以内に検出できる方式について、実験環境での検証を行い、系統連系規程への反映に必要となるデータを取得できていること

4 実施内容及び進捗(達成状況)

プロジェクトマネージャーにNEDOスマートコミュニティ・エネルギーシステム部主任研究員 前野武史を任命して、プロジェクトの進行全体を企画・管理し、そのプロジェクトに求められる技術的成果及び政策的効果を最大化させた。

学校法人早稲田大学名誉教授 岩本伸一をプロジェクトリーダー、国立大学法人茨 城大学名誉教授 奈良宏一をサブプロジェクトリーダーとし、以下の研究開発を実施 した。

4. 1 2022 年度(委託)事業内容

研究開発項目①-1 日本版コネクト&マネージを実現する制御システムの開発

ノンファーム型接続システムを開発可能とするための要件定義や要求仕様をまとめることを目的として、実証用システムを開発している。2022 年度は、S+3E 等を考慮した上でメリットオーダーに従い出力制御する再給電方式などの制度設計の取決め状況を踏まえた仕様の追加を含め、ノンファーム型接続を実現するためのシステム開発を実施した。また、2023 年度に予定しているフィールド実証の準備を行った。[実施体制:東京電力パワーグリッド株式会社、東京電力ホールディングス株式会社、北海道電力ネットワーク株式会社、東北電力ネットワーク株式会社、一般財団法人電力中央研究所、株式会社テプコシステムズ、東京電設サービス株式会社、株式会社日立製作所、四国計測工業株式会社、一般財団法人日本気象協会、伊藤忠テクノソリューションズ株式会社、国立大学法人東京大学]

4.2 実績推移

	2019 年度		2020 年度		2021 年度		2022 年度
	委託	助成	委託	助成	委託	助成	委託
実績額推移							
需給勘定(百万円)	1,354	24	2,356	41	4,025	34	3,800
特許出願件数(件)	0	1	7	3	0	4	0
論文発表数(報)	0	_	3	_	4	_	1
フォーラム等(件)	8	0	27	0	45	0	2

5. 事業内容

プロジェクトマネージャーにNEDOスマートコミュニティ・エネルギーシステム部主任 小 笠原有香を任命して、プロジェクトの進行全体を企画・管理し、そのプロジェクトに求められる技術的成果及び政策的効果を最大化させる。

学校法人早稲田大学名誉教授 岩本伸一をプロジェクトリーダー、国立大学法人茨城大学名誉教授 奈良宏一をサブプロジェクトリーダーとし、以下の研究開発を実施する。実施体制については、別紙を参照のこと。

5. 1 2023 年度(委託)事業内容

研究開発項目①-1 日本版コネクト&マネージを実現する制御システムの開発

ノンファーム型接続を実現するために開発した実証用システムについて、フィールドでの 試験を通じた検証を実施する。また、フィールド実証による検証結果をもとにノンファーム型 接続システムを実現するための基盤技術を確立し、一般送配電事業者や発電事業者等に 展開できるよう要求仕様を取り纏める。

[実施体制:東京電カパワーグリッド株式会社、東京電カホールディングス株式会社、北海道電カネットワーク株式会社、東北電カネットワーク株式会社、一般財団法人電カ中央研究所、株式会社テプコシステムズ、東京電設サービス株式会社、株式会社日立製作所、四国計測工業株式会社、一般財団法人日本気象協会、伊藤忠テクノソリューションズ株式会社、国立大学法人東京大学]

5. 2 2023 年度事業規模

委託事業

助成事業

需給勘定

1.600 百万円

0 百万円

事業規模については、変動があり得る。

6. その他重要事項

(1)評価の方法

NEDOは、技術的及び政策的観点から、研究開発の意義、目標達成度、成果の技術的意義並びに将来の産業への波及効果等について、技術評価実施規程に基づき、プロジェクト評価を実施する。研究開発項目①-1 日本版コネクト&マネージを実現する制御システムの開発について、中間評価を 2021 年に実施済みであり、終了時評価を 2024 年に実施する。研究開発項目①-2 慣性力等の低下に対応するための基盤技術の開発、研究開発項目②-1 配電系統における電圧・潮流の最適な制御方式の開発、研究開発項目②-2 高圧連系 PCS における電圧フリッカ対策のための最適な単独運転検出方式の開発について、事後評価を 2022 年に実施した。

