

C⁴S Research and Development Project

PM: Takafumi NOGUCHI The University of Tokyo, Professor PJ constituent organizations The University of Tokyo, Hokkaido University Recommissioned organizations Tokyo University of Science, Kogakuin University, Utsunomiya University, Shimizu Corporation, Taiheiyo Cement, Masuo Recycle

Background (Cement production & CO₂), Objective

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

太平洋セメント

宇都宮大学

工学院大学

東京理科大学

東京大学

北海道大学

2023-1-18

Background, Method for CCUS

Extraction of limestone CaCC₃ to produce cement, etc.

Always generate CC₂ when using calcium

Concrete which is no longer used in cities, e source of calcium **Ca**

Crushing waste concrete

Binding CO_2 in the air

清水建設

Calcium carbonate (CaCO₂) formation

Production of calcium carbonate concrete (CCC) to capture and fix CC₂

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

Ca

Project Implementation Structure

清水建設

大平洋セナン

宇都宮大学

工学院大学

東京理科大学

東京大学

北海道大学

Development Schedule, Targets

R&D Items	Target at the end of FY2022 (Interim)	Target at the end of FY2024 (Interim)	Target at the end of FY2029 (Final)
①Development of CCC reaction control technology and component manufacturing principles	Minimum strength of 12MPa as specified by the Building Standard Law secured with a test specimen of Φ10x20cm	 Production of structural members with a strength of 12MPa Construction of structural frames 	Ensure strength equal to or greater than conventional concrete in pilot demonstration
②Development of manufacturing processes for CCC raw materials	CC absorption time from the atmosphere be implemented in society	CCC raw material production capacity of 500kg/hour	Development of a 2ton/hour CCC raw material production process
③Development of structural design and performance evaluation methods for CCC structures and social implementation of C ⁴ S	 Prospect for contribution to alobal warming prevention in LCA Drafting of measures to establish a system of certification by the Minister of LIT 	 Establishment of a schematic material design method Establishment of outline of design principles for structural members 	 Construction o two- story buildings Confirmation of effectiveness of global warming countermeasures through LCA
(4) Development and demonstration research of CCC structure design, manufacturing, and construction technologies		 Determination of structure construction method Study of construction equipment Start prototype design and development 	Confirmation of the realization of construction with an appropriate construction period and amount of work in the pilot demonstration

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設 大平洋セメント MASUO

Implementation (Production and Use)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

太平洋セメント

工学院大学

東京理科大学

東京大学 北海道大学

宇都宮大学

The University of Tokyo Hokkaido University Tokyo University of Science Kogakuin University Utsunomiya University Shimizu Corporation Taiheiyo Cement Masuo Recycle

清水建設 大平洋セント MASUO MOONSHO

工学院大学

東京理科大学

東京大学

北海道大学

宇都宮大学

Project II: CCC Raw Material Production

CO₂ Capture in Waste Concrete by DAC

Increase in CO₂ capture by repeated wetting & drying (atmospheric CO₂ utilization)

Production of CCC Raw Materials (Plant)

Main process **Crushing** only small amount **c** mist spraying 1 time/12 hours) Low energy consumption \Rightarrow Low CO emissions about 10 kg-CO₂/m³

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

(f) 宇都宮大学

工学院大学

東京理科大学

東京大学

北海道大学

清水建設

太平洋セメント

The University of Tokyo Hokkaido University Tokyo University of Science Kogakuin University Utsunomiya University Shimizu Corporation Taiheiyo Cement Masuo Recycle

ATTENT

清水建設

工学院大学

東京理科大学

東京大学

北海道大学

宇都宮大学

Principle of CCC Production

Strength development strategies for calcium carbonate concrete (CCC)

Stress transfer by generating calcium carbonate between aggregate particles
 Appropriate placement of aggregate particles in the initial stage

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

(f) 宇都宮大学

工学院大学

東京理科大学

東京大学

清水建設

Precipitation Method

Production with particle filling and continuous calcium carbonate precipitation (carbonation rate: 85%)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

工学院大学

東京理科大学

東京大学

北海道大学

宇都宮大学

Pre-loading Method

Production by repeated pressure filling, soaking and drying (carbonation rate: 60-70%)

(f) 宇都宮大学

工学院大学

東京理科大学

東京大学 北海道大学

清水建設

太平洋セメント

Stacked Pressurization Method

Production by repeated pressure, flooding and drying (carbonation rate: 60-70%)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