(2)運営・管理

研究開発項目①及び②の各実施者の研究開発能力を最大限に活用し、効率的かつ効果的に研究開発を推進する観点から、各実施者は 2019 年度に NEDO が選定した研究開発責任者(プロジェクトリーダー)の下でそれぞれの研究テーマについて研究開発を実施する。

(3)複数年度契約の実施

研究開発項目①-1 は 2020 年度~2023 年度の複数年度契約、研究開発項目①-2 及び②-1、②-2 は 2019 年度~2021 年度の複数年度契約を締結した。

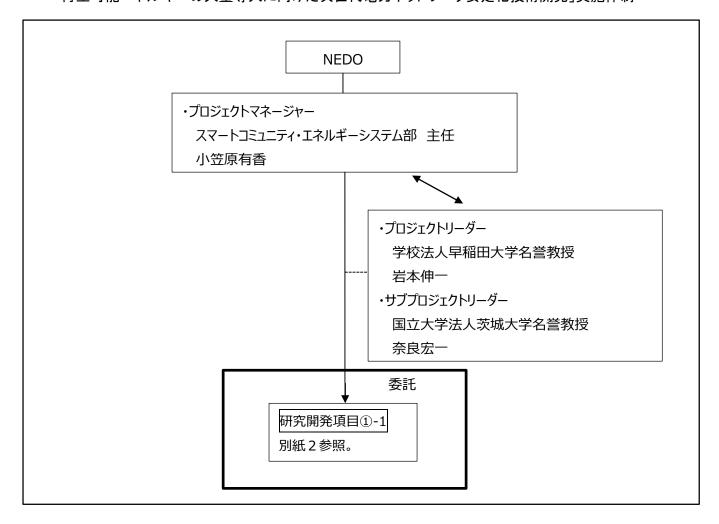
(4)知財マネジメントにかかる運用

「NEDOプロジェクトにおける知財マネジメント基本方針」に従ってプロジェクトを実施する。(研究開発項目①-1)

(5)データマネジメントにかかる運用

「NEDOプロジェクトにおけるデータマネジメントに係る基本方針」に従ってプロジェクトを 実施する。(研究開発項目①-1)

(6)標準化施策等との連携


得られた研究開発成果については、標準化施策等との連携を図ることとし、研究開発実施者は、標準化に向けて開発する評価手法の提案、データの提供等を積極的に行う。国内の電力系統の体制を早期に整備するため、特に、国内標準化の取組を促進する。

7. 実施方針の改定履歴

- (1)2023年2月 制定
- (2)2023年9月 改定

(別紙1)事業実施体制の全体図

「再生可能エネルギーの大量導入に向けた次世代電力ネットワーク安定化技術開発」実施体制

(別紙2)研究開発項目①-1の実施体制

NEDO

委託

東京電力パワーグリッド株式会社

研究項目:出力抑制システム開発(ロジック検討、仕様検討等)、既設システム改修、再生可能エネルギーのローカル予測精度の検討、セキュリティ評価、フィールド実証、海外動向調査

東京電力ホールディングス株式会社

研究項目:再生可能エネルギーのローカル予測精度の検討

北海道電力ネットワーク株式会社

研究項目:出力抑制システム開発、既設システム改修(既設システムの改修等)、フィールド実証、海外動向調査

東北電力ネットワーク株式会社

研究項目:出力抑制システム開発、既設システム改修 (予測システムの改良等)、再生可能エネルギーのローカル予測精度の検討、フィールド実証

一般財団法人電力中央研究所

研究項目: 出力抑制システム開発(伝送仕様検討等)、フィールド実証、海外動向調査

株式会社テプコシステムズ

研究項目:出力抑制システム開発(ロジック検討等)、フィールド実証、海外動向調査

東京電設サービス株式会社

研究項目:出力抑制システム開発 (ロジック検討等)、フィールド実証、海外動向調査

株式会社日立製作所

研究項目: 出力抑制システム開発(システムの開発等)、フィールド実証

四国計測工業株式会社

研究項目:出力抑制システム開発(システムの開発等)、フィールド実証

一般財団法人日本気象協会

研究項目:再生可能エネルギーのローカル予測精度の検討 (PV 予測)、海外動向調査

伊藤忠テクノソリューションズ株式会社

研究項目:再生可能エネルギーのローカル予測精度の検討(風力予測)、海外動向調査

国立大学法人東京大学

研究項目:出力抑制システム開発(ロジック 検討等)、再生可能エネルギーのローカル予測 精度の検討(需要予測等)、海外動向調査 (再委託) 学校法人千葉工業大学