太平洋セメント

工学院大学

東京理科大学

東京大学

北海道大学

宇都宮大学

Development Process (Strength & Size)

Research & Development Program Goal 4

清水建設

太平洋セメント

工学院大学

東京理科大学

東京大学

北海道大学

Development Process (Strength & Size)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

9 宇都宮大学

工学院大学

東京理科大学

東京大学

北海道大学

清水建設

太平洋セメント

Development Process (Strength)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

了 宇都宮大学

工学院大学

東京理科大学

北海道大学

東京大学

清水建設

太平洋セメント

Mechanism of Strength Development

- Initial condition with appropriate particle size distribution is necessary.
- Aragonite in calcium carbonate is necessary for strength enhancement (because the needle-like crystals allow stress transfer between particles).
- Generation conditions at temperatures where aragonite is abundant (70°C) are important.

清水建設

太平洋セメント

宇都宮大学

工学院大学

東京理科大学

北海道大学

東京大学

Mechanism of Strength Development

Suppression and control of arch action during pressurized filling is important.

- Optimization of particle size distribution
 - ➡ CCC porosity reduction
- Optimization of mixing ratio of aggregate and Ca(HCO₃)₂ solution
 - ➡ Proper arrangement of aggregate particles, decrease in porosity of CCC
- Increase of contact area between aggregates
 - ➡ Reinforcement of CCC skeletal structure after pressure molding

➡ Increase in compressive strength

Drying of CCC at 105°C after pressure molaing

- ➡ Precipitation of calcium carbonate at the aggregate interface
- ➡ Densification of CCC and binding of aggregate particles
- Immersion in $Ca(HCO_3)_2$ solution and drying (secondary curing)
 - → Further precipitation of calcium carbonate by $Ca(HCO_3)_2(aq.) \rightarrow CaCO_3(s) + CO_2 + H_2O_3(s) + CO_2(s) + CO_2($
 - \Rightarrow Further carbonation of uncarbonated Ca in CCC aggregate by CO₂ generated by the reaction

➡ Further increase in compressive strength

P. 19

The University of Tokyo Hokkaido University Tokyo University of Science Kogakuin University Utsunomiya University Shimizu Corporation Taiheiyo Cement Masuo Recycle

清水建設

工学院大学

東京理科大学

東京大学

北海道大学

宇都宮大学

太平洋セメント MASUO M

Project III: Implementation of CCC

Proposal for Structural Form Using CCC

9 宇都宮大学

工学院大学

東京大学

清水建設

太平洋セメント

Evaluation of Mechanical Performance of CCC Members (Columns)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

工学院大学

Accumulation of CCC Raw Materials

Buildings and civil engineering structures have so far stocked enormous amount of concrete. In the future, they will be demolished and become raw materials for CCC when reaching the end of their service lives

清水建設

太平洋セメント

宇都宮大学

北海道大学

東京理科大学

工学院大学

東京大学

Generation of Waste Concrete

Comparison in construction waste output between civil engineering structures and buildings (2018)

清水建設

太平洋セメント

宇都宮大学

工学院大学

東京理科大学

東京大学

北海道大学

LCA in CCC Production (Boundary setting)

Research & Development Program Goal 4

清水建設

大平洋セナン

宇都宮大学

工学院大学

東京理科大学

北海道大学

東京大学

Estimation of CO₂ Emission in CCC Production

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

清水建設

太平洋セメント

宇都宮大学

工学院大学

東京理科大学

北海道大学

東京大学

The University of Tokyo Hokkaido University Tokyo University of Science Kogakuin University Utsunomiya University Shimizu Corporation Taiheiyo Cement Masuo Recycle

Future Development

Carbon captured in continental ecosystems Green Carbon from land green

Carbon captured in human ecosystems
White Carbon
from human activities

工学院大学

宇都宮大学

北海道大学

東京理科大学

東京大学

清水建設

太平洋セメント

Schedule for Implementation (Concept)

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

宇都宮大学

工学院大学

東京大学

CCC = White Carbon

Thank you for your attentio . Our goa for the enc or F 2022 has been achieve .

From now on all o us will work together to accelerate the study for the social implementation o CCC in order to realize a carbor neutral society in 205 !

Save the Earth!

FY2022 Results Report Meeting for NEDO Moonshot Research & Development Program Goal 4

With (S!!

清水建設